
FPGA design and implementation of a

wavelet-domain video denoising system

Mihajlo Katona1, Aleksandra Pižurica2,
Nikola Teslić1, Vladimir Kovačević1, and Wilfried Philips2

1 University of Novi Sad, Chair for Computer Engineering,
Fruškogorska 11, 21000 Novi Sad, Serbia and Montenegro

mihajlo.katona@krt.neobee.net
2 Ghent University, Dept. Telecommunications and Information Processing,

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
Aleksandra.Pizurica@telin.UGent.be

Abstract. Multiresolution video denoising is becoming an increasingly
popular research topic over recent years. Although several wavelet based
algorithms reportedly outperform classical single-resolution approaches,
their concepts are often considered as prohibitive for real-time process-
ing. Little research has been done so far towards hardware customiza-
tion of wavelet domain video denoising. A number of recent works have
addressed the implementation of critically sampled orthogonal wavelet
transforms and the related image compression schemes in Field Pro-
grammable Gate Arrays (FPGA). However, the existing literature on
FPGA implementations of overcomplete (non-decimated) wavelet trans-
forms and on manipulations of the wavelet coefficients that are more
complex than thresholding is very limited.
In this paper we develop FPGA implementation of an advanced wavelet
domain noise filtering algorithm, which uses a non-decimated wavelet
transform and spatially adaptive Bayesian wavelet shrinkage. The stan-
dard composite television video stream is digitalized and used as source
for real-time video sequences. The results demonstrate the effectiveness
of the developed scheme for real time video processing.

1 INTRODUCTION

Recently, several promising multiresolution (wavelet domain) video noise filters
have been proposed. These can be categorized in non-separable spatio-temporal
approaches utilizing a three-dimensional (3-D) wavelet representation [1], [2] and
separable approaches that combine 1-D temporal filtering and 2-D spatial de-
noising in the wavelet domain [3,4]. Although these wavelet domain video filters
were reported to outperform the more classical, single-resolution techniques,
little research has been done so far towards their customization for hardware
implementations and consequently, they are often considered as prohibitive for
real-time applications.

Modern hardware solutions for digital signal processing algorithms increas-
ingly employ Field Programmable Gate Arrays (FPGA). FPGAs accelerate the

execution of algorithms and offer a tremendous potential to improve perfor-
mance through parallelization. While FPGA design of the orthogonal wavelet
transform and related image compression tools (JPEG2000) has been well stud-
ied [5–7], only a few publications address FPGA design of other types of wavelet
transforms or wavelet coefficient manipulations other than simple thresholding.

In this paper we efficiently customize one of the latest wavelet domain denois-
ing filters [8] and implement it in FPGA’s for real-time video denoising. Some
additional details of the developed architecture can be found in [9], where we
described the preliminary results of this research.

This paper is organized as follows. In Section 2 we describe the implemented
algorithm and present its customization for real-time implementation. The real-
time environment that is used in this study is described in Section 3. The con-
clusions are in Section 4.

2 DEVELOPED FPGA DESIGN

Fig. 1 depicts the implemented video denoising scheme, which consists of the
non-decimated 2-D wavelet transform, Bayesian wavelet shrinkage followed by
the inverse wavelet transform and selective recursive temporal filtering.

2-D wavelet
transform

Denoising by
wavelet

shrinkage

inverse
2-D wavelet
transform

Pixel based
motion detector

Selective
recursive filter

Fig. 1. The implemented denoising scheme.

An important issue is whether to implement the floating-point arithmetic in
FPGA and to use the original algorithm arithmetic or to convert the algorithm
to the integer/fixed-point arithmetic. We use the fixed-point arithmetic which is
less complex for a hardware implementation.

2.1 Non-decimated wavelet transform in FPGA’s

While the implementations of the orthogonal wavelet transform have been ex-
tensively studied in literature [5–7] much less research has been done towards
hardware implementations of the non-decimated wavelet transform. We design
an FPGA implementation of the non-decimated wavelet transform using the
algorithm à trous as it is described by Mallat and Zhong [10]. This algorithm
replaces sub-sampling of the filtered signal by up-sampling the filters, where 2j−1

zeros (“holes”, i.e., trous in French) are inserted between the filter coefficients
at the decomposition level j.

We use the SystemC library [11] and a previously developed simulation envi-
ronment [12,13] to develop a real-time model of the wavelet decomposition and
composition [9]. The input value is 8 bit integer. We use the 16 bit arithmetic
for wavelet decomposition and composition. The input 8 bits are placed at bit
positions from 14 to 7. The output bits occupy the same positions (see Fig. 2).

