

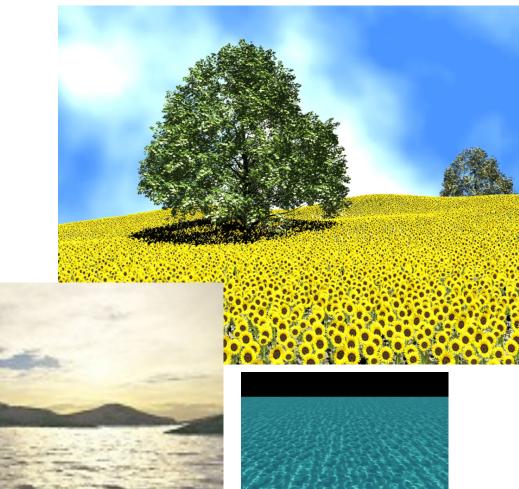
E016712: Computer Graphics

Texture Synthesis

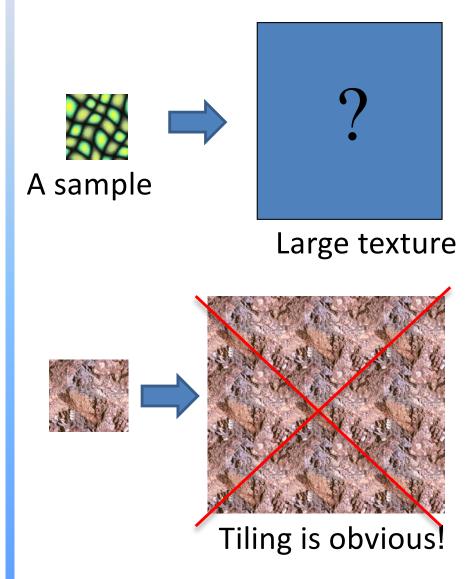
Lecturers: Aleksandra Pizurica and Danilo Babin

Applications of texture synthesis

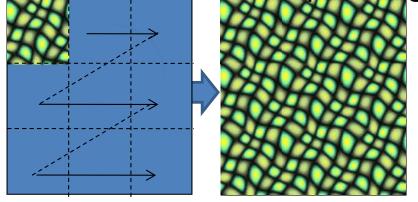
- Computer generated images
- Films
- Virtual reality
- Computer games



The problem



A naive approach: simple tiling



Given texture *I*, generate texture *J*

- That looks like *I* (or differs from *I* in the same way as *I* differs from itself)
- Doesn't show any obvious copying or tiling

Types of Textures and Techniques

Deterministic

(well-defined primitives and placement rule)

Stochastic

(not easily identifiable primitives)

Mixture of the two

(most textures in practice)

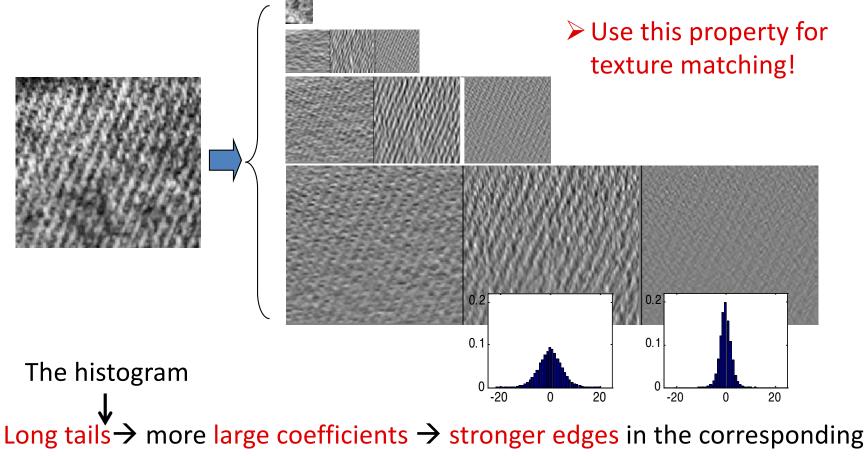
- Model-based methods
 - First-order statistics (pyramidal methods)
 - Using Markov Random Fields (We don't treat in this course)
- Tiling and patch methods
 - "Image Quilting"
 - Wang tiles

Hybrid methods (tiling + stochastic modeling)

