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Need for compression: “Pre-press” images

CMYK (4 bytes per pixel) instead of RGB

15 MB
4 MB

Combination of photographs, text and lines

Very high quality required

© W. Philips, Universiteit Gent, 1999-2006
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Need for compression: medical images

radiography 2048x1680x10 (4 Mbyte)

Big amounts of data, because of
•High spatial resolution (e.g., radiography) 
•3D-acquisition: volumetric data (e.g., MRI) or video (e.g., angiography)

Angiography: 20 s ⇒ 120 MB

© W. Philips, Universiteit Gent, 1999-2006
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Other applications

Other applications 
are less critical: 

much more errors 
can be tolerated

© W. Philips, Universiteit Gent, 1999-2006
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Image compression � compression of image data

In general, data compression means reducing the amount of data that 
represents a given quantity of information

Two main categories:

• Lossless compression 

� After decompression the image is exactly the same as 
the original image

� Compression factors are small (2 to 5)

• Lossy compression

� The decompressed image is an approximation of the the 
original image

� Compression factor typically big and increasing with the 
decrease of the required quality

Introduction to image compression…
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… Introduction to image compression…

Image compression makes use of spatial and psychovisual redundancies

Spatial (inter-pixel) redundancy

In most images, the value of any 
pixel can be reasonably well 
predicted from its neighbors. (At 
which positions in the image this 
does not hold or holds less well?)

Psychovisual redundancy

Human eye is less sensitive to 
certain information (e.g., very high 
spatial frequencies in highly 
textured or in dark areas). Such 
information is psychovisually 
redundant and can be removed 
without significantly damaging the 
perceptual quality
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… Introduction to image compression

Example: improved grey scale (IGS) quantization - takes 
into account the characteristics of the human visual system

01101100

10001011

Principle: add the four least significant bits of a neighbouring 
(previous) pixel and then quantize (to four most significant bits)

Quantization 
to 16 levels

IGS quantization 
to 16 levels

Original

1100

add these bits

© 2002 R. C. Gonzalez & R. E. Woods
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Remarks

In the reminder we treat grey scale image coding/compression

Lossy coding of color images
•The image is usually first transformed to YUV space
•The U and V images are then spatially subsampled: 3/4 of the pixels 
are removed (e.g., pixels from all even rows and columns are 
omitted)

•The Y, U and V images are then separately encoded

Lossless coding of color images
•Usually by separately encoding the R, G and B channels
•Joint coding performs better

© W. Philips, Universiteit Gent, 1999-2006

Principles of data compression
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Variable length coding

Principle: encode frequent symbols with a short bit string (small l i) and 
rarely appearing symbols with a long bit string 

11110011000111000001010100

fixed length
A 000
B 001
C 010
D 011
E 100
F 101
G 110
H 111

000011101011110011011011011010011100

A D F D G D D D D C D E

∑
=

=
N

i
ii lpl

1

variable length
11110
1101
101
0
100
1100
1110
11111

variable length

The code has to be decodable
•Every codeword has to be unique 
•The end of a codeword has to be recognizable in the coded bit sequence

 )(log2 Nl =

bits/symbol:

fixed length

© W. Philips, Universiteit Gent, 1999-2006

Denote pi probability of occurrence of a simbol i
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Prefix-code

Prefix code: no code word is at the beginning of an another code word
⇒ The decoder can always recognize the end of a code word

Such a code can be represented by leaves of a decoder tree

output bits

A 11110

B 1101

C 101

D 0

E 100

F 1100

G 1110

H 11111

D

G

A

H

F

B

E

C

1 1 1 1 0 0 1 1 0 0 ...

1

1

1

1

0

0

1

1 0

0

A D F

© W. Philips, Universiteit Gent, 1999-2006
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A random event A that occurs with probability P(A) has 

(*)

units of information

Measuring information

)(log
)(

1
log)( AP

AP
AI −==

Equation (*) says: less probable events carry more information than the 
more probable ones. Examples?

The base of the logarithm in this equation determines the unit used to 
measure the information. 

