
E016712: Computer Graphics

Curves and Surfaces
Part 2: Splines and Subdivision

Lecturers: Aleksandra Pizurica and Danilo Babin

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Overview

• Cubic B-Splines

• NURBS

• Rendering curves and surfaces

• Subdivision surfaces

Based on:

E. Angel and D. Shreiner: Interactive Computer Graphics – A Top Down Approach with
Shader-Based OpenGL (6th ed). Chapter 10: Curves and Surfaces

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Reminder: Curve Segments

After normalizing u, each curve is written

p(u)=[x(u), y(u), z(u)]T, 1 ³ u ³ 0

While in classical numerical methods we design a single global curve, in
computer graphics it is better to design small connected curve segments

p(u)

q(u)p(0)
q(1)

join point p(1) = q(0)

Advantages of designing each segment individually
§ working interactively; affecting the shape only where we want
§ local control implies stability: small changes in parameters (independent var.)
cause small changes in dependent variables

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Let denote control points

Reminder: Parametric Polynomial Curves

uuuuu k

k
kå

=
=+++=

3

0

3
3

2
210)(cccccp

,

3

2

1

0

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

c
c
c
c

c,

1

3

2

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

u
u
u

u

pMpAcAcp ==Þ= -1

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

kz

ky

kx

k

c
c
c

c

,)]()()([)(Tuzuyuxu =p

From the particular conditions:

uccup TTu ==)(

pbpMucup)()(uu TT === Blending polynomials

][3210 ppppp =

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Interpolating form, Bézier form and beyond

Although the Bézier form is much better than the interpolating form,
the derivatives are not continuous at join points.

Can we do better?
§ Go to higher order Bézier curves

• More work
• Derivative continuity still only approximate
• Supported by OpenGL

§ Splines --> this lesson

B-Splines

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Cubic B-Splines

p0

p1 p2
p3p(0)

p(1)

Use the data at p=[pi-2 pi-1 pi pi-1]T to define a curve only between
pi-1 and pi .

This allows to apply more continuity conditions to each segment.

For cubic splines, we can have continuity of function, first and
second derivatives at join points.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Cubic B-Splines
3

3
2

210)(uuuu ccccp +++=

i-3

q(1)=p(0)

i-2 i-1 i i+1

pi-3 pi+1
q(0) p(1)

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Cubic B-Splines

)4(
6
1)1()0(12 iii pppqp ++== --

)(
2
1)1()0(2--== ii'' ppqp

Two possible conditions:

3
3

2
210)(uuuu ccccp +++=

i-3

q(1)=p(0)

i-2 i-1 i i+1

pi-3 pi+1
q(0) p(1)

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Cubic B-Splines

)4(
6
1)1()0(12 iii pppqp ++== --

)(
2
1)1()0(2--== ii'' ppqp

Two possible conditions:

3
3

2
210)(uuuu ccccp +++=

Þ

)4(
6
1

120 iii pppc ++= --

)(
2
1

21 --= ii ppc

i-3

q(1)=p(0)

i-2 i-1 i i+1

pi-3 pi+1
q(0) p(1)

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Cubic B-Splines
3

3
2

210)(uuuu ccccp +++=

)4(
6
1)1(113210 +- ++=+++= iii pppccccp

We can apply symmetric conditions at p(1):

)(
2
132)1(11321 -+ -=++= ii' ppcccp

i-3

q(1)=p(0)

i-2 i-1 i i+1

pi-3 pi+1
q(0) p(1)

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Cubic B-Splines

i-3

q(1)=p(0)

i-2 i-1 i i+1

pi-3 pi+1
q(0) p(1)

3
3

2
210)(uuuu ccccp +++=

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

--
-

-
=

1331
0363
0303
0141

6
1

MS

)4(
6
1

120 iii pppc ++= --

)(
2
1

21 --= ii ppc

)4(
6
1

113210 +- ++=+++ iii pppcccc

)(
2
132 11321 -+ -=++ ii ppccc

Þ

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

It can be shown that and for .