0 00 0 0 0 0 0INPUT

0 XX X X X X XOUTPUT

F E D C B A 9 8 7 F 5 4 3 2 1 0

Fig. 2. Input/Output data format.

Our extensive simulations and tests demonstrate that this implementation
results in a perfect reconstruction and gives practically the same results as a
referent MATLAB code of the algorithm à trous [10]. At a number of input
frames there were more than 97.13% errorless pixels with mean error of 0.0287.
Analysis of those images at the level of bit representation, reveals that maximally
1 bit out of 16 was wrong. Moreover, the wrong bit may occur only on the least
significant bit (LSB) position. If we take into account that input and output
pixels are 8 bit places above first 6 LSB bits, we can ignore this error. This is
depicted in Fig. 2.

2.2 FPGA design of a spatially adaptive wavelet shrinker

We design FPGA architecture for a spatially adaptive wavelet denoising method
of [8], which shrinks each wavelet coefficient according to the probability of
presenting a “signal of interest” given the observed coefficient value and given
a local spatial activity indicator (LSAI). In our implementation LSAI is the
locally averaged coefficient magnitude within a 3x3 window and the signal of
interest is defined as the noise-free component that exceeds in magnitude the
noise standard deviation σ.

The analyzed denoising algorithm can be summarized as follows. Let yl de-
note the noise-free wavelet coefficient and wl its observed noisy version at the
spatial position l in a given wavelet subband. For compactness, we suppress here
the indices that denote the scale and the orientation. The locally averaged coef-
ficient magnitude is denoted by zl =

∑
k∈Nl

|wk|, where Nl is a square window
centered at the position l. Further on, let H1 denote the hypothesis “the signal

of interest is present : |yl| > σ ” and let H0 denote the opposite hypothesis “the
signal of interest is absent : |yl| ≤ σ”. The shrinkage estimator from [4] is

ŷl =
ρξlηl

1 + ρξlηl

wl, (1)

where

ρ =
P (H1)

P (H0)
, ξl =

p(wl|H1)

p(wl|H0)
and ηl =

p(zl|H1)

p(zl|H0)
. (2)

and where p(wl|H0) and p(wl|H1) denote the conditional probability density
functions of the noisy coefficients given the absence and given the presence of
a signal of interest. Similarly, p(zl|H0) and p(zl|H1) denote the corresponding
conditional probability density functions of the local spatial activity indicator.
Under the Laplacian prior for noise-free data p(y) = (λ/2) exp(−λ|y|) we have [8]
ρ = exp(−λT)/(1 − exp(−λT)). The analytical expressions for ξl and ηl seem
too complex for the FPGA implementation. Based on an extensive experimental
study, as we explain later in this Section, we efficiently implement the two like-
lihood ratios ξl and ηl as appropriate look-up tables, stored in two “Read-Only”
Memories (ROM).

FIFO
(Line Buffer)

FIFO
(Line Buffer)

LSAI
Coeff

Magnitude
Window

Address
Generation

Comb.
Network

ROM

ROM

X Shrinkage
ROM X

KSI

ETA

Output
Coeff.

Input
Coeff.

Fig. 3. Block schematic of implemented denoising architecture.

The developed architecture is presented in Fig. 3. One ROM memory, con-
taining the look-up table ξl, is addressed by the coefficient magnitude |wl|, and
the other ROM memory, containing the look-up table ρηl is addressed by LSAI
zl. For calculating LSAI, the coefficient values from the current line and from
the previous two lines are averaged within a 3x3 window. The read values from
ROM’s are multiplied and the product r is used to address another look-up ta-
ble r/(1 + r), denoted as “shrinkage ROM”. Its output (the shrinkage factor) is
multiplied with the input coefficient to produce the denoised coefficient value.

The generation of the appropriate look-up tables for the two likelihood ratios
resulted from our extensive experiments on different test images3 and different
noise-levels. Fig. 4 illustrates the likelihood ratio ξl calculated from one test
image at different noise levels. These diagrams show another interpretation of
the well known threshold selection principle in wavelet denoising: a well chosen
threshold value for the wavelet coefficients increases with the increase of the
noise level. The maximum likelihood estimate of the threshold T (i.e., the value
for which p(T |H0) = p(T |H1)) is the abscissa of the point ξl = 1. Fig. 5 displays
the likelihood ratio ξl, in the diagonal subband HH at third decomposition level,

3 We used standard test images such as “Lena” and “Barbara”, and frames from
different standard test video sequences, such as “flower garden”, “Miss America”,
“salesman”, etc.

