Software documentation for

Context-Aware MRF-based Image Inpainting

Mihailo Drljaca

SUMMER INTERNSHIP
July-August 2016
COURSE: COMPUTER GRAPHICS

Optimizing the image inpainting code of the method reported in

T. Ruzic and A. PiZurica, “Context-aware patch-based image inpainting using Markov random
field modeling,” IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 444-456, Jan 2015.

N

GHENT
UNIVERSITY

Promoter: Prof. Dr. Ir. Aleksandra PiZurica
Department of Telecommunication and Information Processing
Ghent University

1. INTODUCTION

Image inpainting is an image processing task of filling in the missing region in an image in a
visually plausible way. Numerous applications include image restauration, photo editing, and error
concealment in image coding and transmission. Here we document the code of the context-aware
patch-based image inpainting method using Markov Random Field (MRF) modelling, developed
by Tijana Ruzi¢ and Aleksandra Pizurica. The main idea of this method is to employ contextual
(textural) descriptors to guide and improve the inpainting process. Two main components are:

e Context-aware selection strategy for candidate patches
e A globally optimal solution to the puzzle problem using an MRF prior model

Context-aware patch selection strategy is not limited to global inpainting. It aims at improving and
accelerating the search for candidate patches in patch-based methods in general.

In this particular realization of the method normalized texton histograms computed from Gabor
filter responses are used as contextual descriptors. In general any other contextual descriptors can
be used.

There are two strategies for dividing an image into regions based on the context:
¢ Division into fixed-size square non-overlapping blocks
¢ Division into blocks of adaptive size
In this particular realization of the inpaintig method division into blocks of adaptive size is used.

Interface method for global MRF-based inpainting uses novel optimization approach that makes it
suitable in case of a large number of labels.

The original code was written in Matlab by T. Ruzi¢.

This document describes an optimized version of the program. The main program file and every
function that is called from it contains an explanation that can be read by using the help function
in Matlab. The script version of the main program file is: content_aware_mrf_inpainting and its
version written as a function is: content_aware_mrf_inpainting_func.

2. SCRIPT VERSION

The function version of the main program is described at the end of this document. Here we give
the script version that calls all other functions. The structure of the program is given below:

1. content_aware_mrf inpainting
1.1. textonGenerateContrastNorm
1.1.1. createGabor
1.2. decomposition_adaptive_blocksize
1.2.1. splitVertically
1.2.2. splitHorizontally
1.2.3. chiTestTexton
1.3. textonHistBlock
1.4. gist_matches_all_adaptive_blocksize_weighted
1.4.1. find_neighbours_adaptive
1.5. find_label pos per_adaptive blocksize
1.6. comp_data_gist ver4 adaptive scaled weighted
1.6.1. compdata.c
1.7. label_extraction_gist_weighted
1.7.1. find_first
1.7.2. label_pruning_art_fast
1.7.3. find_neighbours
1.7.4. calculate_weighted_dif fastl
1.7.4.1. overlap_region
1.7.4.2. calculatediffhelper.c

1.7.5. upade_priority_scaled

1.8. compute_pot_art
1.8.1. find_neighbours
1.8.2. comp_matrix_pot_art
1.8.2.1. overlap_region
1.8.2.2. calculatepotentionalhelper.c
1.9. compute_cost_art
1.9.1. getpatch
1.9.2. ssd3
1.10. NCMP
1.10.1. find_neighbours
1.10.2. normalise_new_inf
1.11. output_art_mincut
1.11.1. binomialFilter
1.11.2. getpatch
1.11.3. dpmain
1.11.3.1. dpl
1.11.3.2. dp2
1.11.3.3. randmin
1.11.4. dp
1.11.5. rconv2

1.12. show_order

The script file is called content_aware_mrf_inpainting. Using the help function, one gets the
following explanation about this file:

>> help content_aware mrf inpainting
ADDME: context-aware global MRF-based inpaintig method
Image inpainting is an image processing task of filling in the missing
Region in an image in a visually plausible way. First the user is asked to
Load an image, which is going to be inpainted and the mask of the image.
Next step is to employ contextual (textural) descriptors to guide and improve
The inpainting process. Contextual descriptors are normalized texton histograms
Computed from Gabor filter responses. Image is divided into regions based on
The context into blocks of adaptive size. This strategy is called top-down
Splitting procedure, which is based on contextual descriptors. Inpainting is
MRF-based.