Pyramidal Methods

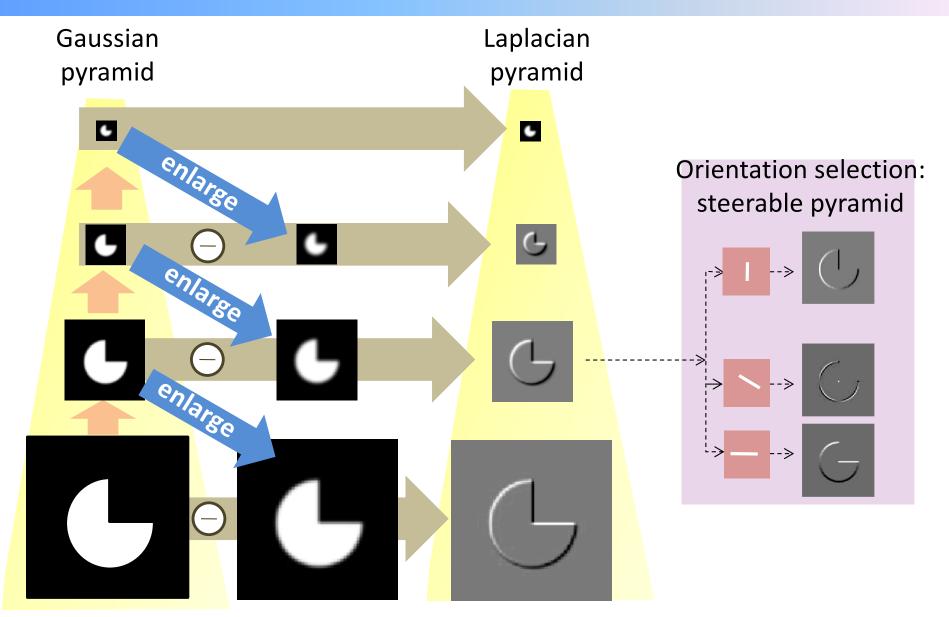
Pyramidal Methods (Heeger&Bergen)

Two textures are difficult to discriminate if they produce similar responses in a bank of (orientation and frequency selective) linear filters

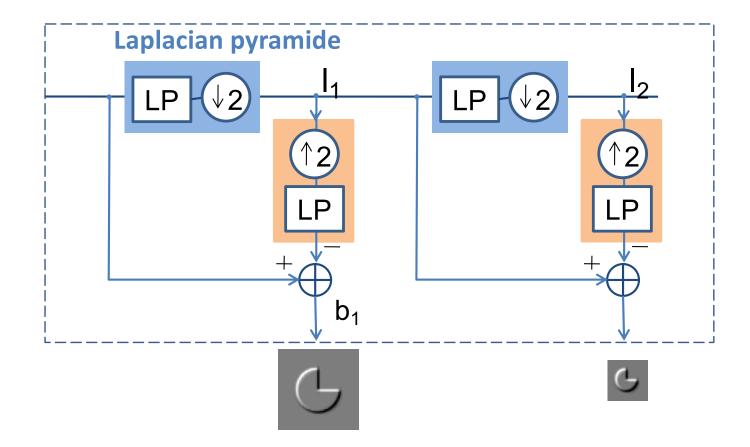


subband (of a given orientation and resolution)

