FACULTY OF ENGINEERING
Il | AND ARCHITECTURE

E016712: Computer Graphics
Transformations

Lecturers: Aleksandra Pizurica and Danilo Babin

N

GHENT
UNIVERSITY



Transformations in computer graphics
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e Goal: introduce methodology to

= Change coordinate system

= Move and deform objects

e Principle: transformations are applied to object vertices
" |n 2D, point P(X,Y) is transformed to P’(X’Y’); in 3D, P(X,Y,Z) = P’(X'Y,Z’)
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Overview

e 2D transformations
e 3D transformations
e (Quaternions

e Transformations in OpenGL
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2D transformations



2D affine transformations
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Basic classes of geometric transformations
H B

General linear (preserve lines)

Affine (preserve paralelism)

e Arbitrary shearing
e General scaling

Conformal (preserve angles)

e Uniform scaling

Rigid (preserve lengths)

e Translation
e Rotation
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Elementary 2D transformations

Translation J(T,,T,)

X =X + Ty
Y=Y,

Scaling §(S,,S,)

X,=X*SX gm

Y,=Y*SY

Rotation R(0)
X' =X*cosO—-Y*sino |

Y' =X *sinO + Y*cosO

SN _——-
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Matrix representation

e Suppose we represent a 2D transformation by a matrix

X' a b| x x'=ax+ by
e y' B c d V| = y':CX+dy

\ | original point
transformed point

||
transformation matrix

e Why is this useful?
-A sequence of transformations = matrix multiplication

X' a blle [f1[i Jjl[x
Il alle alle 7]
e Can we do it for any affine transform?
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2X2 Matrices

e Which transformations can be represented by 2x2 matrices?

- Let's look at some examples:

2D identity

2D scale around (0,0)
= x’ =S X x' S, 0
ny’ =Sy yv 10 Sy
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2D mirror over Y axis
X' =x | x -1 0O x
"VEY vyl 1o 1]y
2D mirror over (0,0)
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2X2 Matrices

e Which transformations can be represented by 2x2 matrices?

- Let's look at some examples:

2D rotation around (0,0)
" X" =xcost —ysind x' cos@ —sinf | x
=y’ =xsind §) = .
y’ =xsinb + ycos ) sinf  cosf | y
2D Shear

" x =X+ Hyy {x}_{ 1 Hx}{x}
"y =y +Hyx y' H, Iy
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2X2 Matrices

e Which transformations can be represented by 2x2 matrices?

- Can we represent translation by a 2x2 matrix?

2D Translation

NO 2x2 matrix!

Iy':y+Ty

e Only linear 2D transformations can be represented by a
2x2 matrix

e Linear transformations
= satisfy: 7 (S1P1 +5,P5)=s1 7 (Py)+s, 7 (P,)

= are combinations of scale, rotation, shear and mirror
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Matrix representation for affine 2D transforms

e \We want a representation where 2D translation is also
represented by a matrix (so that we can easily combine different
transformations by multiplication)

e 2D matrix representation of translation does not exist!
e What do we do?

e Solution: use a 3x3 matrix

2D Translation 1 |1 0 T,y
nx' =x+T, Y=o 1 Ty Y
"V EYET, 1] jo o 1|l

4 4

Homogeneous coordinates
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Homogeneous coordinates

e An equivalent formulation: adding a 3™ coordinate to 2D points
such that

= (x, y) 2 (xW, yW, W)
= (x/W, y/W) are Cartesian coordinates of the homogeneous point (x, y, W)
= (x,y, 0) represents a point at infinity

= (0, 0, 0) not allowed

y A
(2,3,1) or (4,6,2) or (6,9,3) or...
3 N, ? WA
. (3,1,1) or (6,2,2) or ...
1 T e
— . X
1 2 3 4 5 X Y

