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Abstract. This paper focuses on fuzzy image denoising techniques. In
particular, we investigate the usage of fuzzy set theory in the domain
of image enhancement using wavelet thresholding. We propose a simple
but efficient new fuzzy wavelet shrinkage method, which can be seen as
a fuzzy variant of a recently published probabilistic shrinkage method
[1] for reducing adaptive Gaussian noise from digital greyscale images.
Experimental results show that the proposed method can efficiently and
rapidly remove additive Gaussian noise from digital greyscale images.
Numerical and visual observations show that the performance of the
proposed method outperforms current fuzzy non-wavelet methods and is
comparable with some recent but more complex wavelets methods. We
also illustrate the main differences between this version and the proba-
bilistic version and show the main improvements in comparison to it.

1 Introduction

In general, image denoising imposes a compromise between noise reduction on
the one hand and preserving significant image details on the other hand. To
achieve a good performance, a noise reduction algorithm should adapt itself
to the spatial context. The wavelet transform [2] significantly facilitates the
construction of such spatially adaptive algorithms, due to its energy compaction
property: it compresses the essential information into a few large coefficients
which represent the image details along several resolution scales.

Typical wavelet based denoising methods consist of three steps: (i) compute
the discrete wavelet transform (DWT) or a non-decimated wavelet transform,
(ii) remove noise from the wavelet coefficients and (iii) reconstruct the enhanced
image by using the inverse wavelet transformation. Due to the linearity of the
wavelet transform, additive noise in the image domain remains additive in the
transform domain as well. If ws,d(i, j) and ys,d(i, j) denote the noisy, respectively
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the noise-free wavelet coefficients of scale s and orientation d then we can model
the additive noise in the transform domain as:

ws,d(i, j) = ys,d(i, j) + ns,d(i, j) (1)

where ns,d(i, j) is the corresponding noise component. In this paper we restrict
ourselves to additive Gaussian noise.

The second step in the wavelet denoising procedure usually consists of shrink-

ing the wavelet coefficients: the coefficients that contain primarily noise should
be reduced to negligable values, while the ones containing a significant noise
free component should be reduced less. A common shrinkage approach is the
application of simple thresholding nonlinearities to the empirical wavelet coeffi-
cients [3–5]: if the coefficient’s magnitude is below the threshold T it is reduced
to zero, otherwise it is kept or modified. Shrinkage estimators can also result
from a Bayesian approach, in which a prior distribution of the noise-free data
(e.g., Laplacian [6], generalized Gaussian [7–9], Gaussian Scale Mixture [10])
is integrated in the denoising scheme. The simplest Bayesian methods assume
statistically independent data and rely on marginal statistics only [7, 8, 11, 12].

However, algorithms that exploit the different kinds of dependencies between
the wavelet coefficients can result in better denoising performance, compared
with the ones derived using an independence assumption. The wavelet coef-
ficients are statistically dependent mainly due to two properties of the wavelet
transform of natural images: (1) large coefficients will propagate across the scales
(interscale dependencies), and (2) if a coefficient is large/small, some of the neigh-
bouring coefficients are also likely to be large/small (intrascale dependencies).

Recently, non-Gaussian bivariate distributions capturing the interscale de-

pendency were proposed[13], and corresponding nonlinear shrinking functions
were derived from these distributions using Bayesian estimation theory. Inter-
scale dependencies among the wavelet coefficients are also often modelled with
Hidden Markov Trees (HMT)[14, 15]. Related methods [9, 16, 17] use Markov
Random Field (MRF) models for capturing intrascale (spatial) dependencies
among the wavelet coefficients. It has been proved useful to combine the first or-
der statistical properties of the coefficient magnitudes and their evolution across
scales within a joint statistical distribution model [9].

