

Version: 14/12/2006 © A. Pizurica, Universiteit Gent, 2006 Wiener filtering
Degradation model $G_{kl} = H_{k,l}F_{k,l} + N_{k,l}$
The Wiener estimate is derived from a least squared method:
$\hat{F}_{k,l} = \frac{H_{k,l}^{*}}{ H_{k,l} ^{2} + S_{k,l}^{\eta} / S_{k,l}^{f}} G_{k,l}$
$H_{k,l}^{*}$ - complex conjugate of the degradation function $H_{k,l}$
$S^{\eta}_{k,l}$ - power spectrum of the noise $\mid N_{k,l} \mid^2$
$S^{f}_{k,l}$ - power spectrum of the noise $\mid F_{k,l} \mid^{2}$
In practice, we often use:
$\hat{F}_{k,l} = \frac{H_{k,l}}{ H_{k,l} ^2 + K} G_{k,l}$
where K is an experimentally optimized constant

05.c8

version: 14/12/2006 © A. Pizurica, Universiteit Gent, 2006 Deblurring summary
 In cases where noise can be neglected a naive approach is inverse filtering
 Inverse filtering does not work because it implies divisions by small numbers (close to zero) and because it boosts noise
 In some very specific cases, pseudo-inverse filtering may work
 A good approach is Wiener filtering
 The results of the Wiener filter can be improved by using a small regularization constant and removing extra noise by a subsequent noise reduction filter
 Image restoration techniques employing MRF priors are powerful but also computationally expensive
05.c18