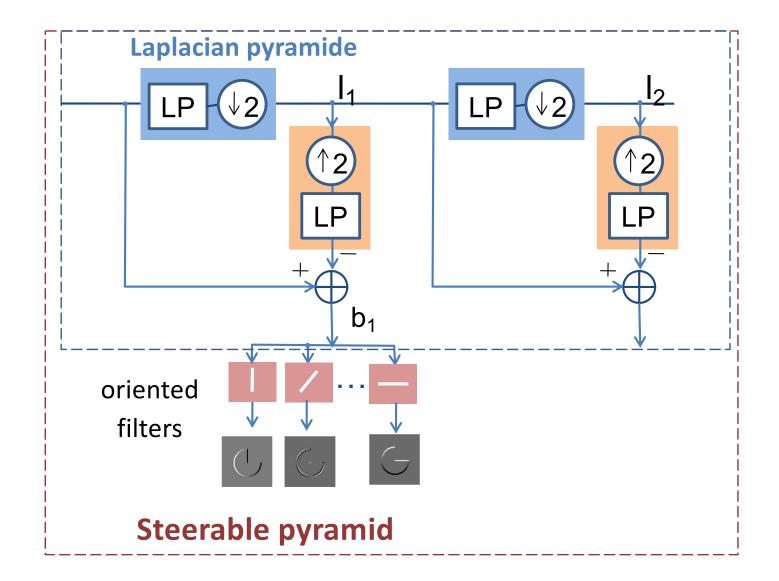
Pyramidal Decomposition



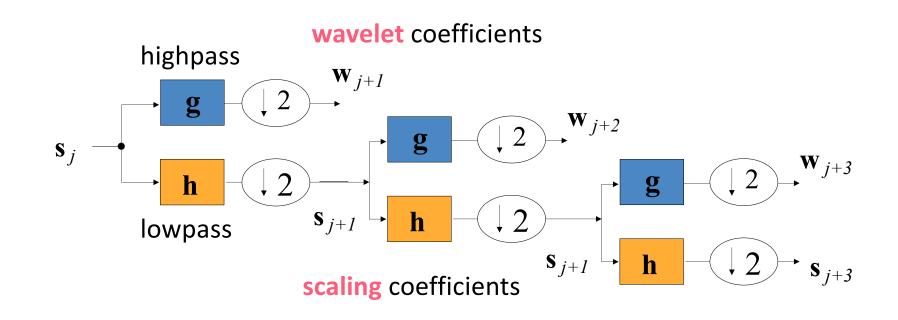
Pyramidal Decomposition



Pyramidal Decomposition

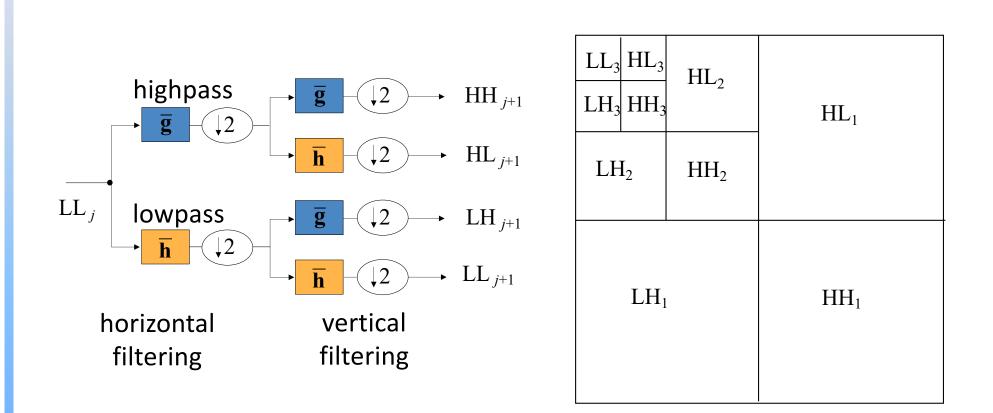


Discrete Wavelet Transform (DWT)

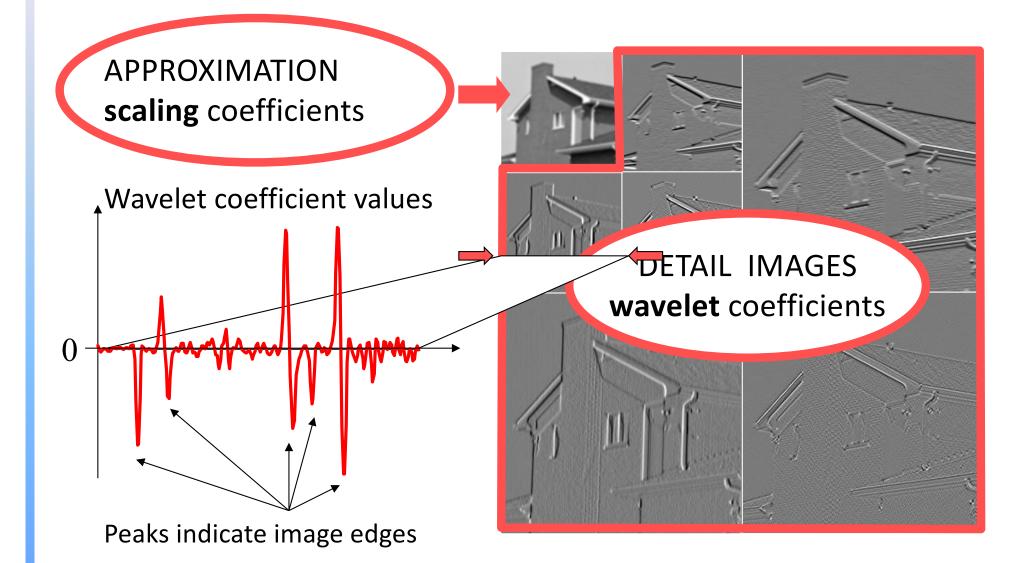


- DWT algorithm: a filter bank iterated on the lowpass output
- The same texture synthesis concept can be applied using image pyramid or DWT or a related multiresolution image representation