� If the base 2 is selected the resulting unit is bit
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Entropy

H the smallest possible mean value of the code word length 

•For any technique that encodes symbol per symbol

Entropy of the source bits

Stationary 
source

Symbols with possible values αi , i=1…N ,
and probability P(αi)=pi

remark: 0log20=0

•And even for any coding technique if the successive symbols are 

statistically independent (and have the same distribution)

0 bit  ≤ H ≤ log2N bit,       N - number of symbols of the alphabet

k

N

k
k ppH ∑

=
−=

1
2log

H ≤ log2M where M is the number of symbols with pk≠ 0:
•logical: symbols that never appear (pk=0) can be deleted from 
the alphabet

H is maximal when all the symbols are equally probable: NH 2max log=

© W. Philips, Universiteit Gent, 1999-2006
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Entropy: Examples

entropy=3.00 bits

0

0.05

0.1

0.15

A B C D E F G H

entropy=2.85 bits

0

0.1

0.2

0.3

A B C D E F G H

entropy=1.46 bits

0

0.2

0.4

0.6

A B C D E F G H

entropy=2.92 bits

0

0.1

0.2

0.3

A B C D E F G H
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Huffman coding

The Huffman code is a specific pre-fix code
• the code word length lk≈ -log2 pk

⇒ approximately optimal among the codes that encode each symbol 
individually

⇒ and also approximately optimal among all the codes if the source
generates statistically independent symbols

•Mean code word length is between H and H+1
⇒ far from optimal if H is small (e.g., for H ≤ 1),
in particular, not well suited for binary images

Hlpl
N

k
kk ≈=⇒ ∑

=1

Stationary 
source

Symbols with possible values αi , i=1…N ,
and probability P(αi)=pi



7b.17

version: 18/11/2007 © A. Pizurica, Universiteit Gent, 2006-2007

Huffman coding: example…

© 2002 R. C. Gonzalez & R. E. Woods
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…Huffman coding: example

© 2002 R. C. Gonzalez & R. E. Woods
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Huffman coding for text

The Huffman coding makes use of
•the fact that some letters are more frequent than others (first-order  
statistics)

•but not that some combinations are more frequent than others (second 
or higher order statistics)

Example: a Huffman code for English language

•exploits the fact that the letter E is more frequent than the letter Q

•But not that the combination TH is more frequent than XP

Higher order redundancy can be exploited by treating two or more
successive letters as ONE “meta” letter (block code)

Example: English text

•Huffman code per letter ⇒ 4.03 bit/letter

•Block-Huffman code per two letters ⇒ 3.32 bit/letter

•Using all redundancy ⇒ 0.6-1.3 bit/letter
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Entropy coding of image pixels

“Lenna”, entropy=7.2 bit/pixel“CT”, entropy=5.7 bit/pixel

© W. Philips, Universiteit Gent, 1999-2006
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Remarks

Huffman coding
•is not efficient for image pixels because the first-order entropy of image 
pixels is too big

Code book has to be made available to the decoder as well
•fixed code book, chosen once for ever
•saving the code book in a compressed file
•Starting from a “standard” code book that is continuously adapted based 
on the decoded data ⇒ “adaptive” operation

•Is useful in combination with transform coding

Huffman coding cannot compress 1-bit symbols (A=0, B=1)
•The block Huffman coding offers a solution for this
•A better solution is arithmetic coder: 

�Encodes arbitrarily long sequence of symbols (usually bits) as one 
code word that is computed from the input sequence

© W. Philips, Universiteit Gent, 1999-2006
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Arithmetic coding

The code word for x1… xn is a binary floating point representation of a(x1…xn), but 
rounded up to a minimal number of bits that are needed to distinguish a(x1…xn) from 
other possible  a(x’1…x’n)

1 1 1

1 1 0

1 0 1
1 0 0
0 1 1
0 1 0

3b1b 2b

.1??...

.01??...

.011?...

1

0

The arithmetic coder associates with every possible bit string x1… xn a 
subinterval [a(x1…xn), b(x1…xn)] of [0,1] with the length P(x1…xn)

.0??...