Thus, the curve must lie in the convex hull of the control points.

Cubic B-Splines: blending polynomials

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

-++
+-

-

==

u
uuu

uu
u

u T
S

3

32

32

3

3331
364
)1(

6
1)(uMb

p0

p1
p2

p3

å
=

=
3

0
1)(

i
i ub 1)(0 << ubi 10 << u

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Comparison of blending polynomials

Cubic Interpolating polynomial

Bézier curves

Qubic B-splines

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

B-Spline Patches

vupvbubvup T
SS

T
ijj

i j
i MPM==åå

= =
)()(),(

3

0

3

0

defined over only 1/9 of region

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Splines and Basis

Note that each interior control point contributes (through the blending
functions) to four segments.

We can rewrite p(u) in terms of the data points as

å
-

=
=

1

1
)()(

m

i
ii uBu pp

2
21
1

1
12

2

0
)1(
)(
)1(
)2(

0

)(

0

1

2

3

+³
+<£+
+<£
<£-
-<£-

-<

ï
ï
ï

î

ï
ï
ï

í

ì

-

+
+

=

iu
iui
iui
iui
iui

iu

ub
ub
ub
ub

uBi
b0(u-1)b3(u+2)

b1(u)b2(u+1)

defining the basis functions {Bi(u)}. The name B-spline comes from
“basis spline”.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Generalizing Splines

We can extend to splines of any degree.

Data and conditions do not have to be given at equally spaced values
(the knots)
§ Non-uniform and uniform splines
§ Can have repeated knots

– repeating knots can force the spline to interpolate the points

There are a number of ways to define basis splines – of particular
importance is the set of splines defined by Cox-deBoor recursion.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Recursively defined splines

A B-spline is defined in terms of a set of basis (blending) functions each
of which is nonzero over the region spanned by a few knots

,
,0
,1 1

0
î
í
ì ££

= +

otherwise
kk

k
uuu

B)()(1,1
11

1
1, uB

uu
uuuB

uu
uuB dk

kdk

dk
dk

kdk

k
kd -+

+++

++
-

+ -
-

+
-

-
=

å
=

=
m

i
iid uBu

0
)()(pp

Bid (u) is a polynomial of degree d, except at the knots, and is zero
outside the interval (uimin,uimax).

Cox-deBoor recursion

uk uk+1
uk+1

uk+2uk

uk+1 uk+2

uk uk+3

NURBS

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

NURBS

Nonuniform Rational B-Spline curves and surfaces add an extra variable w,
which acts as a weight to change importance of some control points

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

i

i

i

i

z
y
x

p

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

1
i

i

i

ii z
y
x

wq

å
=

=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

n

i
iidi wuB

uz
uy
ux

u
0

,)(
)(
)(
)(

)(pq

The first three components are the B-spline representation of the
weighted points

The w component is the scalar B-spline polynomial derived from the set
of weights

A 3D
control
point

å
=

=
n

i
idi wuBuw

0
,)()(

weighted homogeneous-
coordinate

representation

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

NURBS, contd.

In homogeneous coordinates, this representation can have w component
different from 1. Thus, a perspective division is needed to derive the 3D
points:

å
å

=

=== n
i idi

n
i iidi

wuB
wuB

u
uw

u
0 ,

0 ,

)(
)(

)(
)(

1)(
p

qp

Each component of p(u) is now a rational function of u.

NURBS retain all the properties of 3D B-splines, such as convex hull and
continuity properties.

B-splines are invariant under affine transformation.

Perspective transformations are not affine. NURBS will be handled properly
under perspective viewing as well, while most other splines not!

Rendering curves and surfaces

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polynomial evaluation methods

Suppose we have

The simplest method to render a polynomial curve is to evaluate the
polynomial at many points and form an approximating polyline.

For surfaces we can form an approximating mesh of triangles or
quadrilaterals.

Rather than evaluating each term independently, we can group the
terms using the Horner’s method.