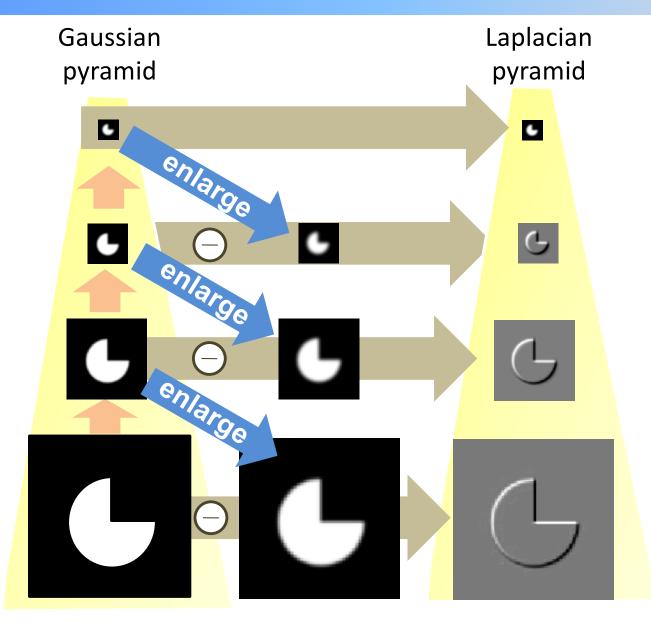
Two dimensional DWT



Two dimensional DWT

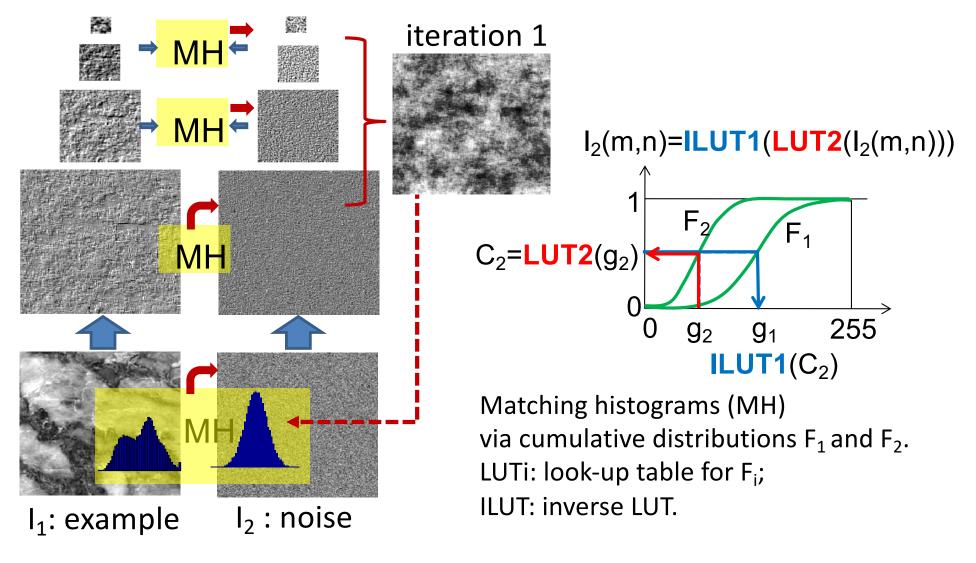


Texture Synthesis in Pyramidal Decomposition



In the following, we assume a Laplacian pyramid, having on mind that the same approach can be applied in other multiresolution representations

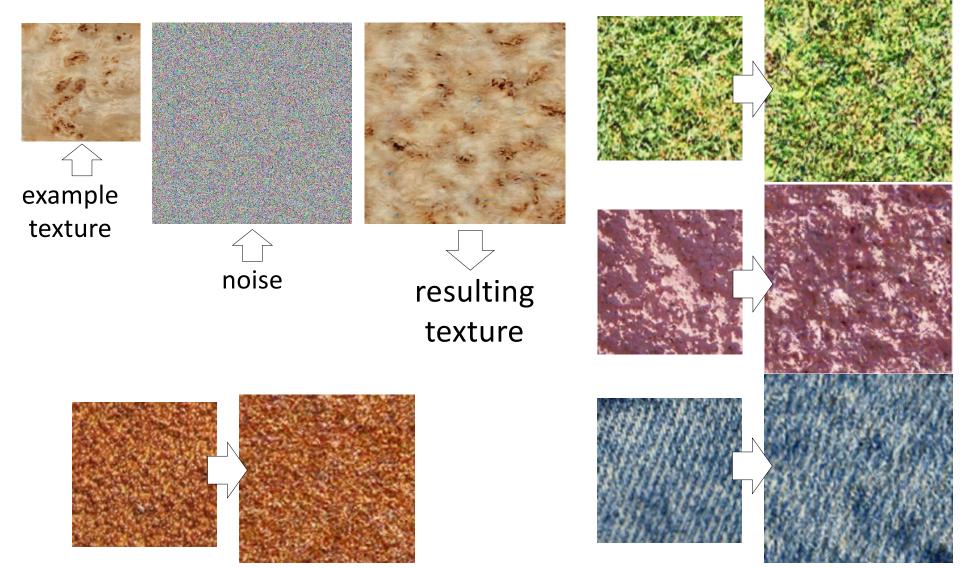
Histogram Matching



When do we need more orientations?

Think of extension to color!

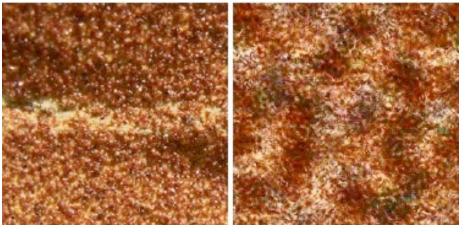
Pyramidal Methods – where they work?



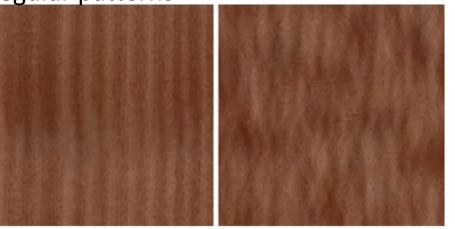
Suitable for homogeneous stochastic textures!

Pyramidal Methods – where they don't work?

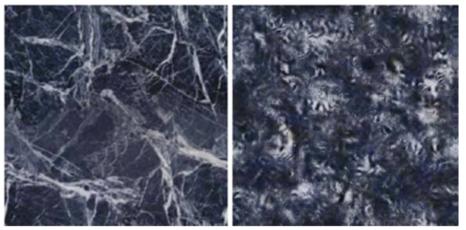
Not homogeneous texture



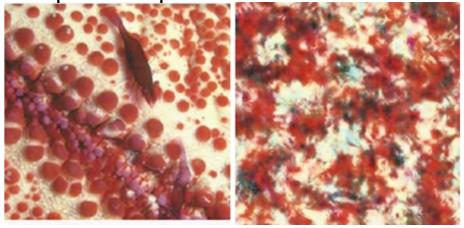
Regular patterns



Characteristic structural details



Complex compositions

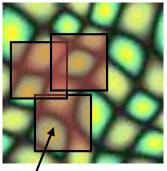


The first-order statistics is not sufficient in these cases.