Fig. 4. Likelihood ratio ξl for one test frame and 4 different noise levels (σ=5,10,20,30).

Fig. 5. Likelihood ratio ξl displayed for 10 frames with fixed noise levels: σ = 10 (left)
and σ = 30 (right).

for 10 different frames with fixed noise standard deviations (σ = 10 and σ = 30).
From a practical point of view, the difference between the calculated likelihood
ratios for different frames is minor, especially for lower noise levels (up to σ =
20). Therefore we average the likelihood ratios over different frames and store
these values as the corresponding look-up tables for several different noise levels
(σ = 5, 10, 15 and 20). In the denoising procedure, the user selects the input
noise level, which enables addressing the correct set of the look-up tables. The
performance loss of the algorithm due to simplifications with the generated look-
up tables for different input noise levels is shown in Fig. 6. These results represent
peak signal to noise ratio (PSNR) values averaged over frames of several different
video sequences. For σ=10 the average performance loss was only 0.13dB (and
visually, the differences are difficult to notice) while for σ=20 the performance
loss is 0.55dB and is on most frames becoming visually noticeable, but not highly
disturbing. For higher noise levels, the performance loss increases.

35
.7

7

35
.6

3

33
.2

4

32
.9

5

31
.5

5

31
.0

0

0

10

20

30

40

P
S

N
R

 [
dB

]

10 15 20

Standard Deviation of added noise

PSNR comparison

Original with 3 decomp. levels FPGA implementation

Fig. 6. Performance of the designed FPGA implementation in comparison with the
original software version of the algorithm, which employs exact analytical calculation
of the involved shrinkage expression.

2.3 FPGA design of a selective recursive temporal filter

A pixel based motion detector with selective recursive temporal filtering is quite
simple for hardware implementation. Since we first apply a high quality spatial
filtering the noise is already significantly suppressed and thus a pixel based
motion detection is efficient. In case the motion is detected the recursive filtering
is switched off.

Two pixels are needed for temporal filtering: one from the current field and
another from the same spatial position in the previous field. We store the two
fields in the output buffer and read the both required pixel values in the same
cycle. If the absolute difference between these two pixel values is smaller than
the predefined threshold value, no motion case is assumed and the two pixel
values are subject to a weighted averaging, with the weighting factors defined
in [4]. In the other case, when motion is detected, the current pixel is passed
to the output. The block schematic in Fig. 7 depicts the developed FPGA ar-

Pixel from
current field

Pixel from
previous field

X

X

0.6

0.4 +

DELAY

Treshold

Output

A<B
ABS(A-B)

Fig. 7. Block schematic of implemented temporal filter.

chitecture of the above described selective recursive temporal filter. In terms of

computation accuracy, the only required adaptation of the original filter is the
conversion from floating-point arithmetic to the integer arithmetic. We use the
8 bit arithmetic because the filter is located in the time domain where all the
pixels are represented as 8 bit integers.

3 EVALUATION IN A REAL-TIME ENVIRONMENT

In our implementation we use the standard television broadcasting signal as a
video signal source. A common feature of all standard TV broadcasting tech-
nologies is that the video sequence is transmitted in the analog domain (this
excludes the latest DVB and HDTV transmission standards). Thus, before digi-
tal processing of television signals the digitalization is needed. Also, after digital
processing the sequence has to be converted back to the analogue domain in
order to be shown on a standard tube display. This pair of A/D and D/A con-
verters is well known as a codec. The 8 bit codec, with 256 levels of quantization
per pixel, is considered sufficient for preserving all details in the sequence. We
use the PAL-B broadcasting standard and 8 bit YUV 4:2:2 codec. The hardware
platform set-up consists of three separate boards: analog front-end (A/D con-
version), processing board and analog back-end (D/A conversion) Each board
corresponds to one of the blocks presented in Fig. 8:

The processing board consists of two Xilinx Virtex II FPGAs (XC2V6000-
5) [14] and is equipped with plenty of SDRAM memory (6 banks with 32 bit
access made with 256Mbit ICs). Additional implementation details are in [9].

An important practical issue is the specification of the following two param-
eters: estimated noise standard deviation σ and the motion detection threshold.
Currently we keep the motion detection threshold fixed and allow the choice of
σ from a set of predefined values. A future work will concentrate on estimat-
ing these parameters adaptively from the video sequence and on measuring the
sensitivity of the scheme to these parameters.

