

Versie: 1/2/2007 © A. Pizurica, Universiteit Gent, 2006-2007 Gradient operators
The gradient of an image $f(x,y)$ at position (x,y) is defined as the vector $\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$
$\begin{bmatrix} Oy \end{bmatrix}$ At image edges the gray value $f(x,y)$ strongly varies as a function of x and/or $y \Rightarrow$ big partial derivatives \Rightarrow big gradient magnitude
$\ \nabla \mathbf{f}\ = \sqrt{G_x^2 + G_y^2}$ The direction of edge is perpendicular to the direction of the gradient vector
$\alpha(x, y) = \tan^{-1} \left(\frac{G_x}{G_y} \right)$ ^{09a.14}

versie: 1/2/2007 © A. Pizurica, Universiteit Gent, 2006-2007
Gradient operators
 The Prewitt and Sobel masks are among the most frequently used. Sobel is somewhat more complex but less sensitive to noise
•True gradient magnitude is isotropic. The Prewitt and Sobel outputs not.
•Sometimes masks that give highest response for diagonal edges are used: $\begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix} \begin{bmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$
 The exact expression for the gradient magnitude
$\ \nabla \mathbf{f}\ = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} = \sqrt{G_x^2 + G_y^2}$
is in practice often approximated by
$\left\ \nabla \mathbf{f}\right\ \approx G_x + G_x $
which is easier to implement and preserves relative changes in gray level $_{_{09a.16}}$

Watershed segmentation

09a.33

