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Need for compression: “Pre-press” images

4 M B fanuary 31,2001

Dear Mem and Dad,

How are bath of yous doing? | thought Twould drop o line
tosay . Fanny, little Danny, and Lare doing well. As
you can see by tie picture, little Danny isn't quite so little!
Isn't this letter really great! I took a picture of Darmny
that was on a Kedak PhotoCD, and I merged it onto this
lotter using my computer. | then printed the letter using
a color inkjet printer [just bought...

CMYK (4 bytes per p|xe|) |nstead of RGB Danny’s wearing the gorgeous ELUE sweater you guve

him last time yyou wer g. It just brings out the
RED in his lips and cheeks. He definitely gets his good

Combination of photographs, text and lines — tusks fon hil moker:

Toke care of yourselves and write soon.

Love,
Very high quality required Midhad ;*E %%
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Need for compression: medical images

Angiography: 20 s = 120 MB radiography 2048x1680x10 (4 Mbyte)

Big amounts of data, because of
*High spatial resolution (e.g., radiography)
*3D-acquisition: volumetric data (e.g., MRI) or video (e.g., angiography) 7,4
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Other applications

Other applications
are less critical:
much more errors
can be tolerated
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Introduction to image compression...

Image compression = compression of image data

In general, data compression means reducing the amount of data that
represents a given quantity of information

Two main categories:
« Lossless compression
- After decompression the image is exactly the same as
the original image
- Compression factors are small (2 to 5)
e Lossy compression
- The decompressed image is an approximation of the the
original image
- Compression factor typically big and increasing with the
decrease of the required quality
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. Introduction to image compression...

Image compression makes use of spatial and psychovisual redundancies

Spatial (inter-pixel) redundancy
In most images, the value of any
pixel can be reasonably well
predicted from its neighbors. (At
which positions in the image this
does not hold or holds less well?)

Psychovisual redundancy

Human eye is less sensitive to
certain information (e.g., very high
spatial frequencies in highly
textured or in dark areas). Such
information is psychovisually
redundant and can be removed
without significantly damaging the
perceptual quality
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. Introduction to image compression

Example: improved grey scale (IGS) quantization - takes
into account the characteristics of the human visual system

Original

Quantization
to 16 levels

©2002 R. C. Gonzalez & R. E. Woods

add these bits
01101100

10001011
t 1100 |
1001 0111

PP

IGS quantization
to 16 levels

Principle: add the four least significant bits of a neighbouring

(previous) pixel and then quantize (to four most significant bits)

7b8




version: 18/11/2007 © W. Philips, Universiteit Gent, 1999-2006

Remarks

In the reminder we treat grey scale image coding/compression

Lossy coding of color images
*The image is usually first transformed to YUV space
*The U and V images are then spatially subsampled: 3/4 of the pixels
are removed (e.g., pixels from all even rows and columns are
omitted)
*The Y, U and V images are then separately encoded

Lossless coding of color images
*Usually by separately encoding the R, G and B channels
«Joint coding performs better

709

Principles of data compression
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Variable length coding

fixed length  variable length bits/symbol:
A 000 11110 fixed length  variable length
B 001 1101 N
c o010 101 I=[logp(N)] =D pl;
D 011 0 i=1
E 100 100
F 101 1100 ADFDGDDDDCDE
G 110 1110 99pp11101011110011011011011010011100
H 111 11111

11110011000111000001010100
Denote [; probability of occurrence of a simbol i

Principle: encode frequent symbols with a short bit string (small Ii) and
rarely appearing symbols with a long bit string

The code has to be decodable
*Every codeword has to be unique
*The end of a codeword has to be recognizable in the coded bit sequence
7011
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Prefix-code

output bits
11110
1101

101

0

100 ADF
1100

1110 1111001100... 1
11111

I &G Mmoo wm >

Prefix code: no code word is at the beginning of an another code word
= The decoder can always recognize the end of a code word
Such a code can be represented by leaves of a decoder tree

7012
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Measuring information

A random event A that occurs with probability P(A) has

1
P(A)

I(A) =log =-logP(A) (%)

units of information

The base of the logarithm in this equation determines the unit used to
measure the information.

- If the base 2 is selected the resulting unit is bit

Equation (x) says: less probable events carry more information than the
more probable ones. Examples?