Many other techniques combine inter- and intrascale dependencies. For ex-
ample, denoising methods based on Gaussian Scale Mixture models, often em-
ploy the neighbouring coefficients on the same and adjacent scales [10]. Locally
adaptive window-based methods [1, 18] are highly performant despite their sim-
plicity. Local contextual HMT models have been developed, which capture both
interscale and intrascale information[19, 20].

If a certain wavelet coefficient and its neighbouring coefficients are small
enough we know that this coefficient is noisy for almost sure and should be put
equal to zero. Coefficients above a certain threshold contain the most important
image structures and should not be reduced, but coefficients with values around
the threshold contain both noise and signals of interest. A good threshold is
generally chosen so that most coefficients below the threshold are noise and



values above the threshold are signals of interest. In such situation it can be
advantageous to use fuzzy set theory as kind of soft-threshold method. Fuzzy
set theory is a mathematical extension of the binary set theory.

Fuzzy set theory and fuzzy logic [21] offer us powerful tools to represent and
process human knowledge represented as fuzzy if-then rules. Fuzzy image pro-
cessing [22] has three main stages: (i) image fuzzification, (ii) modification of
membership values and (iii) image defuzzification. The fuzzification and defuzzi-
fication steps are due to the fact that we do not yet possess fuzzy hardware.
Therefore, the coding of image data (fuzzification) and decoding of the results
(defuzzification) are steps that make it possible to process images with fuzzy
techniques. The main power of fuzzy image processing lies in the second step
(modification of membership values). After the image data is transformed from
input plane to the membership plane (fuzzification), appropriate fuzzy tech-
niques modify the membership values. This can be a fuzzy clustering, a fuzzy
rule-based approach, a fuzzy integration approach, etc.

The main advantages of the new method are: (i) the complexity of the method
is much lower than the probabilistic one [1] (which results in a lower execution
time), (ii) we do not lose any noise reduction performance and (iii) by adding
new fuzzy rules it should be easily extendable to incorporate other information
as well (e.g. interscale or interband information), to further improve the noise
reduction performance (future work).

The paper is structured as follows: In section 2 we discuss the proposed fuzzy
shrinkage method. Experimental results are presented in section 3 and section 4
concludes the paper.

2 Fuzzy Shrinkage Method

We develop a novel fuzzy wavelet shrinkage method, which is a fuzzy-logic variant
of the recent ProbShrink method of [1]. The method of [1] defines for each coeffi-
cient ws,d(i, j) two hypotheses: H1: signal of interest present (|ys,d(i, j)| > σ) and
H0: signal of interest absent (|ys,d(i, j)| ≤ σ). The method was named ProbShrink

because it shrinks each coefficient according to probability that the coefficient
presents a signal of interest given its value ws,d(i, j) and given a local spatial ac-
tivity indicator xs,d(i, j) as follows: ŷs,d(i, j) = P (H1|ws,d(i, j), xs,d(i, j))ws,d(i, j).
The local spatial activity indicator was defined as the average magnitude of the
surrounding wavelet coefficients within a local window. In our notation, this is:

xs,d(i, j) =

(

K
∑

k=−K

K
∑

k=−K

|ws,d(i + k, j + l)|
)

− |ws,d(i, j)|

(2K + 1)2 − 1
(2)

The method of [1] proceeds by estimating the conditional probability density
functions of ws,d(i, j) and xs,d(i, j) given H1 and given H0 and by using the
corresponding likelihood ratios: ξ(ws,d(i, j)) = p(ws,d(i, j)|H1)/p(ws,d(i, j)|H0)



and η(xs,d(i, j)) = p(xs,d(i, j)|H1)/p(xs,d(i, j)|H0) and by expressing the shrink-
age factor as ŷs,d(i, j) = γs,d(i, j)/(1 + γs,d(i, j))ws,d(i, j), where γs,d(i, j) =
ρξ(ws,d(i, j))η(xs,d(i, j)) is the generalized likelihood ratio with ρ = P (H1)/P (H0).

