
E016712: Computer Graphics

Rasterization and Clipping

Lecturers: Aleksandra Pizurica and Danilo Babin

2Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Overview

• Scan conversion

• Polygon filling

• Clipping in 2D

Scan Conversion

4Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Raster Display
RASTER

(a rectangular array of points or dots)PIXEL
(picture element)

SCAN LINE
(a row of pixels)

• Asset: Control of every picture element (rich patterns)
• Problem: limited resolution

5Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Plotting in a raster display

• Assume a bilevel display: each pixel is black or white
• Different patterns of dots are created on the screen by setting

each pixel to black or white (i.e. turning it on or off)

• All the edges except perfectly horizontal and vertical ones show
‘jaggies’, i.e., staircasing effect

Line drawing

7Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Line drawing: problem

•Line drawing on a raster grid involves approximation

•The process is called rasterization or scan-conversion

8Computer Graphics, A. Pizurica and D. Babin, Spring 2021

(x2, y2)

(x1, y1)

Line drawing: objectives

§ passes through endpoints
§ appears straight
§ appears smooth
§ is independent of endpoint order
§ has uniform brightness
§ has slope-independent brightness
§ is efficiently computed

A line segment is defined by its end points (x1, y1) and (x2, y2) with
integer coordinates.
What is the best way to draw a line from (x1, y1) to (x2, y2)?
We require that this scan-converted line

(x2, y2)

(x1, y1)

9Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Line Characterisation

§ Explicit: y = mx + B
§ Implicit: F(x,y) = ax + by + c = 0

§ Constant slope:

Line drawing : brute force approach

What is wrong with this approach?

(xi , Round(yi))

(xi , yi)
The simplest strategy:
1) Compute m; (0 ≤ m ≤ 1)
2) Increment x by 1 starting with the

leftmost point;
3) Calculate yi = mxi + B;
4) Intensify the pixel at (xi , Round(yi)) ,

where Round(yi) = Floor(0.5+yi)

x

y
(xi , yi)

m
x
y
=

D
D

(x1, y1)
(x2, y2)

= y2-y1
= x2-x1

10Computer Graphics, A. Pizurica and D. Babin, Spring 2021

We can eliminate the multiplication by observing that:

If Dx =1, then yi+1 = yi + m. Thus, a unit of change in x changes y by m,
which is the slope of the line.

xmyBxxmBmxy iiii D+=+D+=+= ++)(11

Line drawing: an incremental approach

(xi , Round(yi))

(xi , yi)

(xi +1, Round(yi+m))

(xi +1, yi+m)

The previous approach is inefficient because each iteration
requires floating point operation Multiply, Addition, and Floor.

11Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Midpoint Line Algorithm: intro

What is wrong with the incremental algorithm?
§ Required floating-point operations (Round)
§ The time-consuming floating-point operations are unnecessary

because both endpoints are integers

Bresenham’s classical algorithm (1965), also called midpoint line
algorithm, is attractive because it uses only integer arithmetic

Main idea: decide the next step on the grid: choose among the
possible successor pixels using only integer quantities

12

The problem becomes:
Decide on which side of the
line the midpoint lies

Previously selected pixel: P (xp , yp)

Assume the line slope is m, 0 ≤ m ≤ 1

Choose between one increment to the right
(the east pixel, E) or one increment to the
right and one increment up (the northeast
pixel, NE)

Q: the intersection point of the line being
scan-converted with the grid line x = xp+1

M: the midpoint between E and NE

If M is below the line: choose NE;
if M is above the line: choose E

Midpoint Line Algorithm: idea

P = (xp , yp)

QM

E

NE

13Computer Graphics, A. Pizurica and D. Babin, Spring 2021

0),(=+×-×= BdxdxydyxyxF

Bx
dx
dyy +=Explicit line form gives:

Comparing with the implicit form 0),(=++= cbyaxyxF yields

Bdxcdxbdya =-== and,,

P (x0 , y0)

P (x1 , y1)

dx = x1 – x0

dy= y1 –y0

Midpoint Line Algorithm: point positioning

It can be shown that

ïî

ï
í

ì

<
=
>

0
0
0

),(yxF
if (x,y) is below the line
if (x,y) is on the line
if (x,y) is above the line

14Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Midpoint Line Algorithm: decision variable (1)

P = (xp , yp)
E

To decide whether M lies below or above
the line, we need only to compute

and to test its sign.

