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Why  modeling curves and curved surfaces?

We worked so far with flat entities such as lines and flat polygons
§ Graphics systems render flat (3D) objects at high rates 
§ Efficient hidden surface removal, shading, texture mapping…
§ Mathematically simple

The world is not composed of flat entities  
§ We can provide the means to work with curved objects 
§ This can be done at the application level
§ Implementation can render these objects approximately with flat 
primitives
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Overview

• Representation of curves and surfaces

• Polynomial forms

• Hermite curves

• Bézier curves

Based on:

E. Angel and D. Shreiner: Interactive Computer Graphics – A Top Down Approach with 
Shader-Based OpenGL (6th ed). Chapter 10: Curves and Surfaces
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On object representation

There are many ways to represent curves and surfaces. Some of the 
considerations to take into account are:
§ Stability
§ Smoothness
§ Ease of evaluation
§ Do we need accurate interpolation or can we just come close to data?
§ Do we need derivatives?

In general, there are three major types of object representation
§ Explicit
§ Implicit
§ Parametric

Each of these has certain advantages and disadvantages

approximating curve

data points
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Explicit Representation

Most familiar form of curve in 2D
y = f (x)

Cannot represent all curves
§ Vertical lines
§ Circles

Extension to 3D 
§ y = f (x), z = g (x) defines a curve in 3D

• e.g. equations y = ax + b; z = cx + d describe a line in 3D, but cannot 
represent a line in a plane with constant x

§ The form z = f (x,y) defines a surface (but cannot represent a sphere)

x

y

x

y

z
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Implicit Representation 

Two dimensional curve in implicit form:
f (x,y) = 0

Most curves and surfaces that we work with have implicit forms:
§ All lines  ax + by + c = 0
§ Circles    x2+ y2 - r2 = 0

In three dimensions  f (x,y,z) = 0 defines a surface
§ e.g., any plane: ax + by + cz +d = 0, with constants a, b, c and d
§ a sphere centered at origin, with radius r:     x2+ y2 + z2 - r2 = 0

Curves in 3D are not so easily represented in implicit form. 
§ Possibly as intersection of two surfaces f (x,y,z) = 0 and g (x,y,z) = 0

In general, we cannot solve for points that satisfy the implicit form
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Implicit Representation, contd. 

Algebraic surface  
§ f (x,y,z) is the sum of polynomials in the three variables

Quadric surface  
§ a special type of algebraic surface where each term in   f (x,y,z) can 
have degree up to 2 (i.e.,                       )
§ of interest because they include objects like spheres, disks and cones and 
they generate at most two intersection points with lines
à the problem of finding the intersection with a ray reduces to solving a 

quadratic equation
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Parametric Representation

Separate equation for each spatial variable, expressed in terms of an 
independent variable, called the parameter:

x = x(u),
y = y(u),
z = z(u)               

p(u)=[x(u), y(u), z(u)]T

p(u)

p(umin)
p(umax)

dp(u)
du

=
dx(u)
du

dy(u)
du

dz(u)
du

!

"#
$

%&

T Gives the velocity with which the 
curve is traced out and points in 
the direction tangent to the curve

Visualize a curve for umax ³ u ³ umin
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Parametric Lines

Line connecting two points p0 and p1

p(u)=(1-u)p0+up1

We can normalize u to be over the interval (0,1)

p(0) = p0

p(1)= p1

Ray from p0 in the direction d

p(u)=p0+ud

p(0) = p0

p(1)= p0 +d

d
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Parametric Surfaces

Surfaces require 2 parameters

x = x(u,v),    

y = y(u,v),    

z = z(u,v)       

As u and v vary, we generate all the points on the surface

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

Both for curves and surfaces we choose the functions according to some 
desired properties:
§ Smoothness
§ Differentiability
§ Ease of evaluation

x

y

z p(u,0)

p(1,v)p(0,v)

p(u,1)
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Parametric Representation

The partial derivatives determine the tangent plane at each point of the 
surface
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Moreover, we can obtain the normal at any point p as the cross product 
of these vectors (as long as they are not parallel): 
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The parametric form is the most flexible and robust for computer graphics
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Parametric Planes

p(u,v)=p0+uq+vr

q

r

p0

n

p0

n

p1

p2

q = p1 – p0
r = p2 – p0

Point-vector form

Three-point form

rqn ´=

rqn ´=
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Constant θ  : circles of constant longitude
Constant φ : circles of constant latitude

Parametric Sphere

x(q, φ) = r cos q sin φ
y(q, φ) = r sin q sin φ
z(q, φ) = r cos φ

360 ³ q ³ 0
180 ³ φ ³ 0

The points on a sphere with radius r

Differentiate to show  n = p
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Curve Segments

After normalizing u, each curve is written

p(u)=[x(u), y(u), z(u)]T,   1 ³ u ³ 0

While in classical numerical methods we design a single global curve, in 
computer graphics it is better to design small connected curve segments

p(u)

q(u)p(0)
q(1)

join point p(1) = q(0)

Advantages of designing each segment individually
§ working interactively; affecting the shape only where we want
§ local control implies stability: small changes in parameters (independent var.) 
cause small changes in dependent variables
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Parametric Polynomial Curves
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where p can be any of x, y, z. Or we can write in a vector form 
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If N=M=K, we need to determine 3(N+1) coefficients. Equivalently we 
need 3(N+1) independent conditions

Noting that the curves for x, y and z are independent, we can define 
each independently in an identical manner. We can use the form
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Why Polynomials?