Based on the following paper:
Context-aware patch-based image inpainting using Markov random field
Modeling by Tijana Ruzic and Aleksandra Pizurica Member, IEEE

Code written by PhD Tijana Ruzic
Code optimized and made more user-friendly by student Mihailo Drljaca

Picture 2.1. Matlab command window

Before creating contextual descriptors, the input image and the mask (indicating the missing
region) have to be loaded. The user is prompt to insert a path to the mask and the image. Then the
user has to insert the image name and the file extension. Matlab function input is being used to
prompt the user. Functions imread and im2double are used to load the image and the mask. After
that the mask and the image are displayed. (Picture 2.4)

$ADDIND PATH TO THE FOLDER WITH IMAGES
img _path = input('Enter the path of the image: ','s');
addpath (img_path);

$LOADING IMAGE THAT IS GOING TO BE INPAINTED
img = input ('Enter the name of the picture with the extention: ','s'):;
fillRegion = input ('Enter the name of the mask with the extention: ','s'):

img = im2double (imread (img)):
fillRegion = im2double (imread(fillRegion)):

figure(1):

subplot(1,2,1);

imshow (img) ;
title('Original image'):
subplot(1,2,2);

imshow (fillRegion);
title('Mask of the image'):;

Picture 2.2. Part of the code that is responsible for loading image and mask

>> content_aware mrf inpainting

Enter the path of the image: c:/Users/Mihailo/Desktop/praksa/slike mail
Enter the name of the picture with the extention: skiresort.ppm

Enter the name of the mask with the extention: skiresortMask.pgm

Picture 2.3. User interface — Matlab command window
4 Figure 1 — O X
File Edit View Inset Tools Desktop Window Help N

Ddde | M| AKODEL- S| 0E ad

Original image

Mask of the image

Picture 2 4. Plotted image and mask

The next step is to define the minimum block size of the image. The default parameter is f= 8.
User is prompt to decide weather to use default value or not. The length and the width are
divided by fand stored as bsmin parameter. The source and fill regions are plotted. (Picture 2.6)

$DEFINING MINIMUM IMAGE BLOCK
yes_no = 0;
while (yes_no == 0)
ves _no = input ('Use default min block size i.e. £ = 8: ¥Y/N ','s");
if(yves_no == 'y Il ves_ no == 'Y'")
£f=28;
elseif(yes no == 'n' || yes_no == 'N')
f = input('Enter the max number of blocks along one side of the image)
else

yes no = 0;
end
end

bsmin = floor(size (fillRegion)./f):;
bsmin = [bsmin(l) bsmin(2)]:

img = img(l:bsmin(l)*f,l:bsmin(2)*f,:);

fillRegion = fillRegion(l:bsmin(1l)*f,1:bsmin(2)*£f);
sourceRegion = 1-fillRegion;

Picture 2.5. Part of the code that is responsible for defining minimum block size

4 Figure2 - O X

File Edit View Insert Tools Desktop Window Help N

DEES | RAOVDEL- S| 0E | e

Fill Region Source Region

Picture 2.6. Plotted source and fill region

For the context-aware patch inpainting algorithm, the following parameters have to be loaded.

nTex — number od textons

orientationsPerScale - number of orientations over 3 scales

Ts - block similarity threshold used while decomposing image

Tb - block similarity threshold while context aware patch selection is being performed

nGistMatches - max number of blocks from where the patches are considerd

Once again, the user can choose between the default and personalized values.