)
2
1,1()(++= pp yxFMF

Define a decision variable d as:

ïî

ï
í

ì

<
=
>

++++=++=

0
0
0

)
2
1()1()

2
1,1(cybxayxFd pppp

, choose pixel NE
, choose pixel E
, choose pixel E

NE

1

1QM

15Computer Graphics, A. Pizurica and D. Babin, Spring 2021

dydad

ayxFcybaxa

cybxayxFd

oldold

pppp

ppppnew

+=+=

+++=+++++=

++++=++=

)
2
1,1()

2
1()1(

)
2
1()2()

2
1,2(

Midpoint Line Algorithm: decision variable (2)

If E is chosen, M is incremented by one step in the x direction. Then

Q

(xp , yp)
M

E
(xp +1, yp) (xp +2, yp)

)
2
1,2(++= ppnew yxFd)

2
1,1(++= ppold yxFd

() dyadd EEoldnew ==D=-

NE

16Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Midpoint Line Algorithm: decision variable (3)
Q

(xp , yp)

M

E
(xp +1, yp) (xp +2, yp)

)
2
1,2(++= ppnew yxFd

NE

dxdydbad

bayxFcbybaxa

cybxayxFd

oldold

pppp

ppppnew

-+=++=

++++=++++++=

++++=++=

)
2
1,1()

2
1()1(

)
2
3()2()

2
3,2(

dxdybadd NENEoldnew -=+=D=-)(

On the other hand, if NE is chosen

)
2
1,1(++= ppold yxFd

17Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Midpoint Line Algorithm: decision variable (4)

Initial condition:

2/),()
2
1()1()

2
1,1(000000 bayxFcybxayxF ++=++++=++

2/2/ dxdybadstart -=+=

Q
(x0 , y0)

M

E

NE

18Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Midpoint Line Algorithm: summary (1)
• Start from the chosen endpoint, find dstart=a+b/2 and based on its

sign select the second pixel (E or NE)

• At each next step
§ Update d by adding either DE or DNE to the old value, depending

on the choice of the previous pixel
§ choose the successor pixel as E or NE based on the sign of d

Implementation note:
To eliminate the fraction in dstart , multiply F by 2: F(x,y) = 2(ax+by+c)

§ Thus, d and the increments DE and DNE are multiplied by 2

§ This does not affect the sign of the decision variable d, which is all
that matters for the midpoint test!

19Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Midpoint Line Algorithm: summary (2)

Initialisation: dstart = 2a + b = 2dy – dx
where dy = y1 – y0 , dx = x1 – x0 .

Incremental update: 1) if E was chosen: DE = 2dy
dnew = dold + DE

2) if NE was chosen: DNE = 2(dy – dx)
dnew = dold + DNE

Note that evaluating dnew in any step requires only simple integer addition.
§ No time-consuming multiplication involved
§ Simple incremental updates
§ Efficient algorithm

This works for those line with slope (0, 1). What about bigger slopes?

20Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Line drawing: slope problem

• When the slope m is between 0 and 1 we can step along the x-axis.

• Other slopes can be handled by suitable reflections around the
principal axes

m >1, cannot step along x.
(apply a suitable reflection)

m <1, can step along x.

21Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Line drawing: Slope dependent intensity
• Problem: weaker intensity of diagonal lines

• Consider two scan-converted lines in the figure. The diagonal line, B,
has a slope of 1 and hence is times longer than the horizontal line
A. Yet the same number of pixels is drawn to represent each line

• If the intensity of each pixel is I, then the intensity per unit length of
line A is I, whereas for line B it is only

2

2/I

Line A

Line B

22Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Scan converting circles

Suppose we want to rasterize a circle. Think of a smart algorithm that
makes use of the circle symmetry to avoid unnecessary computations.