Homogeneous pointis a line in 3D space
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Homogeneous coordinates

e Even points infinitely far have a representation in
homogeneous coordinates

" Points at infinity have their last coordinate equal to zero

e Examples: P,=(0,1,0); P,=(1,1,0); P5=(1,0,0), P,=(2,1,1)

Y “f P4 . P,

4 1

3 1

2 |

1 777 ’EP4 P3
1 23 45 «x
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Matrix form of elementary 2D transformations

AR E: o7 [Se 0 0y
V=10 1 T, Y Yi=lo S, 0fY
1 0 0 1__1_ 1] o o 111l
Translation 5(T,,T,) Scaling §(S,,S,)

~'] [cos@ —sin@ 0,7

V' =|sin@ cos® OV

L] o 0 1|l

Rotation R(0)
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2D Shear transformation

‘xv' _1 Hx O__x_
General shear operation Y=g 1 0ollYy
S7 (Hx,Hy) | 0 o 1l

Shear in the X-direction: Shear in the Y-direction:
H,=0 H.=0
1 a O] (1 0 O
SH =0 1 O SH,=b 1 O
0 0 1] 0 0 1

Shear can be represented as a combination of rotations and non-

uniform scaling operations.
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Compositions of 2D transformations

A A Q

v
v

l t Translate

v

v

Rotate

Example: A complex transformation as a sequence of

elementary transformations
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Compositions of 2D transformations

* Inverse elementary transforms
=T N Tx, Ty) = T (-Tx, -Ty)
= 5(Sx, Sy) = 5 (1/Sx, 1/Sy)
= 2-1(8) = 2(-0)

e Complex transformations can be described as a combination
(composition) of elementary transformations

(XY )T =850)Z()T¢) ZE) S XY, )T

e Each rotation brings an extra parameter, scaling and
translations two extra parameters

e (Can this be simplified?
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Compositions of 2D transformations

e We try to simplify such expressions by
= Combining transformations, if possible

= Changing the order of transformations in order to make the
combinations possible

e Sequential elementary transforms of the same type “absorb”
each other

= T (Tx1, Ty1) T (Txa, Ty2) = T (Txq+Txo, Ty1+Tyy)
= S5(Sx1, Syq) S (Sx2, Sy2) = 5 (Sx1:Sxz, Sy1Syz)
= H(8q) #Z(8,) = 7 (01+6,)

e Changing transformation order is not always possible!

e Transformations that commute are only

= Two elementary transformations of the same type
= Scaling with 5,=S, and Rotation
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Compositions of 2D transformations

e Translation and rotation pseudo-commute

T (Tx1,Tyq) £(0) = Z(8) T (Txo, Ty2)
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Compositions of 2D transformations

e Translation and scaling pseudo-commute

S(Sx, Sy) T (Tx1,Tyq1) = T (Txa, Ty2) S(Sx, Sy)

5(0.5,3.0)

S (0.5,3.0) S
\
— T Ty, Tya)
0 X

e No similar property for rotation and scaling
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Compositions of 2D transformations

e Hypothesis: The most general affine transform can always be
represented as

F(84) S (Sx, Sy) Z(02) T (T, Ty)

e This means: a unit square in the centre is reshaped to an
arbitrary parallelogram, brought to an arbitrary position and
rotated by an arbitrary angle

[/'Kj X' =aX+bY+c
Y =dX+eY+f

* Prove the hypothesis formally
= Setc=T,, f=T,

= Determine the parameters 8,, 0,, Sy, Sy as a function of a, b, d, e
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Efficiency: matrix calculations

e The most general affine transformation

-0 la b c o
\

X X
Yi=|d e f |V
11 10 o 1|l

Multiplication of a 3x3 matrix with column vector requires 9
multiplications and 6 additions

Actually we need only 4 multiplications and 4 additions
= X'=aX+bY+c
nY' =dX+eY+f

e Even though matrix representation is useful, practical application
should make use of the special structure of the matrix, for efficiency

Computer Graphics, A. Pizurica and D. Babin, Spring 2020 23



Efficiency: creating successive views

e To produce an impression of a dynamically rotating object, many
successive views are needed

= x" = xcosO —ysinO
=y’ =xsinb + ycosO

e The angle difference between the successive views is very small
(a few degrees). Can we simplify the calculation?

e Solution 1: Use approximation cos0=1:
= x' =x—ysinO
="y =xsinO+y
= What is wrong with this solution?

e A better solution
= x' =x—ysinO

"y =x'sinO+y Check the determinant of the matrix in both cases!