7013
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Entropy
Stationary Symbols with possible values «a;, i=1...N,
source and probability P(a;)=p;

N
Entropy of the source H= —z Pk l0g, py bits remark: 0log,0=0
k=1

H the smallest possible mean value of the code word length
*For any technique that encodes symbol per symbol

*And even for any coding technique if the successive symbols are
statistically independent (and have the same distribution)

0 bit <H < log,N bit, N - number of symbols of the alphabet

H is maximal when all the symbols are equally probable: H,,, =log, N

H < log,M where M is the number of symbols with p# O:

slogical: symbols that never appear (p,=0) can be deleted from
the alphabet

7014
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Entropy: Examples

0.15 _ entropy=3.00bits OIG;AnLropFl,Aﬁbils;
0.4
0.2

0 | iﬂ\

A B CDEFGH

A B CDE F G H

03 entropy=2.92 bits 03 entropy=2.85 bits
0.2 0.27
017 0.1
0 \D\U\U\U\U\U\ O {HHiHDIDD
A B CDE F G H A B CDETFGH

7615
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Huffman coding

Stationary L, Symbols with possible values a;, i=1...N ,
source and probability P(a)=p;

The Huffman code is a specific pre-fix code N

* the code word length I,=-log,p, == Z Pl =H
k=1
= approximately optimal among the codes that encode each symbol

individually

= and also approximately optimal among all the codes if the source
generates statistically independent symbols

*Mean code word length is between H and H+1
= far from optimal if H is small (e.g., for H < 1),
in particular, not well suited for binary images

7b.16
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Huffman coding: example...
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Original source Source reduction

Symbol Probability 1 2 3 4

d, 0.4 0.4 0.4 0.4 0.6

dy, 0.3 0.3 0.3 D.3j|_> 0.4

a 0.1 0.1 0.2 0.3

dy 0.1 0.1 j|+tll T

a; 0.06 0.1

s 0.04

© 2002 R. C. Gonzalez & R. E. Woods
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...Huffman coding: example

Original source Source reduction
Sym. Prob. Code 1 2 3 4
I 0.4 1 04 1 04 1 04 1 06 0
g 0.3 00 0.3 00 0.3 00 0.3 OO{DA 1
ay 0.1 011 01 011 02 010 03 M
I 0.1 0100 0.1 0100::|70k1 011
a5 0.06 01010 0.1 0101
as 0.04 01011

©2002 R. C. Gonzalez & R. E. Woods

7018
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Huffman coding for text

The Huffman coding makes use of
the fact that some letters are more frequent than others (first-order
statistics)
*but not that some combinations are more frequent than others (second
or higher order statistics)

Example: a Huffman code for English language
«exploits the fact that the letter E is more frequent than the letter Q
*But not that the combination TH is more frequent than XP

Higher order redundancy can be exploited by treating two or more
successive letters as ONE “meta” letter (block code)

Example: English text
*Huffman code per letter = 4.03 bit/letter
*Block-Huffman code per two letters = 3.32 bit/letter
*Using all redundancy = 0.6-1.3 bit/letter

7019
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Entropy coding of image pixels
“CT", entropy=5.7 bit/pixel “Lenna”, entropy=7.2 bit/pixel

107 oppixels il L4
8 - ; 1.2
1
67 0.8
4 0.6
i 0.4
2 VAN 0.2
O I I D o

0 64 128 192 256 0 64 128 192 256

grey value grey value

7020
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Remarks

Huffman coding
«is not efficient for image pixels because the first-order entropy of image
pixels is too big
e|s useful in combination with transform coding

Code book has to be made available to the decoder as well
«fixed code book, chosen once for ever
*saving the code book in a compressed file
Starting from a “standard” code book that is continuously adapted based
on the decoded data = “adaptive” operation

Huffman coding cannot compress 1-bit symbols (A=0, B=1)
*The block Huffman coding offers a solution for this
*A better solution is arithmetic coder:

—>Encodes arbitrarily long sequence of symbols (usually bits) as one
code word that is computed from the input sequence

7621

version: 18/11/2007 © W. Philips, Universiteit Gent, 1999-2006

Arithmetic coding

by bafy 1-~P(0) Xp.. %, l 111
L3P 1 1ei determine
111 _ a(Xg...X,)
110- .011 3 bits
a | bin: gl100464

round to minimal
precision

code word ll

.0?772...