Which part of the circle do we need to scan convert, so that the rest
follows by symmetry?

23Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Scan converting circles

(x,y)

(y,x)

(y,-x)

(x,-y)(-x,-y)

(-y,-x)

(-y,x)

(-x,y)

Eight way symmetry: If the point (x,y) is on the circle, then we can
trivially compute seven other points on this circle

24Computer Graphics, A. Pizurica and D. Babin, Spring 2021

The midpoint circle scan conversion

Choices for the
next step if E or

SE is chosen

Choices for
current pixel

Previous
pixel

E

SE

M ME

MSE

P = (xp , yp)

25Computer Graphics, A. Pizurica and D. Babin, Spring 2021

The midpoint circle scan conversion

0),(222 =-+= RyxyxF

The decision variable d is

222)
2
1()1()

2
1,1(RyxyxFd ppppold --++=-+=

If dold < 0, E is chosen and the new d is:

222)
2
1()2()

2
1,2(RyxyxFd ppppnew --++=-+=

.32 +=D pE x

If dold ≥ 0, SE is chosen and the new decision variable is
222)

2
3()2()

2
3,2(RyxyxFd ppppnew --++=-+=

.5.22 +-+=D ppSE yx

P = (xp , yp)

resulting in

and hence

26Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Scan converting ellipses

0),(222222 =-+= bayaxbyxF

The same reasoning can be applied for scan converting an ellipse

region 1

region 2

E

SE

S SE

Note: division into four quadrants
two regions in the first quadrant

Tangent slope =-1

Next part: Polygon filling

28Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polygons

Vertex = point in space (2D or 3D)

Polygon = ordered list of vertices
§ Each vertex is connected with the next one in the list
§ The last vertex is connected with the first one
§ A polygon can contain holes
§ A polygon can also contain self-intersections

Simple polygon – no holes or self-intersections
§ Such simple polygons are most interesting in Computer Graphics

Efficient algorithms exist for polygon scan line rendering; this yields
efficient algorithms for lighting, shading, texturing

By using a sufficient number of polygons, we can get close to any
reasonable shape

29Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Examples of polygons

Convex Polygons

Simple Concave Complex (self-intersecting) polygons

30Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Drawing modes for polygons

Draw lines along polygon edges
§ Called wireframe mode
§ Using e.g. midpoint line (Bresenham’s) algorithm

Draw filled polygons
§ Shaded polygons (shading modes)

• Flat shading – constant color for whole polygon
• Gouraud shading – interpolate vertex colors across the polygon
• Phong shading – interpolate surface normals

31Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polygon interior

We need to fill in (i.e. to color) only the
pixels inside a polygon.

What is “inside” of a polygon ?

Parity (odd-even) rule is commonly used:

• Imagine a line passing through the point

• Count the number of intersections N
with polygon edges
Ø If N is odd, the point is inside
Ø If N is even, the point is outside

N = 2

N = 1

N = 4

32Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polygon filling: scan line approach

Span-filling is an important step in the whole polygon-filling
algorithm, and is implemented by a three-step process:

§ Find the intersections of the scan line with all edges of the polygon
§ Sort the intersections by increasing x coordinates
§ Fill in the ‘inside’ pixels between pairs of intersections

Edward Angel. Interactive Computer Graphics.
span

How do we find and sort the intersections efficiently?
How do we judge whether a pixel is inside or outside the polygon?

33Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polygon filling: edge coherence
How to find all intersections between scan lines and edges?

A brute-force technique: test each polygon edge against each new
scan line. This is inefficient and slow!

A better solution:
If the i-th scan line intersects with the edge at (xi, yi), and the edge
slope is m, then the next scan line intersects with this edge at:

xi+1 = xi + 1/m

This is for the bottom-up direction. If we are filling top-down, then
xi+1 = xi - 1/m

i+1

i

34Computer Graphics, A. Pizurica and D. Babin, Spring 2021

.

.
.
.

.
.

.
X

Y

(0,0)

Scan line

START STOP START STOP

Span filling

35Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Rasterisation example

P1 (1,0)

P2 (3,6)

P3 (7,10)

P4 (14,1)

.