In this paper, we put the main idea of [1] into a fuzzy logic framework and
develop a novel FuzzyShrink method. Namely, we also express the shrinkage
factor for the wavelet coefficient ws,d(i, j) as a function of ws,d(i, j) and xs,d(i, j),
but instead of estimating the likelihood ratios for these measurements, we impose
on them fuzzy membership functions. Our shrinkage factor will also express how
likely it is that a coefficient is a signal of interest, but we shall accomplish this
by using the appropriate fuzzy norms and co-norms as opposed to the Bayesian
formalism and probabilities.

2.1 Defining Membership Functions and a Fuzzy Rule

Our reasoning in defining the fuzzy shrinkage rule is the following. If both the
neighbourhood around a given position (i, j) and the wavelet coefficient at this
position itself (ws,d(i, j)) contain mainly large (small) coefficients then we have
enough indication that we have a signal of interest (noise). If the wavelet coef-
ficient ws,d(i, j) is small but the neighbourhood around a given position (i, j)
contains of mainly large coefficients then it is wise to give more importance to
the neighbourhood instead wavelet coefficient ws,d(i, j) itself to judge if the value
is a signal of interest or not. Otherwise we would give more importance to one
single value (that does not correspond to the neighbourhood), which of course
is less robust. In this situation (i.e. a small ws,d(i, j) but a large neighbourhood)
we should conclude that the position (i, j) is a signal of interest, in spite of the
fact that the coefficient is probably lower than the given threshold. This leads
us to the Fuzzy Rule 1 introduced below, where the variable xs,d(i, j) represents
the average of the wavelet coefficients in the (2K + 1) × (2K + 1) neighbour-
hood around a given position (i, j). This variable indicates if the corresponding
neighbourhood contains mainly large or small wavelet coefficients.

Fuzzy Rule 1 The definition of the membership degrees in the fuzzy set

signal of interest of the wavelet coefficient ws,d(i, j) with scale s and orien-

tation d:

IF

(

|xs,d(i, j)| is a large variable AND |ws,d(i, j)| is a large coefficient

)

OR |xs,d(i, j)| is a large variable

THEN ws,d(i, j) is a signal of interest

Fuzzy rules are linguistic IF-THEN constructions that have the general form “IF
A THEN B”, where A and B are (collections of) propositions containing lin-
guistic variables. A is called the premise or antecedent and B is the consequence
of the rule. In Fuzzy Rule 1 we can distinguish two linguistic variables for the
consequent: (i) large wavelet coefficients |ws,d(i, j)| and (ii) large neighbourhood



values |xs,d(i, j)|. Both linguistic terms are modelled as fuzzy sets. A fuzzy set C
[23] in a universe U is characterized by a U − [0, 1] mapping µC , which associates
with every element u in U a degree of membership µC(u) of u in the fuzzy set
C. In the following, we will denote the degree of membership by C(u).

The membership functions that are used to represent the two fuzzy sets of (i)
large wavelet coefficient |ws,d(i, j)| and (ii) large neighbourhood value |xs,d(i, j)|,
are denoted as µw and µx, respectively. We use triangular membership functions
shown in Fig. 1 (a) and (b).

From these figures we see that our method depends on three parameters. As
in many image processing methods it is important that each filtering method is
adapted to the noise situation (noise level). Therefore we have related all these
parameters to the standard deviation of the noise. Good choices for the param-
eters are: T1 = σ, T2 = 2σ and T3 = 2.9σ− 2.625, with σ the standard deviation
of the noise, which is estimated with the median estimator proposed by Donoho
and Johnstone [25]. Those threshold values were obtained experimentally by
optimising their performance on several test images with several noise levels.

The membership functions for the two fuzzy sets that are shown in Fig. 1
function as a kind of lookup-tables for the likelihood ratios of the probabilistic
versions [1].