Use default min block size i.e. £ = 8: Y/N y
Default parametars are:

nTex = 18
orientationsPerScale = [6 & 6]
Ts = 0.15

Tb = 0.15

nGistMatches = 10

Use default parametars: Y/N|

Picture 2.7. Parameters displayed in Matlab command widow

After loading of the parameters, contextual descriptors are being calculated. The function that is
responsible for this part of the method is textonGenerateContrastNorm. Further explanation
about this function is given in the Matlab help selection. (Picture 2.8)

>> help textonGenerateContrastNorm
ADDME: creating contextual descriptors
Contextual descriptors characterize spatial content and texture within
blocks. Texture is extracted using multi-channel filtering. Contextual
descriptors are implemented as texton histograms.

Picture 2.8. Matlab command window

The next step is to divide the image into blocks of adaptive size. The function that is responsible
for this division is decomposition_adaptive_blocksize. (Picture 2.9)

>> help decomposition adaptive blocksize
ADDME: top-down splitting procedure
Divides an image into blocks of adaptive size depending on the 'homogeneity'
of their texture. Directional flag is assigned to each block. This flag
determines the direction along witch the evaluation of the blocks
homogeneity will have the priority. Splitting along one side of the block
is constraind by block similarity threshold.

Picture 2.9. Matlab command window

After the decomposition, the processed image is displayed. (Picture 2.10)

4] Figure 3 - [m] X
File Edit View |Insert Tools Desktop Window Help k]
DA M RROUDEL-|S|0B|nDd

Decomposed image into blocks of adaptive size...

Picture 2.10. Decomposed image

The part of the code that is responsible for the previously described process is shown below.

$CALCULATING CONTEXTUAL DESCRIPTORS
disp('Contextual descriptors are being calculated i.e. mapTextons...'):
[mapTextons, C, gfull] = textonGenerateContrastNorm ...

(img, fillRegion,nTex,orientationsPerScale);

o]

$DIVISON INTO BLOCKS OF ADAPTIVE SIZ

disp('Image is being decomposed into blocks of adaptive size...'):
[211Blocksl,backupBlockPos,blocks] = decomposition adaptive blocksize...

(img, fillRegion,mapTextons,nTex,bsmin,Ts,r);

figure(3):
imshow (blocks) ;
title('Decomposed image into blocks of adaptive size...'):

Picture 2.11. Part of the code responsible for creating contextual descriptors and
dividing image into blocks of adaptive size

Next, the positions of the blocks that are contextually similar to the surrounding of the target
patch need to be identified. Functions that are employed in this section are textonHistBlock and
gist_matches_all_adaptive_blocksize_weighted.

>> help gist matches all adaptive blocksize weighted
ADDME: context—-aware patch selection
Fiding positions of the blocks that are contextually similar. Block is
considerd to be similar to it self only if the block is reliable.
Reliabkle block is block with more than half known pixels. If the block is
unreliable similar blocks will be found based on the neighbouring blocks

of the unreliable block.
Picture 2.12. Matlab command window

$COMPUTING HISTOGRAM FOR INE TEXTURE FEATURE FOR EACH BLOCK
disp('computing histogram for one texture feature for each block...'):
gstartTexton = textonHistBlock (mapTextons, ~fillRegion, allBlocksl, nTex):

$CALCULATING GIST MATCHES ONLY FOR BLOCKS THAT INTERSECT THE TARGET REGION
disp('Calculate gist matches only for blocks that intersect the target region'):
[gmatchesTexton,nbrsTexton, gerrorsTexton] = gist_matches_all adaptive_blocksize weighted ...

(gstartTexton, ~fillRegion, allBlocksl, nGistMatches, Tb):;

Picture 2.13. Part of the code responsible for finding positions of the blocks that are
contextually similar

To enable the MRF-based inpainting, the following parameters have to be loaded.
e L —number of labels kept after pruning
e ITER- number of iterations
e gap - determines the patch size as 2gap+1

Here again the user can choose between the default and personalized values.