.

O (0,0)
.

.

.

Alternative filling algorithms

Different ways of filling a polyline

Nonzero winding rule Nonexterior ruleParity rule

Filled by parity rule

40Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Filling: winding rules

Count the number of windings

Assign a “winding index” i to each region

Possible filling rules
§ Fill with one color if i > 0 (non-zero winding fill)
§ Fill with one color if mod(i , 2) = 0 (parity fill)
§ Fill with a separate color for each value of i

+1 -1

Count the number of windings

0 1

0
1

2

3
4 5

4
3

2
1

0

+1 -1

Count the number of windings

0 1

0
1

2

3
4 5

4
3

2
1

0

43Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clip a line segment at the edges of a
rectangular window

Needs to be fast and robust
Robust means: works for special cases
too, and preferably in the same way as
for the normal cases

The method of Cohen-Sutherland
(1974)
§ Very simple
§ Suitable for hardware implementation
§ Can be directly extended to 3D

Clipping

44Computer Graphics, A. Pizurica and D. Babin, Spring 2021

X

Y

O XL XR

YB

YT

.

P1(X1,Y1).

P2(X2,Y2)

.
.P1’(X1’,Y1’)

P2’(X2’,Y2’)

Idea: Encode the position of the end points with respect to
left, right, bottom and top window edges and cut accordingly.

Cohen-Sutherland line clipping algorithm

45Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Assign to each end point a 4-bit code k = (k1, k2, k3, k4), ki ∊{0,1}
k1 = 1 if X < XL (too much to the left);
k2 = 1 if X > XR (too much to the right)
k3 = 1 if Y < YB (too low)
k4 = 1 if Y > YT (too high)

Note: k1 and k2 cannot be simultaneously equal to 1, same holds
for k3 and k4 à Hence 9 possible code words (not 24)

Cohen-Sutherland line clipping algorithm

XL XR

YB

YT

P(X,Y)

46Computer Graphics, A. Pizurica and D. Babin, Spring 2021

X

Y

O XL XR

YB

YT

P(X,Y)
k.

k=0001

k=0000

k=0010

k=0101

k=0100

k=0110

k=1001

k=1000

k=1010

k1=k2=0k1=1 k2=1

k3=k4=0

k3=1

k4=1

Cohen-Sutherland line clipping algorithm

47Computer Graphics, A. Pizurica and D. Babin, Spring 2021

• Cohen-Sutherland tries to solve first simple (trivial) cases

• Assign 4-bit code words to end points: P1à k1, P2 à k2

Step 1: if k1 = k2 = 0, P1P2 is fully visible; otherwise go to Step 2

Step 2: Find bit per bit logic AND: k=k1^k2.
If k1^k2 ¹ 0, P1P2 is fully and “trivially” non visible;
otherwise go to Step 3

Step 3: find intersections with lines extending from window edges;
Go to Step 1.

Cohen-Sutherland line clipping algorithm

48Computer Graphics, A. Pizurica and D. Babin, Spring 2021

XO

k=0001

k=0000

k=0010

k=0101

k=0100

k=0110

k=1001

k=1000

k=1010

XL XRk1=k2=0k1=1 k2=1

YB

YT

k3=k4=0

k3=1

k4=1

.
.

1

.
.5

.

.

6

..
2

Cohen-Sutherland line clipping algorithm

Trivially visible (k1=k2 = 0) and trivially invisible (k1^k2 ¹ 0) examples

Y

.
.3

.. 4

49Computer Graphics, A. Pizurica and D. Babin, Spring 2021

k1^k2 = 0, and not trivially visible can imply partially visible (subject
to shortening) or invisible segment (additional testing needed)

X

Y

O

k=0001

k=0000

k=0010

k=0101

k=0100

k=0110

k=1001

k=1000

k=1010

XL XRk1=k2=0k1=1 k2=1

YB

YT

k3=k4=0

k3=1

k4=1
.

.
1

.
.

2

..
3 .

.

4

.. 5

.
.6

.
.

