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Overview

e Cubic B-Splines
e NURBS
e Rendering curves and surfaces

e Subdivision surfaces

Based on:

E. Angel and D. Shreiner: Interactive Computer Graphics —A Top Down Approach with
Shader-Based OpenGL (6t ed). Chapter 10: Curves and Surfaces
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_ Reminder: Curve Segments
EE

After normalizing u, each curve is written

p(u)=[x(u), y(u), z(w)]", 12u=0

While in classical numerical methods we design a single global curve, in
computer graphics it is better to design small connected curve segments

p(w) join point p(1) = q(0)

p(0) 1w 0

Advantages of designing each segment individually
= working interactively; affecting the shape only where we want

= [ocal control implies stability: small changes in parameters (independent var.)

cause small changes in dependent variables
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Reminder: Parametric Polynomial Curves

p(u) =[x(u) y(u) z(w)]',

3
p(u)=c,+cu+ czu2 + c3u3 — ch u"

k=0
1 ¢, -
Crx
| u e B . .
U=l 5 €= » Cr = Chy p(u)=u'c=c'u
u cz
C
_M3_ _C3_ | “Ykz

Let P=[Po P; P, P3] denote control points

From the particular conditions: p=Ae = ¢=A"'p=Mp

p(u)=u'c=u'Mp=b(u)p Blending polynomials
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Interpolating form, Bézier form and beyond

Although the Bézier form is much better than the interpolating form,
the derivatives are not continuous at join points.

Can we do better?
" Go to higher order Bézier curves
e More work
e Derivative continuity still only approximate
e Supported by OpenGL

= Splines --> this lesson
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B-Splines



Cubic B-Splines

P
o | )
Po ¢
° p(?))\ P3
p(l) ®

Use the data at p=[pi, pi.; P; Pi.1]' to define a curve only between
pi.i and p; .
This allows to apply more continuity conditions to each segment.

For cubic splines, we can have continuity of function, first and
second derivatives at join points.
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Cubic B-Splines

p(u)=c,+cu+ c,u’ + c3u3

. q(l)fp(O)

Pi3 .
¢ i+1
q(0) p(l) -
®
i-3 i-2 i-1 i i+] ]
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Cubic B-Splines

p(u)=c,+cu+ c,u’ + c3u3

. q(l)fp(O)

Pi3 .
¢ i+1
q(0) p(l) -
®
i-3 i-2 i-1 i i+] ]

Two possible conditions:

1
p(0)=q(l)= g(pi—z +4p,_, +p;)

p'(0)=q'(1) =%<pi —pis)
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Cubic B-Splines

p(u)=c,+cu+ c,u’ + c3u3

. q(l)fp(O)

Pi-3 T
(] 1+1
q(0) p(l) ~
o
i-3 i2 il j i+1 ]
Two possible conditions:
| |
p(0)=q(l) = g(pi—z +4p,_ +P;) ) Cy = E(Pi—z +4p,_, +P;)
! / 1 g : 1
p(0)=q(1)=5(pi—pi_2) cl=5(p,-—p,-_2)
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Cubic B-Splines

p(u)=c,+cu+ c,u’ + c3u3

. q(l)fp(O)

Pi3 .
¢ i+1
q(0) p(l) -
®
i-3 i-2 i-1 i i+] ]

We can apply symmetric conditions at p(1):

1
p(l)=co+¢c +¢,+e;= E(Pi—l +4p, +p,,,)

, 1
p'(l)=|¢ +2¢, +3¢; = E(Pm -P,y)
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Cubic B-Splines

p(u)=c,+cu+ c,u’ + (N7

o q(l)fp(O)

Pi-3 b
o 1 1+1
o
-3 -2 -1 l I+
1 ~
€y = E(Pi—z +4p,, +p;)
1 ] 4
clzi(pi_pi—2) 11-3 0
1 > — MS — 8 3 _6
Cp+C¢ +¢C, +C3 = E(Pi—l +4p; +p;yy)
1 13
¢, +2¢,+3¢; = 5(pi+1 —P,1)
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Cubic B-Splines: blending polynomials

4 by (u)
(1-u)’ Bylu)
(.2 3
b(u)=Mbu=1| 47 0u"+3u
6 1+3u+3u2—3u3
3
u

3

It can be shown that Y b, (u)=1 and 0<b,(u)<1 for O<u<l.
i=0

Thus, the curve must lie in the convex hull of the control points.