110→ .011  3 bits

x1…xn

determine
a(x1…xn)

a

round to minimal 
precision

code word

111

bin: 0.100101

1

111→ .1      1 bit

.5

~P(0)

~P(1)

a(111)=0.5781

a(110)=0.4375

© W. Philips, Universiteit Gent, 1999-2006
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Adaptive arithmetic coders

1 1 1
1 1 0

1 0 1

1 0 0

0 0 0

3b1b 2b
1

0

.5

P(x1=0)=0.25

P(x2=0)=0.75

P(x3=0)=0.5

The arithmetic (de)coder continues to work when the 
interval distribution is adapted from bit to bit
⇒ “adaptive” operation possible: if P(xn=0) changes 
in function of  n (not-stationary source) the coder 
can adapt itself ⇒ beter compression

∑
=

−≈=
m

k
knn b

m
xP

1

1
)1(

1000100011101011 arithm. coder
bn

estimate P(xn=0)

Interval division
bn-m…bn-1

)1(1)0( =−== nn xPxP with

The decoder has to be able to compute itself the 
division of the intervals; that can be done based on 
the “previous” bits:

© W. Philips, Universiteit Gent, 1999-2006
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already coded

current pixel
a

bc
x

Binary image: all image 
pixels take values 0 or 1

Context modeling: Example binary image…

We code her a binary image with an arithmetic coder
The interval division of the arithmetic coder now depends on the “context”, 
i.e., on the values of the neighboring pixels: 

•We estimate, e.g., P(x=0|a,b,c) and base on this the interval division of 
the coder instead of  P(x=0)⇒ we make use of spatial correlation

1
10
x

a b c P(x=0|a,b,c)
0 0 0 0.9
0 0 1 0.6
… ...
1 1 0 0.3
1 1 1 0.1

In practice we estimate P(x=0|a,b,c) adaptively for each context

arithm. coder

Interval division

© W. Philips, Universiteit Gent, 1999-2006
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already coded

current pixel
a

bc
x

Context modeling: where is the gain?

Typical images consist of large uniform areas divided by edges

A. If a=b=c=1 it is likely that x is in a uniform “white” area: 
•P(x=1|a=1,b=1,c=1) is very high and P(x=0|a=1,b=1,c=1) is very small

B. In the surrounding of an image edge is e.g. a=c=1 and b=0; here it is not 
a priori clear whether x is on the white or on the black side of the edge

•P(x=1|a=1,b=0,c=1) and P(x=0|a=1,b=0,c=1) will be closer to 0.5: e.g. 
P(x=1|a=1,b=0,c=1)=0.3 en P(x=0|a=1,b=0,c=1)=0.7

It is evident that the optimal interval division will not be the same for the 
cases A. and B.
⇒we change the interval division based on the context so that for every 
context an optimal division is found

© W. Philips, Universiteit Gent, 1999-2006

Lossless image compression 

techniques
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Disadvantage: 
statistical depen-

dencies between 
the pixels are not taken into account, except for block 
Huffman coding (but this is too complex)

A general compression scheme

•Orthogonal transformation
•Predicting pixel values from the previous values

(integer) prediction errors or (real) transform coefficients

removing
visually-

irrelevant data

• Huffman coding
• Arithmetic coding

bit stream

removing statistical
redundancy

integer numbers

reducing spatial
correlation

• Quantisation of the coefficients/prediction errors

• Not coding some coefficients/prediction errors

not for lossless coding

© W. Philips, Universiteit Gent, 1999-2006
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Statistical properties of images

Neighboring pixels in images tend to have similar values
⇒ Almost diagonal co-occurrence matrix (2-nd order histogram)

),( yxb

),1( yxb +

0

255

2550

),1( yxb +),( yxb

( )
( ) ( )),1(),(

),1(),(
22 yxbEyxbE

yxbyxbE

+
+=ρ

⇒ Block codes perform better than pixel codes; H2 << 2H1

⇒ Very high correlation coefficient: ρ >0.9

Number of times that the 
combination b(x,y)=128, 
b(x+1,y)=128 appears

© W. Philips, Universiteit Gent, 1999-2006
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Prediction: Xp =  aA+bB+cC

Simple predictive techniques

Principle: 
•The “current” pixel value is first predicted from other values

already coded

current pixel

A
BC
X Coded error: X-Xp

•The prediction error is coded using the Huffman or the arithmetic coder

•The pixel is predicted based on the neighboring ones
•We can use only already coded pixels (because the decoder has to be 
able to make the same prediction)

Example: LJPEG (Lossless JPEG; Joint Photographic Experts Group)
• LJPEG offers choice from 7 predefined predictors
• Predictor “7” works usually the best:

Xp=(A + B) / 2 (“integer” division)

© W. Philips, Universiteit Gent, 1999-2006
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Prediction works: Example...

