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Chain codes…

• Chain codes represent a boundary by a connected sequence of 
straight-line segments of specified length and direction.

• Typically this representation is based on a 4- or 8-connectivity
• The direction of each segment is coded by numbers and the resulting 

chain code is a sequence of numbers
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…Chain codes…

• Advantage: a compressed contour 
representation

• Disadvantages:
• chain code depends on the starting point

can be solved: treat the chain code as 
a circular sequence and redefining the 
starting point so that the resulting 
sequence of numbers is the smallest 
possible integer 

• Operations such as scaling and rotation 
result in different contours that in practice 
cannot be normalized (due to a finite grid) 
and hence in different chain codes. 

this problem cannot be completely 
solved but its effect can be reduced by 
resampling to a coarser grid before chain 
coding and by a proper orientation of the 
resampling grid

ultrasound image

Sick regions

( delineated by a doctor)

Can be interesting in 
cases where a number 
of contours need to be 
stored, like in medical 
follow-up examinations 
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…Chain codes

a digital contour 
with resampling 

grid 
superimposed

resampled

chain code for 
4-connectivity

chain code 
for 8-

connectivity
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Poligonal approximations…

• Digital boundaries carry information which may be superfluous for 
certain applications. 

• Boundary approximations can be sufficient in such cases.

• Linear piecewise (polygonal) approximations are the most frequently 
used ones

• These approximations produce a polygon which closely resembles 
original boundary line

• We will illustrate two examples of polygonal approximations called 
perimeter polygons and polygonal approximation by splitting
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Minimum perimeter polygons

One type of polygonal approximation is minimum perimeter polygons
Think of the object boundary rubber band and imagine it is allowed to 
shrink until it is tightened.
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Polygonal approximation by splitting…
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• The optimal piecewise linear approximation means estimating the 
polygon vertices in such a way that total error is minimized. This can 
be a non-trivial and computationally intensive optimization approach!

• l In practice splitting techniques, which are fast are often used

• Splitting techniques divide a curve segment recursively until each 
curve segment is approximated with a linear segment with acceptable 
error. Mean square error or maximal error is used as a criterion;

Furthest point from 
the segment
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… Polygonal approximation by splitting
A practical splitting procedure can be:
step 1 Look for the two points that are furthest apart (A and B) and 
join them by a line segment AB
step 2 Look for the boundary points that are furthest apart from AB in
both parts of the boundary  (C and D)
step 3 connect the points by line segments (AC, CB, BD, DA). For 
each segment check if the distance between its points and the 
corresponding points of the true boundary is smaller than a 
threshold. If yes, stop, otherwise subdivide the segment further.

A C

BD

A C

BD

A C

BD
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Signatures

A signature is a 1-D functional representation of a boundary.
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Skeletons

• A medial axis or skeleton representation is a popular tool in object 
recognition.

• Skeletons provide  a compact and often highly intuitive representation. 
• Shape skeletons have been used , e.g., in object recognition and

representation, industrial inspection (e.g., inspection of printed circuit 
board) and in  medical imaging.

• The skeleton of a region is often defined via the medial axis transformation 
(MAT).The MAT of a region R with border B is as follows: for each point p
of R, we find its closest neighbor in B. If  p has more then one such points, 
it is said to belong to the medial axis (skeleton) of R. 

Boundary descriptors
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Fourier descriptors (FDs)

t

z(t) = x(t)+jy(t)jy

x
FFT

magnitude 
spectrum

A closed curve can be described by the curve coordinates x(t), y(t). The 
waveformes x(t), y(t) are periodic with period 2π. The waveforms can be 
sampled and combined to produce a complex periodic waveform with
period N z(n)=x(n)+jy(n)     n=0,1,…,N-1

The Fourier transform coefficients of this signal are the  Fourier descriptors
of the curve  
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Matlab demo fd1
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Some properties of Fourier descriptors