Computer Graphics, A. Pizurica and D. Babin, Spring 2020
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3D transformations



3-D Transformations
H

e Generalization of 2D transformations

e Same principle: apply to vertices (which are now 3D points)
= P(X,Y,Z) is transformed to P’(X’,Y’,Z’)

e We consider general 3D affine transformation

X' =aX+bY+cZ+d
Y =eX+fY+gZ+h /
=X +jY+kZz+]
P
|

e Properties analogous to 2D case
" Lines map to lines (plane segments map to plane segments)
= Parallelism preserved

= A unit cube centered in the origin is transformed into an arbitrary
I parallelepiped, arbitrarily positioned in space
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3D transformations
H B

e Convention that we will adopt:
= Right-hand side system

Computer Graphics, A. Pizurica and D. Babin, Spring 2020
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3D rotation

e 3D rotation of a rigid object is described by three parameters,
such as three angles of Euler

e In Euler angle formulation an arbitrary rotation is represented
as a composition of three elemental rotations, each around a

single coordinate axis

http.//en.wikipedia.org/wiki/Euler _angles
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http://en.wikipedia.org/wiki/Euler_angles

_ 3D rotation

e The rotations around x, y and z axis are also known as Roll,
Pitch and Yaw (“heading”); terms coming from flight dynamics

i Yaw 2/?
L

Roll

Pitch

Longitudinal

»

Y N
Vertical Lateral
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3D transformations

e Three elementary transforms
= Elementary translation
=" Three elementary rotations
eAround the X-axis, Y-axis and Z-axis
= Elementary scaling
eIn X-, Y-, en Z-direction

e Matrix representation

= 4 x 4 matrices for 3-D, analogous to 3 x 3 matrices for 2-D using
homogeneous coordinates

o Wx . X
X X
Wy | . , y
V= ; usualnotation W =1: |y|—>
Wz z
z z
- w - 1

Each point in 3D space = a line throught the origin in 4D space
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3D Translation and Scaling

e Translation

X,=X+TX
Y’=Y+TY
2 =7+T,

e Elementary scaling

X' =S, X
Y =S, Y
Z’ =Szz
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3D Rotation

e Rotation around x-axis

1 0 0 0
X =X .
0 ¢ —sind O
Y = Ycos(B)-Zsin(®) Hx(0)= C?S >
Z' = Ysin(B) + Z cos(0 0 sm& cosd 0
0o 0o 0 1

e Similarly for rotations around other two axes:

cosp 0 sing O (cosy  —siny
0 1 0O O sin CoS

R (@)= H(py ="
—singp 0 cosep O 0 0
0 0 0 1 0 0
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3D Shear

Yy

Y
e Shear around the Z-axis X
X =X+HyZ

Y =Y+HZ ' — F ;
.’ =7 Z/ Z)/

e Can be represented in matrix form as

X' 1 0 H, O|x
yi (01 Hy, O}y
4 00 1 Of:z
1] {0 0 0 1]1I]

e Shear around the X-axis and Y-axis have a similar form
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3D Transformations: properties
H B

e |nverse transforms are defined as
T (Tx, Ty, Tz) =T (-Tx, -Ty, -Ty)
= §-1(Sy, Sy, S;) = 5 (1/Sy, 1/Sy, 1/S,)
"Jx(8) = Hx (-8), By (@)= Ty (-9); Hz (W)= TFx(-w)

e The same “absorption” and “pseudo-commutation” are
valid like in the 2D case

=Translation pseudo-commutes with scaling and with three rotations
=Scaling and rotations do not pseudo-commute

e Additional properties, specific for 3D (without proof)