0 —
The arithmetic coder associates with every possible bit string x;... x, a
subinterval [a(x; ...x.), b(X,...x,)] of [0,1] with the length P(x;...x,)

The code word for x,... X, is a binary floating point representation of a(x;...x,), but
rounded up to a minimal number of bits that are needed to distinguish a(x;...x) from
other possible a(x’;...x",)

7022
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Adaptive arithmetic coders

b
b baby 100010001110101Z—"{ arithm. coder |—>

111 ~ vy
110 Interval division
bn-m' b’]l _ .
101 »| estimate P(x,=0)
5 — The arithmetic (de)coder continues to work when the
100 interval distribution is adapted from bit to bit
= “adaptive” operation possible: if P(x,=0) changes
in function of n (not-stationary source) the coder
can adapt itself = beter compression
0 000
IP(XSZ 0)=0.5

L The decoder has to be able to compute itself the
P(=0)=0.75 division of the intervals; that can be done based on
P(x,=0)=0.25 the “previous” bits:

m
P(x, =0) =1-P(x, =1) with P(x, =)=~ > .,
kzl 723
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Context modeling: Example binary image...

already coded Binary image: all image
pixels take values 0 or 1

(@]
(e}

current pixel

abc Rx=0Ja,b,9

000 0.9 -
0f1 001 0.6 —'I arithm. coder |—>
s
B I_—I—>11 0 03 Interval division
111 0.1

We code her a binary image with an arithmetic coder
The interval division of the arithmetic coder now depends on the “context”,
i.e., on the values of the neighboring pixels:
*We estimate, e.g., P(x=0|a,b,g and base on this the interval division of
the coder instead of P(x=0)= we make use of spatial correlation

In practice we estimate P(x=0|a,b,g adaptively for each context 2024
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Context modeling: where is the gain?

already coded

cl|b
al x

current pixel

Typical images consist of large uniform areas divided by edges

A. If a=b=c=1 it is likely that x is in a uniform “white” area:
*P(x=1]a=1,b=1,c=1) is very high and P(x=0]a=1,b=1,c=1) is very small

B. In the surrounding of an image edge is e.g. a=c=1 and b=0; here it is not

a priori clear whether x is on the white or on the black side of the edge
*P(x=1|a=1,b=0,c=1) and P(x=0|a=1,b=0,c=1) will be closer to 0.5: e.g.
P(x=1|a=1,b=0,c=1)=0.3 en P(x=0]a=1,b=0,c=1)=0.7

It is evident that the optimal interval division will not be the same for the
cases A. and B.

=we change the interval division based on the context so that for every

context an optimal division is found
P 7625

Lossless image compression
techniques




version: 18/11/2007 © W. Philips, Universiteit Gent, 1999-2006

A general compression scheme

— not for lossless coding
A\ 4

- . Ot ralktransformation
reducing spatial S i
cortelation «Predicting pixel values from the previous values

(integer) prediction errors or (real) transform coefficients

A\ 4
removing * Quantisatio
visually-

irrelevant data

e coefficients/prediction errors
* Not coding some coeffiCi rediction errors

integer numbers

removing statistical

« Huffman coding Disadvantage:
redundancy

« Arithmetic Coding statistical depen—

dencies between

bit stream the pixels are not taken into account, except for block
Huffman coding (but this is too complex)

727
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Statistical properties of images

0 b(x, y) 255

_ E(b(x y)b(x+1Y))
VER?(x, y) Elb?(x+1y))

b(x+1,y)

Number of times that .
combination b(x,y)=128,
b(x+1,y)=128 appears b(x, y) b(x+1,y)
y

255

A

Neighboring pixels in images tend to have similar values
= Almost diagonal co-occurrence matrix (2-nd order histogram)

= Block codes perform better than pixel codes; H, << 2H,
= Very high correlation coefficient: p>0.9

7628




version: 18/11/2007 © W. Philips, Universiteit Gent, 1999-2006

Simple predictive techniques

already coded

. current pixel

Prediction: X, =|_aA+bB+cCJ

C[B

AH: Coded error: X-%
Principle:

*The “current” pixel value is first predicted from other values

*The pixel is predicted based on the neighboring ones
*We can use only already coded pixels (because the decoder has to be
able to make the same prediction)
*The prediction error is coded using the Huffman or the arithmetic coder
Example: LIPEG (Lossless JPEG; Joint Photographic Experts Group)
« LIPEG offers choice from 7 predefined predictors
« Predictor “7” works usually the best:
X,=(A +B)/2 (‘integer” division)

7629
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Prediction works: Example...