Pi1
P2

Po
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Comparison of blending polynomials

A b] (v) l:—wg(_u)

1N\ b, (u) ;
0 /,4 b3(u)

Cubic Interpolating polynomial

Bézier curves

by (u)

Qubic B-splines

-
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B-Spline Patches

303
p(u,v) =2, sz‘(”)bj(")l?,-j =u' MsPMsV

i=0 j=0

defined over only 1/9 of region

P30 /

P33

Poo Poz

Computer Graphics, A. Pizurica and D. Babin, Spring 2021



._Splmes and Basis

Note that each interior control point contributes (through the blending
functions) to four segments.

We can rewrite p(u) in terms of the data points as
m—1
p(u)= 2 B.(u)p,
i=1

defining the basis functions {B,(u#)}. The name B-spline comes from
“basis spline”.

[0 u<i—2 4
by(u+2) i-2<u<i-1
by (u+1) i—1<u<i

by(ut1) by(u)

Bi(u) =+ by (1) i<u<i+l
bo(u—1) i+15u<i+?2
0 u>i+2

\
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Generalizing Splines

We can extend to splines of any degree.

Data and conditions do not have to be given at equally spaced values
(the knots)

= Non-uniform and uniform splines
= Can have repeated knots
— repeating knots can force the spline to interpolate the points

There are a number of ways to define basis splines — of particular
importance is the set of splines defined by Cox-deBoor recursion.
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Recursively defined splines

A B-spline is defined in terms of a set of basis (blending) functions each
of which is nonzero over the region spanned by a few knots

p(u) = éBid (u)p;

B;;(u) is a polynomial of degree d, except at the knots, and is zero

outside the interval (u;,,;,, u

Cox-deBoor recursion

B I, u, <u<u,,
k0 = ,
0, otherwise

AB AB

U Ui+
O

"

»

imax) .

Bkd

U+

u—u u —
k Bk,d—l (u) 4+ k+d+1

Up g — Uy

>

>

u
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NURBS



NURBS

Nonuniform Rational B-Spline curves and surfaces add an extra variable w,
which acts as a weight to change importance of some control points

p— — x.
X, i
A 3D l y weighted homogeneous-
= _— 1 .
control P: i q, =w; coordinate
point Z, Zj representation

The first three components are the B-spline representation of the
weighted points

xw]
q(u)=| y(u) :ZBi,d(u)Wipi
_Z(u)_ i=0

The w component is the scalar B-spline polynomial derived from the set
of weights

W(ut) = ZB (w)w,
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NURBS, contd.

In homogeneous coordinates, this representation can have w component

different from 1. Thus, a perspective division is needed to derive the 3D
points:

s _ZZO ld(u)
p(u) = e )CI( ) " ,d(u)W

Each component of p(«) is now a rational function of u.

NURBS retain all the properties of 3D B-splines, such as convex hull and
continuity properties.

B-splines are invariant under affine transformation.

Perspective transformations are not affine. NURBS will be handled properly
under perspective viewing as well, while most other splines not!
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Rendering curves and surfaces
I



_ Polynomlal evaluation methods

Suppose we have
p(u)=>cu', 0<u<l
i=0

The simplest method to render a polynomial curve is to evaluate the
polynomial at many points and form an approximating polyline.

For surfaces we can form an approximating mesh of triangles or
quadrilaterals.

Rather than evaluating each term independently, we can group the
terms using the Horner’s method.

p(u)=c,+u(c, +u(c, +u(...+c,u)))

For the cubic polynomial, we need 3 multiplications

p(u)=c,+u(c, +u(c, +ucy))
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Polynomial evaluation methods, contd.

