
Software	documentation	for			
Context-Aware	MRF-based	Image	Inpainting		

	

Mihailo	Drljača		
	

	

SUMMER	INTERNSHIP		

July-August	2016	

COURSE:	COMPUTER	GRAPHICS		

	

Optimizing	the	image	inpainting	code	of	the	method	reported	in	

T.	Ružic	and	A.	Pižurica,	“Context-aware	patch-based	image	inpainting	using	Markov	random	
field	modeling,”	IEEE	Transactions	on	Image	Processing,	vol.	24,	no.	1,	pp.	444-456,	Jan	2015.	

	

	

	
	
	
	

Promoter:	Prof.	Dr.	Ir.	Aleksandra	Pižurica	
Department	of	Telecommunication	and	Information	Processing	

Ghent	University	

1. INTODUCTION

Image inpainting is an image processing task of filling in the missing region in an image in a
visually plausible way. Numerous applications include image restauration, photo editing, and error
concealment in image coding and transmission. Here we document the code of the context-aware
patch-based image inpainting method using Markov Random Field (MRF) modelling, developed
by Tijana Ružić and Aleksandra Pižurica. The main idea of this method is to employ contextual
(textural) descriptors to guide and improve the inpainting process. Two main components are:

• Context-aware selection strategy for candidate patches

• A globally optimal solution to the puzzle problem using an MRF prior model

Context-aware patch selection strategy is not limited to global inpainting. It aims at improving and
accelerating the search for candidate patches in patch-based methods in general.

In this particular realization of the method normalized texton histograms computed from Gabor
filter responses are used as contextual descriptors. In general any other contextual descriptors can
be used.

There are two strategies for dividing an image into regions based on the context:

• Division into fixed-size square non-overlapping blocks

• Division into blocks of adaptive size

In this particular realization of the inpaintig method division into blocks of adaptive size is used.

Interface method for global MRF-based inpainting uses novel optimization approach that makes it
suitable in case of a large number of labels.

The original code was written in Matlab by T. Ružić.

This document describes an optimized version of the program. The main program file and every
function that is called from it contains an explanation that can be read by using the help function
in Matlab. The script version of the main program file is: content_aware_mrf_inpainting and its
version written as a function is: content_aware_mrf_inpainting_func.

	 	

2. SCRIPT VERSION

The function version of the main program is described at the end of this document. Here we give
the script version that calls all other functions. The structure of the program is given below:

1. content_aware_mrf_inpainting

1.1. textonGenerateContrastNorm

1.1.1. createGabor

1.2. decomposition_adaptive_blocksize

1.2.1. splitVertically

1.2.2. splitHorizontally

1.2.3. chiTestTexton

1.3. textonHistBlock

1.4. gist_matches_all_adaptive_blocksize_weighted

1.4.1. find_neighbours_adaptive

1.5. find_label_pos_per_adaptive_blocksize

1.6. comp_data_gist_ver4_adaptive_scaled_weighted

1.6.1. compdata.c

1.7. label_extraction_gist_weighted

1.7.1. find_first

1.7.2. label_pruning_art_fast

1.7.3. find_neighbours

1.7.4. calculate_weighted_dif_fast1

1.7.4.1. overlap_region

1.7.4.2. calculatediffhelper.c

1.7.5. upade_priority_scaled

	

1.8. compute_pot_art

1.8.1. find_neighbours

1.8.2. comp_matrix_pot_art

1.8.2.1. overlap_region

1.8.2.2. calculatepotentionalhelper.c

1.9. compute_cost_art

1.9.1. getpatch

1.9.2. ssd3

1.10. NCMP

1.10.1. find_neighbours

1.10.2. normalise_new_inf

1.11. output_art_mincut

1.11.1. binomialFilter

1.11.2. getpatch

1.11.3. dpmain

1.11.3.1. dp1

1.11.3.2. dp2

1.11.3.3. randmin

1.11.4. dp

1.11.5. rconv2

1.12. show_order

The script file is called content_aware_mrf_inpainting. Using the help function, one gets the
following explanation about this file:

	

Picture 2.1. Matlab command window

Before creating contextual descriptors, the input image and the mask (indicating the missing
region) have to be loaded. The user is prompt to insert a path to the mask and the image. Then the
user has to insert the image name and the file extension. Matlab function input is being used to
prompt the user. Functions imread and im2double are used to load the image and the mask. After
that the mask and the image are displayed. (Picture 2.4)

Picture 2.2. Part of the code that is responsible for loading image and mask

	

Picture 2.3. User interface – Matlab command window

Picture 2.4. Plotted image and mask

The next step is to define the minimum block size of the image. The default parameter is f = 8.
User is prompt to decide weather to use default value or not. The length and the width are
divided by f and stored as bsmin parameter. The source and fill regions are plotted. (Picture 2.6)

Picture 2.5. Part of the code that is responsible for defining minimum block size

Picture 2.6. Plotted source and fill region

For the context-aware patch inpainting algorithm, the following parameters have to be loaded.