Prediction
error:

Lenna, original

X=X, +128

Prediction works well except at edges

7630
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...Example...
After LJPG-prediction =———
“Lenna  entropy=7.2 bit/pixel entropy=4.4 bit/pixel
_ 14 :
1‘21 %opixels A 12 Y%pixels .
14 N 10
0.8 A 8
0.6 6
0.4 - 4
0.2 2
0 / T T T L‘\ 0 T J\ L T 1
0 64 128 192 256 -128 -64 0 64 128
grey value prediction error

After LJPEG-prediction:
*The errors are less unifor distributed than the original values
*The entropy of the errors is smaller than that of the original values

= An arithmetic coder (usually) efficiently codes these than the original values
7031
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...Example...

CT, original Prediction error: X — X +12¢€

7032
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...Example
w~ _ s After LJPG-prediction:
o CT”, entropy=5.7 bit/pixel o entropy=3.2 bit/pixel
%pixels L) Y%pixels
20
4
, A 10 -
0 T 1 L/ T k‘\ 0 T T T !
0 64 128 192 256 128 64 0 64 128
grey value grey value

Gain: 1.78 bigger compression factor

7633
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The “Binary Tree Predictive Coder”...

Image pixels

N

split split

T
Iq:
|

= B e

v

|

H:

prediction errors prediction errors  prediction errors

7034




Lossless compression in practice
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The CALIC coding scheme

Code

Text and graphical
Two-row double buffer| elements
] Context
Binar
y Generation &
Mode?, o
P Quantization =
Conditional
no Gradient- Probabilities
adjusted Estimation
Prediction l
P’ e’ Coding
<— Error modelling Histogram
Sharpening
P” L
! e Entropy
\ Coder

7b.36
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The new standard: JPEG-LS

1 ! 1
. L .
: context ) ' : Statistical coding
. image samples 1 i pred. .
. ] , errors
. I Context [, \ Golomb
. ! Fixed modeler |4 . coder
1 Gradients : predictor 1 statistics
c|bld|, ; 1 1
1 | ! 1
a | x 1 ( ) 1
- | predicted
! Flat 1| Adaptive | values !
\ : oo I 1 | correction T ) :
. e 1 predictor I oun
E / : O':.})/regmar N ! lengths 1 =
7 un T
- coder
i Crun image counter : 1
: samples Istatistics:
o Prediction and context modeling _ _ _ _ _ _ ___ 1 Joder -

compressed bitstream
A very complex predictor and statistical coder
However, quite short computation time
Inspired by the so-called Calic technique, which compresses equally well but
much slower

7637
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Lossy compression: Example

/ \ Computation time (in s) for (de)compression
200 7 ( sophisticated

of 16 Mbyte on MR-images (166MHz
techniques; not ™ PowerPC)
150 4 specific for ¢ compression
images ~ stat m decompression
L 2
100 7 = ) Standard techniques; not
\ bzip / specific for images
504 Calic ozip compress
JPEG-LS Ljpeg . ¢
0 \ I ) . 1
30 40 50 60

size of the compressed file (in %)

The achievable compression factor is small for lossless compression; this
holds for most types of images;

Arithmetic coders perform better than Huffman coders
Advanced techniques for “general purpose” are also quite good but slower ,,38
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Dependence on the type of the image
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| | \ \
MRI | l @ The best technique
PET | l O Averaged over a
‘ “number of techniques
ANG —
USs -
cT ‘ ‘
X-R ‘ ‘
[ [ [
I I I
0.00 1.00 2.00 3.00 4.00

compression factor
The compression factor depends strongly on the type of the image

7639
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Important principles

epre-processing: linear and non-linear prediction

scontext modeling

«Statistical coding techniques: Huffman codes and arithmetic codes

Performance comparison:
*Sophisticated techniques (e.g. JPEG-LS en Calic) are better than
simple ones (b.v. LIPG)

*Arithmetic coders perform better than Huffman coders

Influence of the type of the data

*The compression factor strongly depends on the type of the image
eImages with big spatial resolution can be compressed best
Results

*Typical compression factor is 2 to 4 on medical and “pre-press”
images
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