For equally spaced {u;} we define finite differences

A(O)p ()= p(u)

A(l)p(uk) = p(u ) — p(uy)

A(m+1)p(“k) = A(m)p(ukﬂ) - A(m)p(uk)

For a polynomial of degree n, the nt" finite difference is constant.
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Building a Finite Difference Table

p(u)=1+3u+2u’+u’

f O 1 2 3 4 5

1 / 23 J9 109 191
A
T
2
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Finding the Next Values

Starting at the bottom, we can work up generating new values for the
polynomial

f O 1 2 3 4 9

p| | 7 23 55— 109—>191

e
//
o

ABlp | 46— 66

A%p 10 16—

E. Angel and D.Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Efficient method, but applies only to uniform grid and is prone to

accumulation of numerical errors.
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_ deCasteljau Recursion

We can use the convex hull property of Bézier curves to obtain an
efficient recursive method that does not require any function
evaluations, but uses only the values at the control points

Po» P1,P>,P3determine a cubic Bézier polynomial
and its convex hull \

P

Consider left half (1) and right half r(u)

f Computer Graphics EaAngel@nd, RShreingr: Interactive gomputer Graphics 6E © Addison-Wesley 2012



deCasteljau Recursion, contd.

Since 1(u) and r(u) are Bézier curves, we should be able to
find two sets of control points {l,, I3, |5, 15} and {rg, rq, 15, r3}
that determine them
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_ deCasteljau Recursion, contd.

{ly, 1;, I, I3} and {r,, ry, r,, r3} each have a convex hull that is closer
to p(u) than the convex hull of {py, p;, P2, P3}. This is known as the
variation diminishing property.

The polyline from lyto 15 (=r,) to ryis an approximation to p(u).
Repeating recursively we get better approximations.

f Computer Graphics 5aAngglaad R-Shreiner: Interactive ¢omputer Graphics 6E © Addison-Wesley 2012



deCasteljau Recursion, contd.

Bézier polynomial: p(uw)=b(u)'p , b(u)z[(l—u)3 3u(1—u)2 3u*(1—u) u3]T

p(u)=(1-u)’p, +3u(l-u)’p, +3u*>(1-u)p, +u’p;

I(u) must interpolate p(0) and p(1/2)
1(0) =1y=py
I(1) =1;=p(1/2) = 1/8(po+3p; +3 P2t P3)

Matching slopes, taking into account that 1(#) and r(«) only go over
half the distance as p(u)

I’'(0) =3, - 1)) =p’(0) =3/2(p; - py)
I’'(1)=3(;-1)=p’(1/2) = 3/3(- po- p1+ P2+ P3)

Symmetric equations hold for r(u).
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deCasteljau Recursion, contd.

lhy="Ppo

;= P3

1, ="2(pyt P1)
r,="(p,+ P3)
L="2(1;t %(p;+ ps))
r="(r,+ %2(p;+py)
L=ry="2(tr))

Requires only shifts and additions!
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Every Curve is a Bézier Curve
HE

We can render a given polynomial using the recursive method if we find
control points for its representation as a Bézier curve

Suppose that p(u) is given as an interpolating curve with control points q

p(u)=u'Mq
There exist Bézier control points p such that

p(u)=u'M;zp

Equating and solving, we find p=Mz M q
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Transforming to Bézier form

Interpolating to Bézier Mz M, =

B-Spline to Bézier Mz Ms =
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Example

These three curves were all generated from the same original data
using Bezier recursion by converting all control point data to Bezier
control points.
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Application to surfaces

Can apply the recursive method to surfaces if we recall that for a Bezier
patch curves of constant u (or v) are Bezier curves in u (or v)

First subdivide inu
= Process creates new points
= Some of the original points are discarded

original and discarded

/

C 9 & o Py

P30
.

Poo

Pos
original and kept/ \ new
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Wavelet Subdivision Surfaces
B



Wavelets: subdivision runs backwards

Wavelet coefficients “Wavelet coefficients
Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type
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Wavelet subdivision surfaces

72
S AT AT AL NAVAVAVAVL
7 arasnsueavirr” < GO & N v, v/ 74 N AVAVAVZ /22 &
OO RS WYYAVAN IV AVAVAVATAVA'
vy UPAVATAVATATATA S ST i Y L‘“"""'A‘E k‘“
X E\WANVVAVAVAVAV AV
NIASRLVAVAVANMN
VOANANAVAWAVAY
e
Ay P

Wavelet ?oefficients

Wavelet coefficients

Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type
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_ Editinﬁ surface

‘ Original shape Wide-scale edit Finer-scale edit

Lounsbery, DeRosse and Warren: Multiresolution Analysis for Surfaces of Arbitrary Type

Computer Graphics, A. Pizurica and D. Babin, Spring 2021