Pyramidal Methods: Summary

- Based on first-order statistics
- Motivated by studies of the human visual system
- Effective for homogeneous stochastic textures
- Reading:
 - D. J. Heeger and J.R. Bergen, "Pyramid Based Texture Analysis/Synthesis," International Conference on Image Processing (ICIP'95) – Vol. 3, 1995.
 - \rightarrow All of it

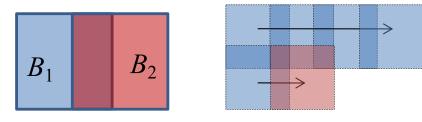
Image Quilting (Efros&Freeman)



block

Step 1: Position overlapping blocks sequentially

input texture sample



Choose blocks of a given size from the

Step 2: Calculate the **optimal borders in overlapping regions**

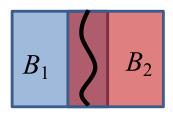
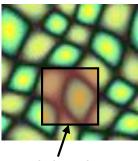
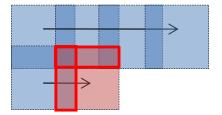


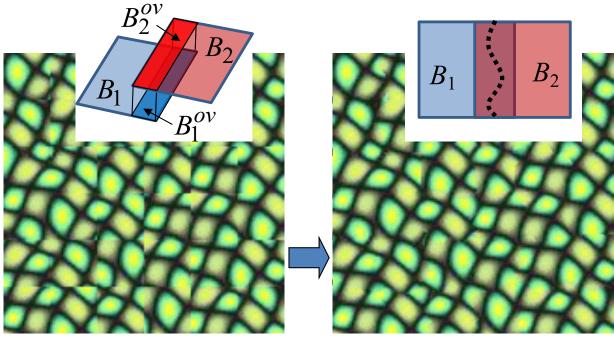
Image Quilting (Efros&Freeman)

input texture



block





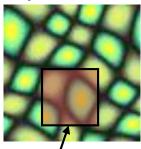
Step 1

Step 2

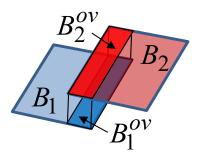
Image Quilting: Step 1

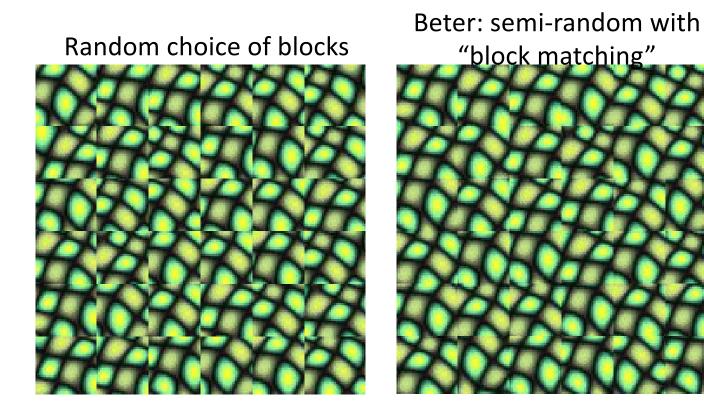
Position overlapping blocks sequentially

input



block



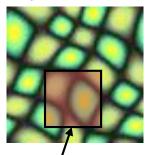


$$F_{block matching} = \sum_{i,j} |B_1^{ov}(i,j) - B_2^{ov}(i,j)| < Const$$

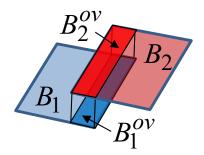
Image Quilting: Step 2

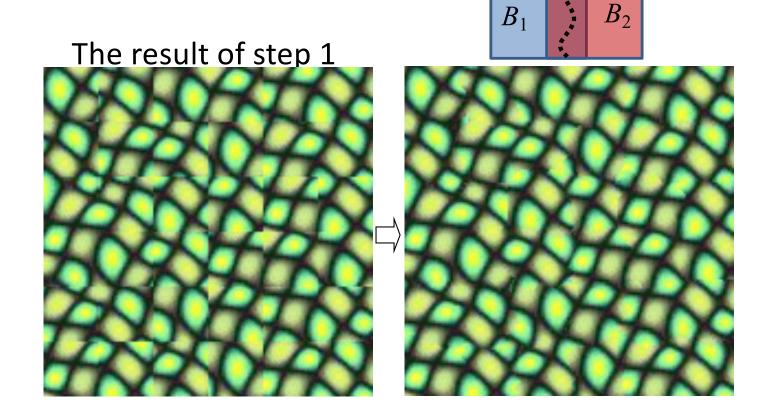
Find optimal borders in de overlapping regions

