

versie: 6/2/2007	© A. Pizurica, Universiteit Gent, 2006-2007						
Chain codes							
Sick regions (delineated by a doctor) $\int_{I}^{I} \int_{I}^{I} \int_{I}^$	 Advantage: a compressed contour representation Disadvantages: chain code depends on the starting point can be solved: treat the chain code as a circular sequence and redefining the starting point so that the resulting sequence of numbers is the smallest possible integer Operations such as scaling and rotation result in different contours that in practice cannot be normalized (due to a finite grid) and hence in different chain codes. this problem cannot be completely solved but its effect can be reduced by resampling to a coarser grid before chain coding and by a proper orientation of the resampling grid 						
	10.84						

Verse: 622007
Statistical texture descriptors...
One of the simplest approaches is using statistical moments of the gray
level histogram. Let z denote gray levels and
$$p(z_i)$$
, I=0, 1,...,L-1 the
corresponding histogram, where L is the number of distinct gray levels.
The *n*-th moment of *z* about the mean m is

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i) \qquad m = \sum_{i=0}^{L-1} z_i p(z_i)$$
Note $\mu_0 = 1$ and $\mu_1 = 0$.
The second moment (the variance $\mu_2(z) = \sigma^2(z)$) is often used in texture
description. The third moment $\mu_3(z)$ describes the skewness (asymmetry)
of the histogram and the fourth moment $\mu_4(z)$ its relative flatness. Other
useful texture descriptors based on the histogram include
• a measure of uniformity $U = \sum_{i=0}^{L-1} p^2(z_i)$
• average entropy $e = -\sum_{i=0}^{L-1} p(z_i) \log_2(z_i)$

versie: 6/2/2007 © A. Pizurica, Universiteit Gent, 2006-2007 Statistical texture descriptors						
Histogram based descriptors are limited in the sense that they cannot express information about relative positions of pixel values with respect to each other. One approach to solve this is to use a two-dimensional histogram called co-occurrence matrix.						
The co-occurrence matrix counts the number of grey value transitions in a given direction and at a given distance d						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	beccurrence matrix for =1, horizontal right $C = \begin{bmatrix} 4 & 3 & 1 \\ 4 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}$					
Some useful descriptors derived from the co-occurrence matrix						
Maximimum probability $\max_{i,j}(c_{i,j})$	uniformity $\sum_{i} \sum_{j} c_{i,j}^2$					
contrast $\sum_{i} \sum_{j} (i-j)c_{i,j}$	entropy $-\sum_{i}\sum_{j}c_{i,j}\log_2 c_{i,j}$					

Moments of a digital image

For digital images the moments are defined analogously to those of 2D continuous functions, but replacing the integrals by finite sums:

$$\mu_{p,q} = \sum_{x} \sum_{y} (x - \overline{x})^p (y - \overline{y})^q f(x, y)$$

with $\bar{x} = \frac{m_{1,0}}{m_{0,0}}$ and $\bar{y} = \frac{m_{0,1}}{m_{0,0}}$

The normalized central moments $\eta_{p,q}$ are defined as

$$\eta_{p,q} = \frac{\mu_{p,q}}{\mu_{0,0}^{\gamma}}$$

with

/ersie: 6/2/2007

$$\gamma = \frac{p+q}{2} + 1$$

Idea: define a measure not affected by translation and scaling

10.a29

© A. Pizurica, Universiteit Gent, 2006-2007

versie: 6/2/2007 © A. Pizurica, Universiteit Gent, 2006-2007							
	original	half size	mirrored	rotated 2°	rotated 45°		
				Here a	A A A A A A A A A A A A A A A A A A A		
$\phi_{\rm l}$	6.249	6.226	6.919	6.253	6.318		
ϕ_2	17.180	16.954	19.955	17.270	16.803		
ϕ_3	22.655	23.531	26.689	22.836	19.724		
ϕ_4	22.919	24.236	26.901	23.130	20.437		
© 2002 R. C. Gonzalez & R. E. Woods							
					10.a31		