=*Two (different) rotations do not pseudo-commute (not even with an
additional translation)

*Three (different) rotations and a translation do pseudo commute

Computer Graphics, A. Pizurica and D. Babin, Spring 2020
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3D Transformations: properties

Yy
o
0 "X

e A general positioning transformation involves 6 parameters
= T (Tx, Ty, Tz) 7x(0) (@) Zz(W)

e Object deformation: 6 other parameters (scaling + rotation)

e A general affine transformation involves thus 12 parameters
= T(8) A(@) (W) S (Sx,Sy,Sz) #x(0") 2 (@) (W) T (Tx, Ty, T2)

e There are many equivalent forms
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_ Arbltrarz dlspljcement in 3D

s Y
A C
>
X A X
Initial position g B Desired position
Z
Ay Ay
)
X

(2)
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_ ComEositions of 3D t|ransformations

Rotation about arbitrary point: in this example about z-axis

From the book of Edward Angel: Interactive Computer Graphics — A Top-Down Approach Using OpenGL

Computer Graphics, A. Pizurica and D. Babin, Spring 2020
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Quaternions and 3D rotation




Complex numbers and rotation

e Polar representation of a complex number

c=a+ib=ré?  r=va?+b*, 0=arctan(h/a)

e Denote by ¢’ the result of rotating ¢ about the origin by ¢:

i0 ig i(0+0)

c'=re" e’ =re

e (Quaternions (Sir William Rowan Hamilton, 1843) are
extensions of complex numbers in 3D, yielding elegant
rotations in 3D

a=(qp.9); q=qi+qjtqgsk

i”=j =k” =ijk=-1
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Complex numbers and rotation

e Apointinspace p=(0,p)

e Rotation of the point p by fabout the unit-length vector v:

p'=rpr”
where:

( g .0 j _q ( 0 . 0 j
y=|cos—,SIn—v |, ¥y =|cosS—,—SIn—V
2 2 2 2

e Why are quaternions interesting for 3D rotations in computer
graphics?
= Euler angle representation suffers from Gimbal lock
= Simpler representation

= Lower computational complexity, but not necessarily after conversion
to matrix form

I Computer Graphics, A. Pizurica and D. Babin, Spring 2020 40



Gimbal lock

Gyroscope
frame

Spin axis

Gimbal Rotor

When the axes of two of the three gimbals align,
"locking" into rotation in a degenerate 2D space.

Example: when the pitch (green) and yaw
(magenta) gimbals become aligned, changes ¢
to roll (blue) and yaw apply the same rotation

to the airplane.
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Transformations in OpenGL



OpenGL function format

function name . .
dimensions

glVertex3f (x,y, z)

7 N\

belongs to GL library X,y,z are floats

glVertex3fv (p)

\ p is a pointer to an array

Computer Graphics, A. Pizurica and D. Babin, Spring 2020

43



Transformations in OpenGL

e \We can load matrix with the function

glLoadMatrix (pointer to matrix)

e Or set a matrix to identity matrix with the function
glLoadIdentity ()

e Rotation, translation and scaling are provided through

glRotatef (angle,vx,vy,vz)

glTranslatef (dx,dy,dz)

glScalef (sx,sy,sz)

Computer Graphics, A. Pizurica and D. Babin, Spring 2020
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_ Summarx

e 2D transformations

= arbitrary 2D affine transformation 6 parameters
= complex transformations as compositions of the elementary ones

e 3D transformations
= arbitrary 3D affine transformation 12 parameters
= complex transformations as compositions of the elementary ones
= Euler angles

e (Quaternions
= advantage over Euler angle representation (Gimbal lock avoided)

e Transformations in OpenGL
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