• Easy to evaluate

• Continuous and differentiable everywhere
§ Remember that we work with curve segments. It is important to ensure 

continuity at join points including continuity of derivatives
§ For a polynomial curve all derivatives exist and can be computed 

analytically

p(u)
q(u)

join point p(1) = q(0)
but p’(1) ¹ q’(0)
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Cubic Parametric Polynomials

• Choosing the degree of the polynomial curve involves a trade-off
§ higher degree = more parameters to set à better ability to form the shape
§ however, more costly and more danger that the curve will become rougher

• N = M = L = 3, is considered as a good balance between ease of 
evaluation and flexibility in design

• Four coefficients to determine for each of x, y and z
à Four independent conditions needed for various values of u resulting in 

4 equations in 4 unknowns for each of x, y and z

• The conditions are a mixture of continuity requirements at the join 
points and conditions for fitting the data 
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Cubic Polynomial Surfaces

p(u,v) = [x(u,v), y(u,v), z(u,v)]T , where
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p is any of x, y and z.

Requires 48 coefficients (3 independent sets of 16) to determine a 
surface patch.
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Designing parametric curves

• Introduce the types of curves
§ Interpolating
§ Hermite
§ Bézier
§ B-spline

• Analyze  their performance
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Matrix-Vector  Form
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Interpolating Curve

p0

p1

p2

p3

Given four data (control) points p0 , p1 , p2 , p3
determine cubic p(u) which passes through them

à We must find c0 ,c1 ,c2 , c3
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Interpolation Equations

p0=p(0)=c0
p1=p(1/3)=c0+(1/3)c1+(1/3)2c2+(1/3)3c3
p2=p(2/3)=c0+(2/3)c1+(2/3)2c2+(2/3)3c3
p3=p(1)=c0+c1+c2+c3

or in matrix form with p = [p0 p1 p2 p3]T we have p=Ac with
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First, we need to decide at which values of u the interpolation takes 
place. Lacking any other information, we can choose these values to be 
equally spaced. Since we have chosen u to vary over [0,1], we apply 
interpolating conditions at u = 0, 1/3, 2/3, 1
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Interpolation Matrix

Solving for c we find the interpolation matrix
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5.45.135.135.4
5.4185.229
15.495.5
0001

1AMI

c=MI p

Note that MI does not depend on input data and can be used for each 
segment in x, y and z.

and we obtain the coefficients c as 
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Interpolating Multiple Segments

use p = [p0 p1 p2 p3]T use p = [p3 p4 p5 p6]T

We achieve continuity at join points but not
continuity of derivatives 
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Blending Functions

We can rewrite the equation for p as

p(u)=uTc=uTMIp = b(u)Tp

where is a column matrix of 
four blending polynomials, such that

These blending functions for the cubic interpolating polynomial are 

b0(u) = -4.5(u-1/3)(u-2/3)(u-1)

b1(u) = 13.5u (u-2/3)(u-1)

b2(u) = -13.5u (u-1/3)(u-1)

b3(u) = 4.5u (u-1/3)(u-2/3)
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Blending Functions, contd.

These functions are not smooth
§Hence the interpolation polynomial is not smooth

The lack of smoothness is the consequence of the interpolating 
requirement that the curve must pass through the control points 
(rather than just come close to them)
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Interpolating Patch

Interpolating patch is a natural extension of the interpolating curve.  
A bicubic surface patch can be written as

Where cij is a three-element column matrix of the x, y and z 
coefficients for the i j-th term in the polynomial.

We need 16 conditions to determine the 16 coefficients cij. Choose at   
u,v = 0, 1/3, 2/3, 1
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A particular bicubic polynomial patch 
is defined by 48 elements of C, i.e. by 
16 three-element vectors
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Matrix Form

Define: v = [1 v v2 v3]T  , C = [cij]      P = [pij]

We can rewrite the expression for p(u,v) as

If we observe that for constant u (v), we obtain interpolating curve in     
v (u), we can show that

p(u,v) = uTCv

p(u,v) = uTMIPMI
Tv

C = MIPMI
T

3D control points
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Each bi(u)bj(v) is a blending patch

We can build and analyze surfaces  from our knowledge of curves

Surfaces formed from curves by this technique are known as tensor 
product surfaces. They are an example of separable surfaces, which can 
be written as

Where f and g are suitably chosen matrices. The advantage is that we  
work with functions of u and v independently.