Z(0) represents the center of gravity of the curve  

z(n) = x(n)+jy(n)jy

x FFT ∑
−

=






−=

1

0

2exp)()(
N

n N
nkjnzkZ π

|Z(k)|
k

Translation zt(n) = z(n)+z0 ,  z0= x0+jy0   affects only Z(0): Zt(0)=Z(0)+z0

Rotation zr(n) = z(n)ejθ phase shift of the coefficients  Zr(0)=Z(k) ejθ

Scaling zs(n) = az(n) scaling the coeffs. by same amount  Zs(0)=aZ(k) 

Change starting point zt(n) = z(n1-n0)  modulation Nknj
t ekZkZ 02)()( π−=

The coefficient magnitude |Z(k)| is rotation invariant and the magnitude 
of the N-1 coefficients |Z(k)| , k=1,…,N-1 is translation invariant as well. 
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for matching curves z1(t) and z2(t)

Matlab demo fd2
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Example: Shape reconstruction from FDs
Square: 84 points

first 2 FDs first 8 FDs first 16 FDs first 56 FDs

first 64 FDs first 72 FDs first 81 FDs all 84 FDs

0 50 100
0

50

100

150

200

250
Magnitude spectrum

Matlab demo fd3
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Statistical moments…

The shape of a boundary can now be described by simple moments such as 
mean, variance,… The n-th moment of v about its mean m is:

connect end points 
of the boundary 
segment and rotate
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Using only first few moments is usually sufficient to differentiate between 
(clearly distinct) different shapes

p(vi) is the probability of 
occurrence of value vi. These 
are estimated by the values of 
the normalized histogram 
(normalized = area under is 1)
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…Statistical moments
An alternative approach is to normalize (scale) the samples after rotation 
such that the total area equals 1 and to treat this as a histogram.  

Connect end points 
of the boundary 
segment and rotate

g(r)

r
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The moments are now defined as

with the mean 

Now K is the number of points on the boundary, and the n-th moment µn(r)
is directly related to the shape of g(r). The second moment measures the 
spread of the curve and the third moment measures its symmetry.
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Topological descriptors

One topological descriptor is Euler number E, defined in terms of the number 
of holes H and the number of the connected components C as: E=C-H

Topological properties are used for higher-level and global descriptions of 
regions in the image. An example of a topological property is the number 
of “holes” or the number of connected components in the region.

A region with two holes A region with three 
connected components

Euler number=0 Euler number=-1
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An example of an image representation

original 
image

Thresholded 
image

The largest 
connected 
component

skeleton

© 2002 R. C. Gonzalez & R. E. Woods

Texture representation
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Texture descriptors

smooth texture coarse texture regular texture

© 2002 R. C. Gonzalez & R. E. Woods
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Statistical texture descriptors…
One of the simplest approaches is using statistical moments of the gray 
level histogram. Let z denote gray levels and p(zi), I=0,1,…,L-1 the 
corresponding histogram, where L is the number of distinct gray levels. 
The n-th moment of z about the mean m is
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Note .01 10 == µµ and
The second moment (the variance  µ2(z)=σ2(z) ) is often used in texture 
description. The third moment µ3(z) describes the skewness (asymmetry) 
of the histogram and the fourth moment µ4(z) its relative flatness.  Other 
useful texture descriptors based on the histogram include

• a measure of uniformity

• average entropy
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… Statistical texture descriptors
Histogram based descriptors are limited in the sense that they cannot 
express information about relative positions of pixel values with respect 
to each other. One approach to solve this is to use a two-dimensional 
histogram called co-occurrence matrix. 

The co-occurrence matrix counts the number of grey value transitions in 
a given direction and at a given distance d

0  0  0  1  2
1  1  0  1  1
2  2  1  0  0
1  1  0  2  0
0  0  1  0  1

Example:
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Co-occurrence matrix for 
d=1, horizontal right

Some useful descriptors derived from the co-occurrence matrix

Maximimum probability 
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Spectral texture descriptors…
Spectral approaches are powerful for describing periodic 2D patterns

Periodic components can be removed by filtering the spectrum, leaving 
non-periodic elements, which can be described by by statistical techniques.