An alternative real-time implementation of this algorithm may be based on
commercially available DSP processors instead of FPGA. Indeed the approxima-
tion of the algorithm based on ROM tables as we proposed and speed-optimized
programming in languages like C or C++ should significantly accelerate the
software version of the algorithm. In this case, the profiling of the software
implementation would be required to determine the DSP parameters, like the
needed MIPS performance (MIPS - Million Instructions Per Second) and the
ROM size, which are needed for real-time program running. However, it is not

A/D
Digital

Processing D/A

nT

X1(nT)

nT

X2(nT)

Input Video
Sequence

Output Video
Sequence

Fig. 8. A digital processing system for television broadcasting video sequences.

certain that a general purpose DSP processor could perform the non decimated
wavelet transform of a television stream in real time due to a number of needed
memory accesses for reading and writing the wavelet coefficients parallel with
the accesses to the input and output buffers.

4 CONCLUSION

New trends in video technology and emerging wavelet domain video denoising
methods require development of the appropriate real-time hardware architec-
tures with FPGA’s. This paper revealed technical details of one of such devel-
opments which has resulted in a real-time implementation of one of the latest
wavelet domain denoising methods. We believe that some architectural design
aspects presented in this paper should be interesting for future FPGA design of
other, related wavelet domain denoising methods.

References

1. Roosmalen, P., Westen, S., Lagendijk, R., Biemond, J.: Noise reduction for image
sequences using an oriented pyramid thresholding technique. In: IEEE Conf. on
Image Process. Lausanne, Switzerland (Sep. 1996) 375378

2. Selesnick, I., Li, K.: Video denoising using 2D and 3D dual-tree complex wavelet
transforms. In: Wavelet Applications in Signal and Image Processing. Volume 5207
of SPIE Conf. (Aug. 2003) San Diego

3. Zlokolica, V., Pižurica, A., Philips, W.: Video denoising using multiple class av-
eraging with multiresolution. International Workshop VLBV03 ((Madrid, Spain,
Sep. 2003))

4. Pižurica, A., Zlokolica, V., Philips, W.: Noise reduction in video sequences us-
ing wavelet-domain and temporal filtering. In: Wavelet Applications in Industrial
Processing. Proc. SPIE (2003)

5. Nibouche, M., Bouridane, A., Murtagh, F., Nibouche, O.: FPGA-based discrete
wavelet transforms system. In Brebner, G., Woods, R., eds.: Field-Programmable
Logic and Applications, Springer-Verlag (2001) 607–612

6. Wu, B.F., Hu, Y.Q.: An efficient VLSI implementation of the discrete wavelet
transform usng embedded instruction codes for symetric filters. IEEE Transaction
on Circuits and Systems for Video Technology 13 no. 9 (September 2003)

7. Dillen, G., Georis, B., Legat, J.D., Cantineau, O.: Combined line-based architecture
for the 5-3 and 9-7 wavelet transform of JPEG2000. IEEE Transaction on Circuits
and Systems for Video Technology 13 no. 9 (September 2003)

8. Pižurica, A., Philips, W.: Estimating the probability of the presence of a signal of
interest in multiresolution single- and multiband image denoising. (IEEE Trans.
Image Processing (in press))

9. Katona, M., Pižurica, A., Teslić, V.Z.N., Philips, W.: Real-time wavelet domain
video denoising implemented in FPGA. In: Wavelet Applications in Industrial
Processing II. Volume 5607 of Proc. SPIE. (2004) 63–69

10. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE
Trans. Pattern Anal. and Machine Intel. 14 (1992) 710–732

11. : SystemC Version 2.0 Users Guide. SystemC Inc., www.systemc.org (2002)

12. Katona, M., Teslic, N., Kovacevic, V., Temerinac, M.: Test environment for blue-
tooth baseband inegrated circuit development. In Milovanovic, B.D., ed.: TELSIKS
2001. Volume 2 of Telecommunication Technologies. (Septmeber 2001) 405–408

13. Katona, M., Teslic, N., Krajacevic, Z.: FPGA design with SystemC. In Napieralski,
A., ed.: Mixed Design og Integrated Circuits and Systems. Volume 1 of MIXDES
2003. (Jun 2003) 220–223

14. : Virtex II Platform FPGA: Complete Data Sheet. www.xilinx.com. (2004)