Lenna, original Prediction
error: 128+− pXX

Prediction works well except at edges

© W. Philips, Universiteit Gent, 1999-2006
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…Example...

“Lenna”, entropie=7.2 bit/pixel Na LJPG-predictie:
entropie=4.4 bit/pixel

After LJPEG-prediction:
•The errors are less unifor distributed than the original values
•The entropy of the errors is smaller than that of the original values

⇒ An arithmetic coder (usually) efficiently codes these than the original values

© W. Philips, Universiteit Gent, 1999-2006

%pixels

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 64 128 192 256

grijswaarde

%pixels

0
2
4
6
8

10
12
14

-128 -64 0 64 128

predictiefoutgrey value prediction error

entropy=7.2 bit/pixel
After LJPG-prediction 
entropy=4.4 bit/pixel
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…Example...

CT, original Prediction error: 128+− pXX

© W. Philips, Universiteit Gent, 1999-2006
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…Example

Gain: 1.78 bigger compression factor

© W. Philips, Universiteit Gent, 1999-2006
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The “Binary Tree Predictive Coder”...

split split split

⊕
-+ ⊕

-+

⊕
-+

prediction errorsprediction errorsprediction errors

Image pixels

© W. Philips, Universiteit Gent, 1999-2006
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Context
Generation &
Quantization

Gradient-
adjusted

Prediction

P

Binary
Mode?

+

-

Two-row double buffer

Ternary
Entropy
Coder

Error modelling

Conditional
Probabilities
Estimation

Coding
Histogram
Sharpening

Entropy
Coder

Code

yes

no

P’

P’’

e’

e

The CALIC coding scheme

Text and graphical 
elements

© W. Philips, Universiteit Gent, 1999-2006
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Flat 
region

Gradients

Context 
modeler

Run 
counter

Golomb
coder

Run 
coder

Adaptive 
correction

Fixed 
predictor

-

+

pred. 
errors

run 
lengths

image 
samples

regular

run

Coder

predictor

predicted 
values

compressed bitstream

run

regular

mode

context
image samples

•

c

a

b

x

d

The new standard: JPEG-LS

A very complex predictor and statistical coder
However, quite short computation time
Inspired by the so-called Calic technique, which compresses equally well but 
much slower

statistics

statistics

Statistical coding

Prediction and context modeling

© W. Philips, Universiteit Gent, 1999-2006
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Lossy compression: Example

bzip

stat

gzip
compress

0

50

100

150

200

30 40 50 60

Calic

LjpegJPEG-LS

Computation time (in s) for (de)compression 
of 16 Mbyte on MR-images (166MHz 

PowerPC) 

size of the compressed file (in %)

compression
decompression

The achievable compression factor is small for lossless compression; this 
holds for most types of images;
Arithmetic coders perform better than Huffman coders

Advanced techniques for “general purpose” are also quite good but slower

Standard techniques; not 
specific for images

Sophisticated 
techniques; not 

specific for 
images

© W. Philips, Universiteit Gent, 1999-2006
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The compression factor depends strongly on the type of the image

Dependence on the type of the image

compressiefactor

© W. Philips, Universiteit Gent, 1999-2006
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Conclusions

Performance comparison:
•Sophisticated techniques (e.g. JPEG-LS en Calic) are better than 
simple ones (b.v. LJPG)

Influence of the type of the data
•The compression factor strongly depends on the type of the image
•Images with big spatial resolution can be compressed best 

Results
•Typical compression factor is 2 to 4 on medical and “pre-press”
images

•Arithmetic coders perform better than Huffman coders

Important principles
•pre-processing: linear and non-linear prediction
•context modeling
•Statistical coding techniques: Huffman codes and arithmetic codes

© W. Philips, Universiteit Gent, 1999-2006