Prominent peaks of the Fourier spectrum indicate the principal direction of 
the texture patterns and their fundamental spatial period

non-periodic 
texture

periodic 
texture

magnitude 
spectrum (log)

magnitude 
spectrum (log)

thresholded 
mag. spectrum

thresholded 
mag. spectrum
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…Spectral texture descriptors
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Moments of 2D functions
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Use of moments 

•Suppose the following problem: we have a 
prototype of a scene (or an object, face,…) 
that we want recognize in various parts of 
an image sequence. 

•This object or a scene can be in general 
deformed and rotated and scaled in various 
parts of the image sequence. 

• In order to match this object with the 
prototype we need to extract certain 
features that are invariant under certain 
types of degradations and geometric 
transformations.

•Moments offer features that are robust and 
invariant under transformations such as 
translation, rotation, scaling and mirroring.

10.a28

versie: 6/2/2007 © A. Pizurica, Universiteit Gent, 2006-2007

Moments of 2D functions

For a 2D continuous function f(x,y) the moment of order (p+q) is
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Under certain conditions that are fulfilled by most of the 2-D functions of 
practical interest, the sequence of all moments {mp,q} of a function f(x,y)
is uniquely determined by f (x,y) and the sequence {mp,q} uniquely 
determines f(x,y)

The central moments are defined as
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The central moments describe the shape independent of translation
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Moments of a digital image
For digital images the moments are defined analogously to those of 2D 
continuous functions, but replacing the integrals by finite sums:
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Idea: define a measure not affected by translation and scaling
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Invariant moments for shape recognition
Seven invariant moments can be derived from the 2nd and 3rd normalized 
central moments and are invariant to translation, rotation and scaling
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The first four of these invariant moments are

The expressions for φ5, φ6 and φ7 are much longer (see, e.g., the book of 
Gonzales&Woods)
These invariant moments are useful when we need to recognize an object 
or a scene fragment that can be rotated, scaled or translated w.r.t. the 
prototype.
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Invariant moments: Example

original half size mirrored rotated 2o rotated 45o

1φ 6.249 6.226 6.919 6.253 6.318

2φ 17.180 16.954 19.955 17.270 16.803

3φ 22.655 23.531 26.689 22.836 19.724

4φ 22.919 24.236 26.901 23.130 20.437
© 2002 R. C. Gonzalez & R. E. Woods
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Principal component analysis
Principal components analysis (PCA) is a technique for reducing the 
dimensionality of a multidimensional dataset. 

For example, suppose a set of 1000 hyperspectral images. These 
images look similar but differ from each other at some positions (i.e., 
some of the interesting details appear in different image at different 
places) Since the images are highly correlated we do not wish to spend 
time analyzing them all but rather rearranging the information into much 
fewer components that contain the interesting information. 

PCA is an orthogonal linear transformation that transforms the data to a 
new coordinate system such that the greatest variance by any 
projection of the data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the second
coordinate, and so on. 

PCA is often called Hotteling transform or discrete Karhunen-Loève
(KLT) transform
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Calculating PCA

Step 3: Form matrix A such that rows of this matrix are eigen vectors of Cx
sorted such that the first row of A is the eigen vector corresponding to the 
largest eigen value and the last row of A is the eigen vector corresponding 
to the smallest eigen value

Step 4: Transform the data as )mA(xy x−=
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Step 2: Find eigen vectors of xC (vectors e for which eeCx λ=
where λ is a scalar, called eigen value) 

Note: the covariance matrix of y is diagonal 
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Principal component analysis: Example
input images resulting PCA componets

PC1 PC2

PC3 PC4

PC5 PC6

© 2002 R. C. Gonzalez & R. E. Woods


