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Overview

• Cubic B-Splines

• NURBS

• Rendering curves and surfaces

• Subdivision surfaces

Based on:

E. Angel and D. Shreiner: Interactive Computer Graphics – A Top Down Approach with 
Shader-Based OpenGL (6th ed). Chapter 10: Curves and Surfaces
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Reminder: Curve Segments

After normalizing u, each curve is written

p(u)=[x(u), y(u), z(u)]T,   1 ³ u ³ 0

While in classical numerical methods we design a single global curve, in 
computer graphics it is better to design small connected curve segments

p(u)

q(u)p(0)
q(1)

join point p(1) = q(0)

Advantages of designing each segment individually
§ working interactively; affecting the shape only where we want
§ local control implies stability: small changes in parameters (independent var.) 
cause small changes in dependent variables
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Let denote control points

Reminder: Parametric Polynomial Curves
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Interpolating form, Bézier form and beyond

Although the Bézier form is much better than the interpolating form, 
the derivatives are not continuous at join points.

Can we do better?
§ Go to higher order Bézier curves

• More work
• Derivative continuity still only approximate
• Supported by OpenGL

§ Splines --> this lesson



B-Splines
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Cubic B-Splines

p0

p1 p2
p3p(0)

p(1)

Use the data at p=[pi-2 pi-1 pi pi-1]T to define a curve only between 
pi-1 and pi .

This allows to apply more continuity conditions to each segment.

For cubic splines, we can have continuity of function, first and 
second derivatives at join points.
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Cubic B-Splines
3

3
2
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q(1)=p(0)

i-2 i-1 i i+1

pi-3 pi+1
q(0) p(1)
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Cubic B-Splines
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Cubic B-Splines
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Cubic B-Splines
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Cubic B-Splines

i-3

q(1)=p(0)

i-2 i-1 i i+1

pi-3 pi+1
q(0) p(1)
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It can be shown that and for .   

Thus, the curve must lie in the convex hull of the control points.

Cubic B-Splines: blending polynomials
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Comparison of blending polynomials

Cubic Interpolating polynomial

Bézier curves

Qubic B-splines
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B-Spline Patches
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Splines and Basis

Note that each interior control point contributes (through the blending 
functions) to four segments.

We can rewrite p(u) in terms of the data points as
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defining the basis functions {Bi(u)}. The name B-spline comes from 
“basis spline”.
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Generalizing Splines

We can extend to splines of any degree. 

Data and conditions do not have to be given at equally spaced values 
(the knots)
§ Non-uniform and uniform splines
§ Can have repeated knots  

– repeating knots can force the spline to interpolate the points

There are a number of ways to define basis splines – of particular 
importance is the set of splines defined by Cox-deBoor recursion.
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Recursively defined splines

A B-spline is defined in terms of a set of basis (blending) functions each 
of which is nonzero over the region spanned by a few knots
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outside the interval (uimin,uimax).

Cox-deBoor recursion
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uk+1

uk+2uk

uk+1 uk+2

uk uk+3



NURBS
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NURBS

Nonuniform Rational B-Spline curves and surfaces add an extra variable w, 
which acts as a weight to change importance of some control points
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NURBS, contd.

In homogeneous coordinates, this representation can have w component 
different from 1. Thus, a perspective division is needed to derive the 3D 
points:
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Each component of p(u) is now a rational function of u.

NURBS retain all the properties of 3D B-splines, such as convex hull and 
continuity properties.

B-splines are invariant under affine transformation.

Perspective transformations are not affine. NURBS will be handled properly 
under perspective viewing as well, while most other splines not!



Rendering curves and surfaces
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Polynomial evaluation methods

Suppose we have

The simplest method to render a polynomial curve is to evaluate the 
polynomial at many points and form an approximating polyline.

For surfaces we can form an approximating mesh of triangles or 
quadrilaterals.

Rather than evaluating each term independently, we can group the 
terms using the Horner’s method.

For the cubic polynomial, we need 3 multiplications

10,)(
0

££=å
=

uuu
n

i

i
icp

)))(...(()( 210 uuuuu nccccp ++++=

))(()( 3210 ccccp uuuu +++=



Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polynomial evaluation methods, contd.
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For equally spaced {uk} we define finite differences

For a polynomial of degree n, the nth finite difference is constant.
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Building a Finite Difference Table

p(u)=1+3u+2u2+u3
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Finding the Next Values

Starting at the bottom, we can work up generating new values for the 
polynomial

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Efficient method, but applies only to uniform grid and is prone to 
accumulation of numerical errors.
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deCasteljau Recursion

We can use the convex hull property of Bézier curves to obtain an 
efficient recursive method that does not require any function 
evaluations, but uses only the values at the control points

p0, p1 , p2 , p3 determine a cubic Bézier polynomial
and its convex hull

Consider left half l(u) and right half r(u)

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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deCasteljau Recursion, contd.

Since l(u) and r(u) are Bézier curves, we should be able to
find two sets of control points {l0, l1, l2, l3} and {r0, r1, r2, r3}
that determine them

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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deCasteljau Recursion, contd.

{l0, l1, l2, l3} and {r0, r1, r2, r3} each have a convex hull that is closer 
to p(u) than the convex hull of {p0, p1, p2, p3}. This is known as the 
variation diminishing property.

The polyline from l0 to l3 (= r0) to r3 is an approximation  to p(u). 
Repeating recursively we get better approximations.

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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deCasteljau Recursion, contd.

Bézier polynomial: p(u)=b(u)Tp  ,  

l(u) must interpolate p(0) and p(1/2)
l(0) = l0 = p0

l(1) = l3 = p(1/2) = 1/8( p0 +3 p1 +3 p2 + p3 )

Matching slopes, taking into account that l(u) and r(u) only go over 
half the distance as p(u)

l’(0) = 3(l1 - l0) = p’(0) = 3/2(p1 - p0 )
l’(1) = 3(l3 – l2) = p’(1/2) = 3/8(- p0 - p1+ p2 + p3)

Symmetric equations hold for r(u).
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deCasteljau Recursion, contd.

l0 = p0
r3 = p3
l1 = ½(p0 + p1)
r2 = ½(p2 + p3)
l2 = ½(l1 + ½( p1 + p2))
r1 = ½(r2 + ½( p1 + p2))
l3 = r0 = ½(l2 + r1)

Requires only shifts and additions!
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Every Curve is a Bézier Curve

We can render a given polynomial using the recursive method if we find 
control points for its representation as a Bézier curve 

Suppose that p(u) is given as an interpolating curve with control points q

There exist Bézier control points p such that

Equating and solving, we find p=MB
-1MIq

p(u)=uTMIq

p(u)=uTMBp
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Transforming to Bézier form

Interpolating to Bézier

B-Spline to Bézier
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Example

These three curves were all generated from the same original data 
using Bezier recursion by converting all control point data to Bezier 
control points.

Bézier Interpolating B Spline
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Application to surfaces

Can apply the recursive method to surfaces if we recall that for a Bezier 
patch curves of constant u (or v) are Bezier curves in u (or v)

First subdivide in u 
§Process creates new points 
§ Some of the original points are discarded

original and kept new

original and discarded



Wavelet Subdivision Surfaces
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Wavelets: subdivision runs backwards

Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type
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Wavelet subdivision surfaces

Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type
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Editing surface

Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type