Default parametars are:
L =10

ITER = 10

gap = 6

Picture 2.14. Parameters displayed in Matlab command widow

The part of the code that is responsible for patch-based inpainting process emloys a memory
efficient optimization method. This method consists of three steps. Initialization, label pruning
and inference.

The function responsible for the initialization is
comp_data_gist verd adaptive scaled_ weighted. Before executing initialization, it is
necessary to find the positions all the involved labels, which is done with the function called
find_label_pos_per_adaptive block_overlap.

disp('Finding label position..."'):;

tic:

labBlock = find label pos per adaptive block overlap (sourceRegion, gap, allBlocksl);
T2 = toc;

$EFFICIENT ENERGY OPTIMIZATION STEP 1

$ASSIGNING PRICRITIES TO MRF NODES

disp('Efficient energy optimization step 1(initialization)...');
tic:

[coordy, coordx, priority, labels, diff, diff ssd, nrLabelsPerBlock, nodeDblock] = ...
comp_data_gist_ver4 adaptive scaled weighted(img, sourceRegion, labBlock,
gmatchesTexton, Tuncertain, Tb, gap, allBlocksl, gerrorsTexton):;

I3 = toc;

Picture 2.15. Part of the code responsible for initialization of energy efficient
optimization

>> help comp data gist ver4 adaptive scaled weighted
ADDME: Efficient energy minimization stepl (INITIALIZATION)
Assiging priorities to MRF nodes which determine theid wvisiting order in
the next phase (label pruning)

Picture 2.16. Matlab commad prompt window

The second, step label pruning, is realized with label_extraction_gist weighted.

$EFFICIENT ENERGY OPTIMIZATION STEP 2

$LABEL PRUNING

disp('Efficient energy optimization step 2(label pruning)...'):
tic;

[labelsNew, order, priorityNew] = label extraction gist_ weighted

(img, sourceRegion, coordy, coordx, priority, diff, diff ssd, labels,
nrlLabelsPerBlock, nodeDblock, L, Tsim, Tuncertain, gap):
T4 = toc;

Picture 2.17. Part of the code responsible for label pruning

>> help label extraction gist_weighted
ADDME: Efficient energy optimization stepZ (LABEL PRUNING)
After computing the label-pruning distance measure for each node, nodes
are visited in the order of their priority keeping L labels with the
smallest distance measure and discarding the rest. For interior nodes,
(label cost is 0) only available information is the one coming from
the neighbors. Each nod is visited only once during label pruning. Once
chosen set of labels per node remains fixed throughout the rest of the
energy optimization algorithm.

Picture 2.18. Matlab command prompt

The third and last the step in the energy optimization is neighbor consensus message passing. The
function is called NCMP. Before calling NCMP, label cost and pairwise potential have to be
calculated. The function that calculates the label cost is called compute cost art. Inside
compute_cost_art there is ssd3 function that calculates common sum of squared differences.
Pairwise potential is calculated with compute pot_art function.

>> help compute_pot_art
ADDME: pairwise potential
Pairwise potential Vijk(xj,xk) is similarly as label cost defined as the
55D between labels centered at xXxj and xk in their nodes' overlap region.
Check the function compute_cost_art for more detail

Picture 2.19. Matlab commad prompt

>> help compute_cost_art
ADDME: label cost
Label cost Vi(xi) measures the agreement of a node with its labels. Common sum of
squared differences (55D) is used as a distance measure between the values
of the known pixels in the WxXW neighborhood of the node i and the
corresponding pixel values of the label at xi. If the WxXW neighborhood
of a node is completely inside target region the label cost is zero.