input



block

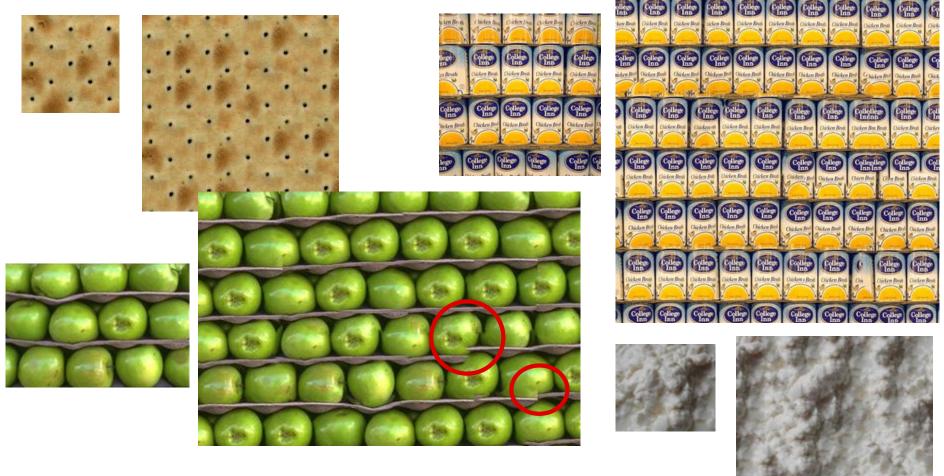




Shortest path through quadratic error surface

$$e(i,j) = (B_1^{ov}(i,j) - B_2^{ov}(i,j))^2$$

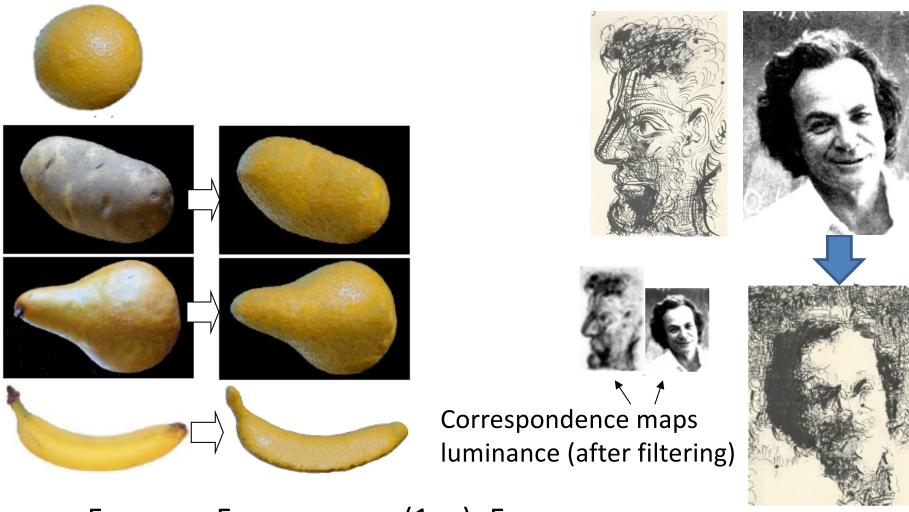
Image Quilting: Results



✓ Works rather well for all texture types
✗ Computationally intensive

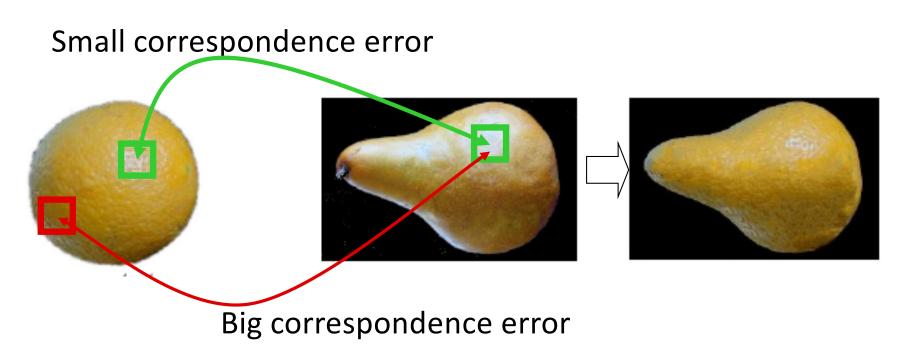
XThe influence of the block size is difficult to define

Image Quilting and texture transfer



Step1: $F_{total} = \alpha * F_{block matching} + (1-\alpha) * F_{correspondence}$ Step2:Same as in standard "image quilting" algorithm

Image Quilting and Texture Transfer



 $F_{total} = \alpha * F_{block matching} + (1-\alpha) * F_{correspondence}$

 $F_{correspondence}$ measures the difference in luminance of the block from the source texture and the block from the target object

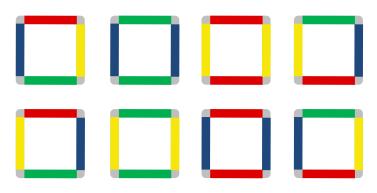
Image Quilting: Summary

- A tiling method
- "Glues" blocks from the input texture sample
- Works for almost all texture types
- Computationally intensive
- Reading:
 - A. Efros and W.T. Freeman, "Image Quilting for Texture Synthesis and Transfer," Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp: 341 – 346, 2001.
 - \rightarrow All of it

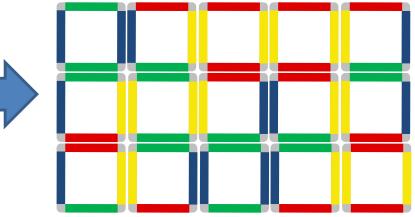
Wang Tiles

- Square tiles with color-coded edges.
- Cannot be rotated in the tiling!