7

Cohen-Sutherland line clipping algorithm

50Computer Graphics, A. Pizurica and D. Babin, Spring 2021

In Step 3, k1^k2 = 0, but k1 ¹ 0 or k2 ¹ 0 (or both)
Otherwise the segment would be fully visible (Step 1)

Suppose that k1 ¹ 0 , which means that P1 is outside
If not, switch P1 and P2 : X1 ßà X2 ; Y1ßàY2 ; k1 ßà k2

We need to “bring” P1 on the edge of the window
Actually, replace P1 by the intersection point of the segment P1P2 and the

corresponding window edge.
If k1 = 1, find intersection with the left edge XL
If k2 = 1, find intersection with the the right edge XR
If k3 = 1, find intersection with the bottom edge YB
If k4 = 1 find intersection with the the top edge YT

Go to Step 1 and repeat until P1’ en P2’ are found

Cohen-Sutherland line clipping algorithm

51Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Search for intersections

Intersection with XL
Y1 := Y1 + (XL-X1) * (Y2-Y1) / (X2-X1)
X1 := XL

Intersection with XR: same as above with XR instead of XL

Intersection with YB
X1 := X1 + (YB-Y1) * (X2-X1) / (Y2-Y1)
Y1 := YB

Intersection with YT: same as above with YT instead of YB

Denominators cannot be equal to 0 (no division by 0)
In the first case (bringing on XL), this would mean that the segment is

vertical, and too much to the left à already eliminated

YB

YT

P1(X,Y)

P2(X,Y)

XL XR

Cohen-Sutherland line clipping algorithm

52Computer Graphics, A. Pizurica and D. Babin, Spring 2021

X

Y

O

.

P2(X2,Y2).

P2(X2,Y2)

XL XR

YB

YT

P1(X1,Y1)
. P1’(X1’,Y1’)

Cohen-Sutherland line clipping algorithm

. P2‘(X2’,Y2’)

53Computer Graphics, A. Pizurica and D. Babin, Spring 2021

X

Y

O XL XR

YB

YT

.

P2(X2,Y2).

P2(X2,Y2)

.

.

P2’(X2’,Y2’)

P1(X1,Y1)

. P2’(X2’,Y2’)

. P1’(X1’,Y1’)

Cohen-Sutherland line clipping algorithm

54Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polygon clipping

• Polygon clipping = scissoring according to clip window

• Must deal with many different cases

• Clipping a single polygon can result in multiple polygons

55Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polygon clipping

• Find the parts of polygons inside the clip window

56Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Sutherland-Hodgman Clipping Algorithm

• Clipping to one window boundary at a time

57Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Sutherland-Hodgman Clipping Algorithm

• Clipping to one window boundary at a time

58Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Sutherland-Hodgman Clipping Algorithm

• Clipping to one window boundary at a time

59Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Sutherland-Hodgman Clipping Algorithm

• Clipping to one window boundary at a time

60Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Polygon clipping

• Clipping to one window boundary at a time

61Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P5 P1

P2

P3

P4

62Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P5 P1

P2

P3

P4

63Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P5 P1

P2

P3

P4

64Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P5 P1

P2

P3

P4

65Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P5 P1

P2

P3

P4

P’

66Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P5 P1

P2

P3

P4

P’

67Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P5 P1

P2

P3

P4

P’

68Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P5 P1

P2

P3

P4

P’

P’’

69Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Clipping to a boundary

• Do inside test for each point in sequence
• Insert new points when cross window boundary
• Remove points outside window boundary

Inside windowOutside window
P1

P2
P’

P’’

70Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Inside test

Ni

Inside the clip rectangleOutside the clip rectangle

P3

P1

P2 Ni
. (P1-PE) > 0 (outside)

Ni
. (P2-PE) = 0 (on edge)

Ni
. (P3-PE) < 0 (inside)

• Define edge’s outward normal Ni

• For a point Pi test the sign of the dot product Ni
. (Pi-PE)

PE

71Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Summary

• Scan conversion of lines: midpoint line algorithm

• Scan conversion of circles and ellipses: use symmetries

• Clipping in 2D: Cohen-Sutherland algorithm based on assigning
4-bit code words to the end points of the line

• Clipping polygons – inside test