Picture 2.20. Matlab commad prompt
$COMPUTING PAIRWISE POTENTIAL MATRIX Vik(xj,xk)
disp('Computing the pairwise potential matrix Vik(xj,xk)...'):
tic;

pot = compute_pot_art(img, coordy, coordx, labelsNew, gap):

$COMPUTING LABEL COST Vi (x1i)

disp('Computing the label cost Vi(xi)...'):

cost = compute_cost_art(img, sourceRegion, coordy, coordx, labelsNew, gap):
loc = exp(-cost):;

[max value, InitMask] = max(loc,[],2):

$EFFICIENT ENERGY OPTIMIZATION STEP 3
$NEIGBOURHOOD-CONSENSUS MESSAGE PASSING (NCPM)
disp('Efficient energy optimization step 3 (neighbourhood-consensus message passing)...')s

[be fs, OutMask, = NCMP (loc, pot, InitMask, coordx, coordy, gap, ITER):;
IS = toc;
Picture 2.21. Part of the code responsible for the final step of the energy optimization

After the missing region is filled in with patches of the original image, the function
output_art_mincut, the name and the path for storing the inpaited image and the image
representing the filling order need to be given.

$PROCESS ORIGINAL MISSING REGION FILLED WITH PATCHES
disp('Processing original missing region filled with patches...'):
targetl = output_art_mincut (CutMask, labelsNew, order, coordy, coordx, img, sourceRegion, gap):

$GIVING THE NAME TO THE INPAINTED IMAGE

img out_path = input('Enter the path of the out image: ','s');
addpath (img_out_path);

img_out_path = strcat(img_out_path,'/'):

nameout = input('Enter the name of the inpainted image with the extention: |','s'):;
nameout = strcat(img_out_path,nameout);
imwrite (targetl,nameout, 'bmp');

orderImg = show_order (img, sourceRegion,order, coordx,coordy,gap):

nameoutl = input('Enter the name of the fillin : ','s');
nameoutl = strcat(img out_path,nameoutl);

I
[
(=]

kel
I
ct
]
5]
ct
m
H
ct
o
1
]
W
=]
m
)
Hh
ct
o
1
Hh
it

s

s

"

1
Q
o]
H
e}
m
H
"
=}
W
Q
m
=
e
ct
o
ct
o
1
m

»

ct

m

S|

ct

|5

)

5]

imwrite (uint8 (orderImg) ,nameoutl, 'bmp');

Picture 2.22. Part of the code responsible for storing the inpainted image

After the inpaintig process is finished, the original image, the inpainted image and the filling-
order image are displayed.

{4 Figure 4 - O
File Edit View Insert Tools Desktop Window Help

DEEL (R RROOEL-B[0E (=D

Original image Inpainted image

Filling order

Picture 2.23. Original image, inpainted image and filling order image

3. FUNCTION VERSION

In the function called content_aware_mrf_inpainting_func, all the parametars that were
prompted from the user in the script file are now requested as parameters of the function. The
function returns the inpainted image and the filling order image.

function [path out img, path out fill] = content_aware mrf inpainting funcl
(inpaintImg, inpaintMask, param f,number of textons, orientations_per scale,
threshold sim, constraind source_region, number of labels, number of iterations,
patch_size)

Picture 2.24. Function content_aware_mrf inpainting func

inpaintImg - name of original image

enter as string inside '' with extention
inpaintMask - name of the mask

enter as strig inside '' with extention
param f - defining min image block
number of textons - nuber of textons
orientations_per scale - number of orientations over 3 scales

enter inside []
threshold sim - if orientations per scale is:

[6 6 6] recommended value is 0.15
[8 8 8] recommended wvalue is 0.2

constraind source_region - max number of blocks from where the patches are considerd
recommended value is 10

number of labels - number of labels kept after pruning
recommended value is 10

number of iterations - recommended wvalue is 10

patch_size — defined as gap = 2*gap+1l

recommended value is 6

Picture 2.25. Parametars of the function

Based on the following paper:

T. Ruzic and A. Pizurica, “Context-aware patch-based image inpainting using Markov random
field modeling,” IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 444-456, Jan 2015.