An example of a set with 2 horizontal and 2 vertical colors:

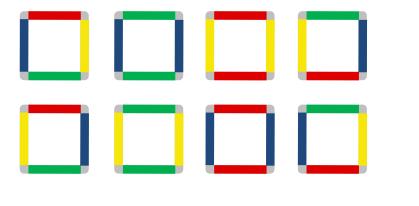


Correct tiling: adjacent edges have the same color

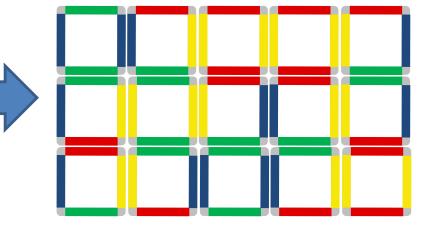


Wang Tiles

An example of a set with 2 horizontal and 2 vertical colors:



Correct tiling: adjacent edges have the same color

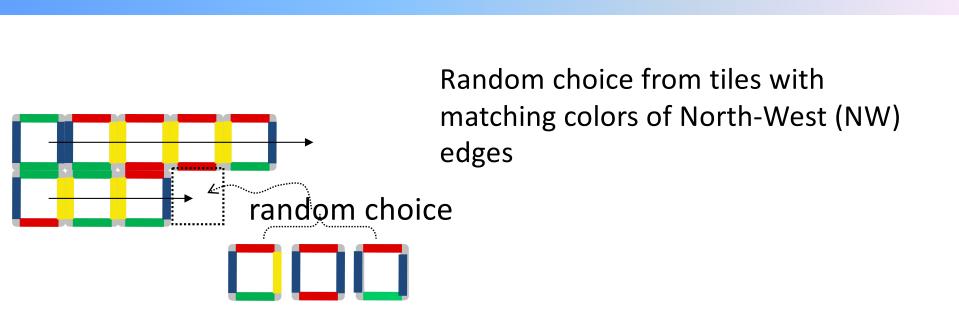


 This tiling was named after Hao Wang, who conjectured in 1961 that any set that can produce a valid tiling of the plane must also be able to produce a periodic tiling

>Later showed: not true! The smallest aperiodic tiling consists of 13 tiles only.

 In the computer graphics we use sets that make periodic and not periodic tiling (e.g. the set of 8 tiles above)

Wang Tiles: Stochastic Tiling

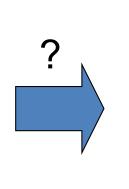


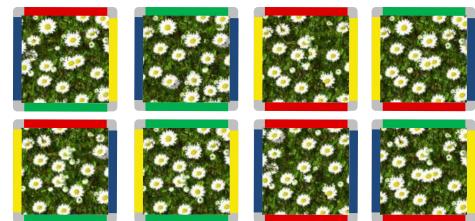
- If there is at least one tile for each N-W combination → correct tiling is guaranteed
- If there are at least two tiles for each N-W combination → not periodic tiling is guaranteed. Why?
 - \rightarrow The smallest set that satisfies this has 8 tiles. Prove this.

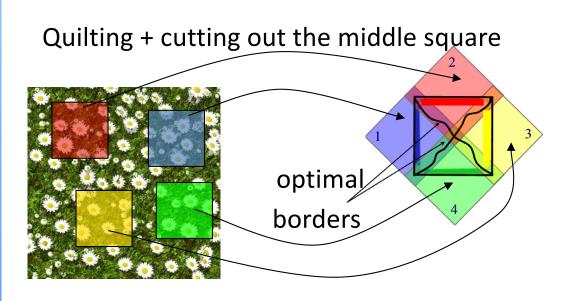
(Hint: how many N-W combinations are there if there are 2 colors?)

Wang Tiles: Tile Design by Quilting

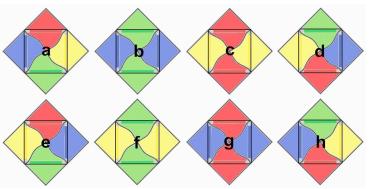
How do we achieve that the tiles perfectly match?