Blending Patches
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Other Types of Curves and Surfaces

• How can we get around the limitations of the interpolating form
§ Lack of smoothness
§ Discontinuous derivatives at join points

• We have four conditions (for cubics) that we can apply to each 
segment

§ Use them other than for interpolation
§ Relax the “data fit” - sufficient to come close to the data (no need to really 
“go through” the data points)
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Hermite Form

p(0) p(1)

p’(0) p’(1)

The curve is forced to pass through only 2 control points (so, 
only 2 “interpolating” conditions)

Two extra conditions remain and these will be used to meet 
the requirement on the derivatives.
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Hermite Form, contd.

p(0) p(1)

p’(0) p’(1)

So, use two interpolating conditions and
two derivative conditions per segment

This ensures continuity and first derivative
continuity between segments
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Hermite Form, contd.

Interpolation conditions are the same as before at the end points:

p0=p(0)=c0
p3=p(1)=c0+c1+c2+c3

The derivative of is simply     

Evaluating at end points yields two other conditions:

p’0=p’(0)=c1
p’3=p’(1)=c1+2c2+3c3
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Hermite Form, contd.
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Solving, we find c=MHq where MH is the Hermite matrix 
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Blending Polynomials for the Hermite form
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Although these functions are smooth, the Hermite form
is not used directly in Computer Graphics and CAD 
because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form
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Parametric and Geometric Continuity

• We can require the derivatives of  x, y and z to each be continuous at 
join points - parametric continuity

• Alternately, we can only require that the tangents of the resulting 
curve be continuous - geometry continuity

• The latter gives more flexibility as we have to satisfy only two 
conditions instead of three at each join point
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Parametric and Geometric Continuity

• We can enforce various continuity conditions by matching polynomials 
and their derivatives at p(1) with q(0).

• Parametric continuity - requires that the derivatives of  x, y and z are 
continuous at join points p’(1) =q’(0). 

• Geometric continuity - requires only that the tangents of the resulting 
curve are continuous p’(1) =aq’(0), a>0 (derivatives proportional)

• The latter gives more flexibility as we have to satisfy only two 
conditions instead of three at each join point

p(u)

q(u)

p(1) = q(0) q(1)

p(0)
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Example

• Here the p and q have the same tangents at the ends of the segment 
but different derivatives

• Generate different Hermite curves

• This techniques is used in drawing applications
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Higher Dimensional Approximations

• The techniques for both interpolating and Hermite curves can be 
used with higher dimensional parametric polynomials

• For interpolating form, the resulting matrix becomes increasingly 
more ill-conditioned and the resulting curves less smooth and more 
prone to numerical errors

• In both cases, there is more work in rendering the resulting 
polynomial curves and surfaces
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Bézier’s Idea

• In graphics and CAD, we do not usually have derivative data

• Bezier suggested using the same 4 data points as with the cubic 
interpolating curve to approximate the derivatives in the Hermite 
form 
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Approximating Derivatives

p0

p1
p2

p3

p1 located at u=1/3 p2 located at u=2/3

3/1
)0( 01 ppp -
»' 3/1

)1( 23 ppp -
»'

slope p’(0)
slope p’(1)

u
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Bézier form

Interpolating conditions are the same as for the Hermite form
p0=p(0)=c0
p3=p(1)=c0+c1+c2+c3

Approximating derivative conditions
p’0= 3(p1- p0)=c1
p’3= 3(p3- p2) =c1+2c2+3c3

Solve four linear equations for c=MBp
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Bézier Matrix
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p(u) = uTMBp = b(u)Tp

blending functions
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Blending Functions
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Note that all zeros are at 0 and 1 which forces
the functions to be smooth over (0,1)

47



Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Bernstein Polynomials

• The blending functions are a special case of the Bernstein 
polynomials

• These polynomials give the blending polynomials for any degree 
Bezier form

§ All zeros at 0 and 1
§ For any degree they all sum to 1
§ They are all between 0 and 1 inside (0,1) 
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Convex Hull Property

• The properties of the Bernstein polynomials ensure that all Bezier 
curves lie in the convex hull of their control points

• Hence, even though we do not interpolate all the data, we cannot be 
too far away

p0

p1 p2

p3

convex hull

Bézier curve
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Bézier Patches

Using same data array P=[pij] as with interpolating form
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Analysis

• Although the Bezier form is much better than the interpolating 
form, the derivatives are not continuous at join points

• Can we do better?
§Go to higher order Bezier

•More work
•Derivative continuity still only approximate
•Supported by OpenGL

§Apply different conditions 
•Tricky without letting order increase
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Summary

• Representation of curves and surfaces

• Polynomial forms

• Hermite curves

• Bézier curves

For more details, see

E. Angel and D. Shreiner: Interactive Computer Graphics – A Top Down Approach with 
Shader-Based OpenGL (6th ed). Chapter 10: Curves and Surfaces
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