For the cubic polynomial, we need 3 multiplications

10,)(
0

££=å
=

uuu
n

i

i
icp

)))(...(()(210 uuuuu nccccp ++++=

))(()(3210 ccccp uuuu +++=

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polynomial evaluation methods, contd.

)()()0(
kk upup =D

)()()(1
)1(

kkk upupup -=D +

)()()()(
1

)()1(
k

m
k

m
k

m upupup D-D=D +
+

For equally spaced {uk} we define finite differences

For a polynomial of degree n, the nth finite difference is constant.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Building a Finite Difference Table

p(u)=1+3u+2u2+u3

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Finding the Next Values

Starting at the bottom, we can work up generating new values for the
polynomial

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Efficient method, but applies only to uniform grid and is prone to
accumulation of numerical errors.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

deCasteljau Recursion

We can use the convex hull property of Bézier curves to obtain an
efficient recursive method that does not require any function
evaluations, but uses only the values at the control points

p0, p1 , p2 , p3 determine a cubic Bézier polynomial
and its convex hull

Consider left half l(u) and right half r(u)

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

deCasteljau Recursion, contd.

Since l(u) and r(u) are Bézier curves, we should be able to
find two sets of control points {l0, l1, l2, l3} and {r0, r1, r2, r3}
that determine them

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

deCasteljau Recursion, contd.

{l0, l1, l2, l3} and {r0, r1, r2, r3} each have a convex hull that is closer
to p(u) than the convex hull of {p0, p1, p2, p3}. This is known as the
variation diminishing property.

The polyline from l0 to l3 (= r0) to r3 is an approximation to p(u).
Repeating recursively we get better approximations.

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

deCasteljau Recursion, contd.

Bézier polynomial: p(u)=b(u)Tp ,

l(u) must interpolate p(0) and p(1/2)
l(0) = l0 = p0

l(1) = l3 = p(1/2) = 1/8(p0 +3 p1 +3 p2 + p3)

Matching slopes, taking into account that l(u) and r(u) only go over
half the distance as p(u)

l’(0) = 3(l1 - l0) = p’(0) = 3/2(p1 - p0)
l’(1) = 3(l3 – l2) = p’(1/2) = 3/8(- p0 - p1+ p2 + p3)

Symmetric equations hold for r(u).

T3223])1(3)1(3)1([)(uuuuuuu ---=b

3
3

2
2

1
2

0
3)1(3)1(3)1()(ppppp uuuuuuu +-+-+-=

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

deCasteljau Recursion, contd.

l0 = p0
r3 = p3
l1 = ½(p0 + p1)
r2 = ½(p2 + p3)
l2 = ½(l1 + ½(p1 + p2))
r1 = ½(r2 + ½(p1 + p2))
l3 = r0 = ½(l2 + r1)

Requires only shifts and additions!

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Every Curve is a Bézier Curve

We can render a given polynomial using the recursive method if we find
control points for its representation as a Bézier curve

Suppose that p(u) is given as an interpolating curve with control points q

There exist Bézier control points p such that

Equating and solving, we find p=MB
-1MIq

p(u)=uTMIq

p(u)=uTMBp

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Transforming to Bézier form

Interpolating to Bézier

B-Spline to Bézier

B
−1M IM =

1 0 0 0

−
5
6

3 −
3
2

1
3

1
3

−
3
2

3 −
5
6

0 0 0 1

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

B
−1M SM =

1 4 1 0
0 4 2 0
0 2 4 0
0 1 4 1

"

#

$
$
$
$

%

&

'
'
'
'

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Example

These three curves were all generated from the same original data
using Bezier recursion by converting all control point data to Bezier
control points.

Bézier Interpolating B Spline

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Application to surfaces

Can apply the recursive method to surfaces if we recall that for a Bezier
patch curves of constant u (or v) are Bezier curves in u (or v)

First subdivide in u
§Process creates new points
§ Some of the original points are discarded

original and kept new

original and discarded

Wavelet Subdivision Surfaces

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Wavelets: subdivision runs backwards

Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Wavelet subdivision surfaces

Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Editing surface

Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type