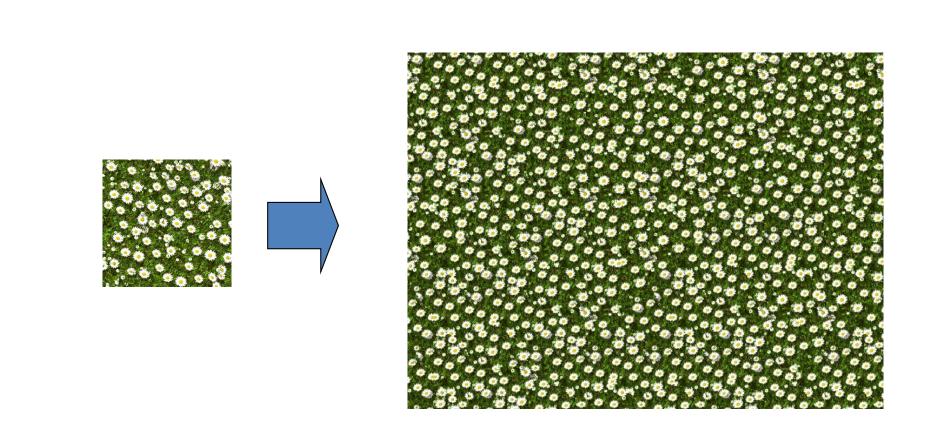




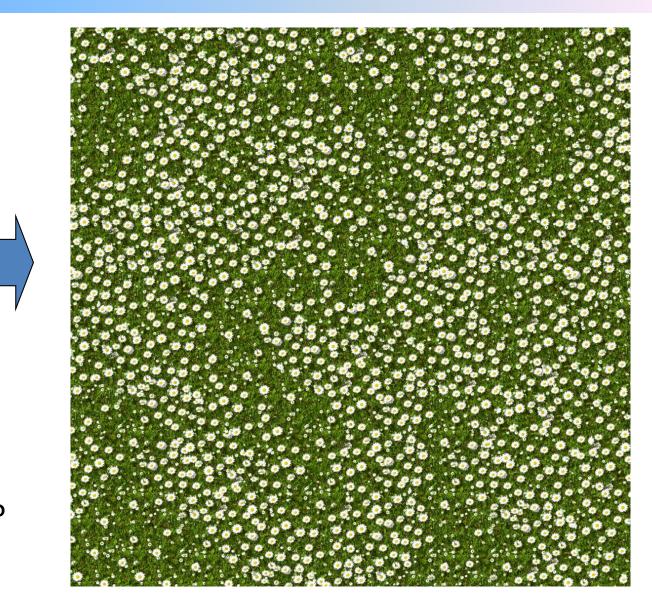
Computer Graphics, A. Pizurica and D. Babin, Spring 2021



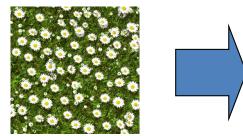
The remaining ones with other combinations of the same 4 blocks

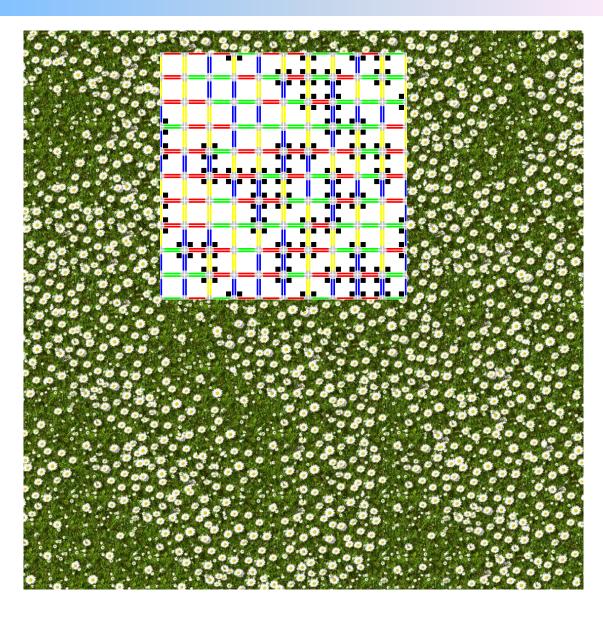


We learned to solve this: extending to arbitrary size, no copying or tiling obvious, but does it look natural?

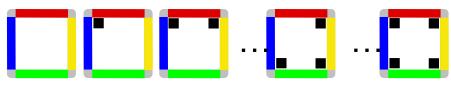


How to achieve this?





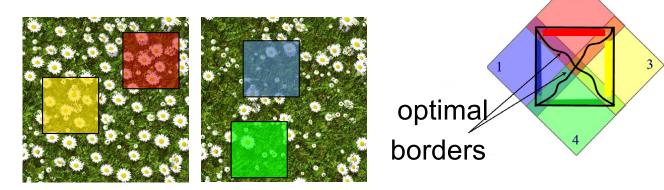
An additional coding in each tile

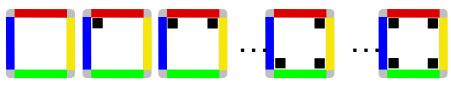


Corners are binary coded

In our example: corner marked means 'dense flowers', corner not marked means 'not dense flowers'

Two source textures for generating parts of tiles with and without corner marks





Corners are binary coded

- For each tile: 2⁴=16 possible corner codings
 - A set of 8 tiles extends to 8x16=128 tiles
- This can be reduced to 64 and still keeping the stochastic selection. Why? (How many corners do we need to match at each step?)

Wang Tiles: Summary

- The process of making tiles is complex (quilting)
- Once tiles are made, tiling very fast
- Works for almost all texture types
- Very powerful for producing non-homogeneous textures
- Reading:
 - Michael F. Cohen, Jonathan Shade, Stefan Hiller, Oliver Deussen, "Wang Tiles for Image and Texture Generation," ACM Transactions on Graphics, vol. 22, no. 3, pp. 287 – 294, July 2003.
 - \rightarrow Sections 1,2 and 3

Summary

- Pyramidal methods based on first-order statistics
 - Work well for stochastic textures
 - Not for non-homogeneous textures, regular patterns and complex composites

Image Quilting

- Conceptually simple but computationally intensive
- For all textures (sometimes there are artifacts)
- Very good for texture transfer and for making Wang tiles

Wang Tiles

- Fast and simple, making infinitely large textures
- Very good for complex textures
- Making not homogeneous textures: coded corners and edges