• nTex – number od textons

• orientationsPerScale - number of orientations over 3 scales

• Ts - block similarity threshold used while decomposing image

• Tb - block similarity threshold while context aware patch selection is being performed

• nGistMatches - max number of blocks from where the patches are considerd

Once again, the user can choose between the default and personalized values.

Picture 2.7. Parameters displayed in Matlab command widow

	

After loading of the parameters, contextual descriptors are being calculated. The function that is
responsible for this part of the method is textonGenerateContrastNorm. Further explanation
about this function is given in the Matlab help selection. (Picture 2.8)

Picture 2.8. Matlab command window

The next step is to divide the image into blocks of adaptive size. The function that is responsible
for this division is decomposition_adaptive_blocksize. (Picture 2.9)

Picture 2.9. Matlab command window

After the decomposition, the processed image is displayed. (Picture 2.10)

Picture 2.10. Decomposed image

The part of the code that is responsible for the previously described process is shown below.

Picture 2.11. Part of the code responsible for creating contextual descriptors and
dividing image into blocks of adaptive size

Next, the positions of the blocks that are contextually similar to the surrounding of the target
patch need to be identified. Functions that are employed in this section are textonHistBlock and
gist_matches_all_adaptive_blocksize_weighted.

Picture 2.12. Matlab command window

Picture 2.13. Part of the code responsible for finding positions of the blocks that are
contextually similar

	

To enable the MRF-based inpainting, the following parameters have to be loaded.

• L – number of labels kept after pruning

• ITER- number of iterations

• gap - determines the patch size as 2gap+1

Here again the user can choose between the default and personalized values.

Picture 2.14. Parameters displayed in Matlab command widow

The part of the code that is responsible for patch-based inpainting process emloys a memory
efficient optimization method. This method consists of three steps. Initialization, label pruning
and inference.

The function responsible for the initialization is
comp_data_gist_ver4_adaptive_scaled_weighted. Before executing initialization, it is
necessary to find the positions all the involved labels, which is done with the function called
find_label_pos_per_adaptive_block_overlap.

Picture 2.15. Part of the code responsible for initialization of energy efficient
optimization

	

Picture 2.16. Matlab commad prompt window

The second, step label pruning, is realized with label_extraction_gist_weighted.

Picture 2.17. Part of the code responsible for label pruning

Picture 2.18. Matlab command prompt

The third and last the step in the energy optimization is neighbor consensus message passing. The
function is called NCMP. Before calling NCMP, label cost and pairwise potential have to be
calculated. The function that calculates the label cost is called compute_cost_art. Inside
compute_cost_art there is ssd3 function that calculates common sum of squared differences.
Pairwise potential is calculated with compute_pot_art function.

Picture 2.19. Matlab commad prompt

	

Picture 2.20. Matlab commad prompt

Picture 2.21. Part of the code responsible for the final step of the energy optimization

After the missing region is filled in with patches of the original image, the function
output_art_mincut, the name and the path for storing the inpaited image and the image
representing the filling order need to be given.

Picture 2.22. Part of the code responsible for storing the inpainted image

After the inpaintig process is finished, the original image, the inpainted image and the filling-
order image are displayed.

Picture 2.23. Original image, inpainted image and filling order image

	

3. FUNCTION VERSION

In the function called content_aware_mrf_inpainting_func, all the parametars that were
prompted from the user in the script file are now requested as parameters of the function. The
function returns the inpainted image and the filling order image.

Picture 2.24. Function content_aware_mrf_inpainting_func

Picture 2.25. Parametars of the function

Based on the following paper:

T. Ružic and A. Pižurica, “Context-aware patch-based image inpainting using Markov random
field modeling,” IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 444-456, Jan 2015.

