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Objectives of Image Restoration

• Image restoration likewise image enhancement attemts at improving 
the image quality

• Some overlap exists between image enhancement and restoration

• Important differences: image enhancement is largely subjective, while 
image restoration is mainly objective process

• Restoration attempts to recover an image that has been degraded by 
using a priori knowledge about degradation process

• Restoration techniques involve modelling of degradation and applying 
the inverse process in order to recover the image

• The restoration approach usually involves a criterion of goodness (e.g., 
mean squared error, smoothness, minimal desription length,…) that 
will yield an optimal estimate of the desired result 
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Overview of restoration techniques

A categorization according to the degradation model (noise, blur or both)

Another possible categorization:
• Spatial domain techniques
• Frequency domain techniques
• Other transform domain (e.g., wavelet) techniques

Model based approaches:
• Bayesian techniques – make use of a priori knowledge about the 

unknown, undegraded image statistical image modeling
• Total variation – involves regularization – penalization of not-desired 

local image structures

Statistical image modeling
• Modeling marginal statistics (image histograms)
• Context models modeling interactions among pixel intensities

–Powerful contextual models: Markov Random Field (MRF) models



Degradation model
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Reminder: camera model…

weighting function, e.g. w(x,y)=1
for |x|<∆ and |y|<∆ and 0 otherwise 

∫∫ −−== '')','()','(),( dydxyxwyyxxfyxff lkolkkl

A pixel sensor measures the image intensity in the neighborhood of (xk,yl)

),)(( lko yxwf ∗=

Remark: ),)('(),)((),(),( yxhfyxwhfyxyxff ilkkl f ∗=∗∗==   where  

⇒ Mathematical model: linear filter followed by ideal “sampling”

Camera: CCD (Charged-
coupled device) pixel matrix
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fkl=f(xk,yl)

…Reminder: camera model

The linear filter here is low-pass (attenuates high frequencies)
⇒The image becomes blurred, fine details are lost

The sampling keeps only the values of f(x,y) at discrete positions (xk, yl)
⇒ Aliasing appears if sampling frequency is not high enough

Remarks
•Uniform sampling: xk=k∆, yl=l∆

linear filter

lens
averaging
over pixels

ideal
samplingfi(x,y) f(x,y)
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•More general 
(sampling “lattice”)
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! For compactness we shall write f(x,y) instead of f(xk,yl) !
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Degradation model…

If there is no aliasing we can model the analogue PSF by a digital filter

Scene Not-ideal
anti-alias filter

fx

H( fx, fy)

lklklk
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Equivalent 
(digital) PSF +

noise

lkG ,
Scene Lens with ideal 

frequency 
characteristic 

Ideal
sampling lkF ,

Scene Lens with ideal 
frequency 

characteristic
Ideal 

sampling

…Degradation model

k

Hk,l

Digital filter: models imperfections in the lens, form of the pixels, … 
(if aliasing appears equivalent with analogue PSF may not hold)

lkN ,
lklklklk NFHG ,,,, +=

Degradation 
function h(x,y) +

noise
n(x,y)

),( yxg),( yxf
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equivalent

For compactness we 
write x,y instead of xk,yl

Noise reduction
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Why is denoising important

Not only visual 
enhancement, but 
also: automatic 
processing is 
facilitated!

original denoised

Example: 
edge detection

04.a12

version: 7/12/2006 © A. Pizurica, Universiteit Gent, 2006

Noise models…
Noise models can be categorized according to 

• marginal statistics (first-order statistics, marginal probability density function):
• Gaussian, Rayleigh, Poisson, impulsive,…

• higher-order statistics
• white noise (uncorrelated)
• colored (correlated)

• type of mixing with the signal
• additive
• multiplicative
• other (more complex)

• dependence on the signal
• statistically independent of the signal
• statisticaly dependent of the signal

Many techniques assume additive white Gaussian noise (AWGN) model
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Noise models: marginal statistics

* Gaussian e.g., thermal noise and a variety of noise sources
* Rayleigh e.g. amplitude of random complex numbers whose real and 

imaginary components are normally and independently 
distributed. Examples: ultrasound imaging

* Rice          e.g., MRI image magnitude (Gaussian and Rayleigh are 
special cases of this distribution)

* Poisson    models photon noise in the sensor (an average number of 
photons within a given observation window)

* Bipolar impulsive (e.g., salt and pepper) noise…

Rayleigh Rice Impulsive

Some common probability densitu functions (pdf’s)of noise:
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Noise in MRI

- observed noisy image (complex-valued);

- ideal, noise-free data;],...,[ 1 Nff=f

],...,[ 1 Ndd=d
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Noise in MRI
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Original image Image with white noise

Difference with 
the original

Noise models: correlation properties

white ⇔ uncorrelated

colored ⇔ correlated
noise

Image with colored noise

Difference with 
the original
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Some reasons behind noise correlation …

interpolatedcaptured image

Bayer pattern

© W. Philips, Universiteit Gent, 1999-2006
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RAW data – B channel Denoised RAW data - B ch.

Raw data in one 
color channel 

noise is white

… Some reasons behind noise correlation
Interpolated

noise is correlated

Resulting color image
with correlated noise
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In many applications it is assumed that noise is additive and statistically 
independent of the signal

Types of mixing noise with signal 

),(),(),( yxnyxfyxg =

),(),(),( yxnyxfyxg +=

In CMOS sensors there is a fixed-pattern noise and mixture of
additive and multiplicative noise

This is a good model for example for thermal noise

Often, noise is signal-dependent. Examples: speckle, photon noise,…

Many noise sources can be modelled by a multiplicative model:
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Order statistics filters: Median filter

Basic idea: remove “outliers”
The median is a more robust statistical measure than mean

© W. Philips, Universiteit Gent, 1999-2006
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Reduction of impulse noise 

median over 3x3

Median filter removes isolated noise peaks, without blurring the image

impulse noise

© W. Philips, Universiteit Gent, 1999-2006
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... Reduction of impulse noise … 

median over 3x3Noise-free original

Median filter removes isolated noise peaks, without blurring the image

© W. Philips, Universiteit Gent, 1999-2006
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Median filter and reduction of white noise

median over 3x3

For not-isolated noise peaks (e.g., white Gaussian noise) median filter 
is not very efficient.

original

© W. Philips, Universiteit Gent, 1999-2006
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• Average within a local window Sxy
• Aimed for Gaussian noise, 

(but blurs edges)

Arithmetic mean

Some simple noise filters

Median
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• Efficient for impulsive noise
• Not efficient for Gaussian noise

MedianAlpha-trimmed mean

Discard d/2 lowest and d/2 largest values in Sxy

Denote by gr(s,t) the remaining mn-d pixels

∑
∈−

=
xySts
r tsg

dmn
yxf

),(
),(1),(ˆ

For d=0: mean filter
For d=mn-1: median filter