In Fuzzy Rule 1 we can observe an intersection and a union of two fuzzy
sets. The intersection A ∩ B of two fuzzy sets A and B is generally specified by
a binary mapping D leading to: (A ∩ B)(y) = D(A(y), B(y)). The union A ∪ B
of two fuzzy sets A and B is specified by a binary mapping S leading to: (A ∪
B)(y) = S(A(y), B(y)).In fuzzy logic, triangular norms (roughly the equivalent
of AND operations) and triangular co-norms (roughly the equivalent of OR
operations) are used to represent the intersection and the union of two fuzzy
sets, respectively. Some well-known triangular norms together with their dual
triangular co-norm are shown in Table 1. From all possible triangular norms the
minimum norm is the largest and the weak norm (Table 1) is the smallest. From
all possible triangular conorms the strong norm is the largest and the maximum
norm (Table 1) is the smallest. We have chosen for a t-norm (with his dual
conorm) which is situated between those two extremes, i.e. the product and the

probabilistic sum, respectively. So the antecedent
(

|xs,d(i, j)| is large variable

AND |ws,d(i, j)| is large coefficient

)

can be translated into the “truth” value:

µx(|xs,d(i, j)|) · µw(|ws,d(i, j)|), where µx and µw are the membership functions
for the fuzzy set large variables and large coefficient, respectively. In the next
subsection we explain how to shrink the wavelet coefficients of a noisy image.

2.2 Output of the Method

The shrinkage rule of the proposed method for scale s, direction d and position
(i, j) is calculated as follows:

ŷs,d(i, j) = γ(ws,d(i, j), xs,d(i, j)) · ws,d(i, j) (3)
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Fig. 1. (a) The membership function LARGE COEFFICIENT denoted as µw for the
fuzzy set large coefficient and (b) The membership function LARGE VARIABLE
denoted as µx for the fuzzy set large variable.



Table 1. Some well-known triangular norms (T -norms) and triangular conorms (T -
conorms)

T -norms

minimum min
(

x, y

)

algebraic product x · y

weak

{

min(x, y) if max(x, y) = 1
0 otherwise

bounded sum max
(

0, x + y − 1
)

T -conorms

maximum max
(

x, y

)

probabilistic sum x + y − x · y

strong

{

max(x, y) if min(x, y) = 0
1 otherwise

bounded sum min
(

1, µA(x) + µB(x)
)



with ŷs,d(i, j) the shrink output coefficient for scale s, direction d and position
(i, j) and where γ(ws,d(i, j), xs,d(i, j)) is the degree of activation of Fuzzy Rule 1
for the wavelet coefficient ws,d(i, j). This value indicates the membership degree
in the fuzzy set signal of interest for the wavelet coefficient ws,d(i, j). If the
membership degree has value 1, this means that the corresponding coefficient is
a signal of interest certainly (and should not be changed), while a degree zero
indicates that the coefficient is certainly not a signal of interest (and should be
set equal to zero). A value between zero and one indicates that we do not know
quite sure if this coefficient is a signal of interest or not. This means that the
coefficient is a signal of interest only to a certain degree. The calculation of the
value γ(ws,d(i, j), xs,d(i, j)) is illustrated in expression (4).

γ(ws,d(i, j), xs,d(i, j)) = α + µx(|xs,d(i, j)|) − α · µx(|xs,d(i, j)|)

(4)

with α = µx(|xs,d(i, j)|) · µw(|ws,d(i, j)|)

Actually, the α of expression (4) can be seen as the fuzzy counterpart of gener-
alized likelihood ratio used in the probabilistic version [1]. One can see that we
used the product and probabilistic sum for the triangular norm and co-norm,
respectively.

3 Experimental Results

In this section we present some experimental results. We compared our new fuzzy
wavelet-based shrinkage method with (i) other well-known fuzzy filters and (ii)
recently developed wavelet-based methods. More precisely we have:

– FUZZY: the GOA filter [26], FRINRM [27] (fuzzy randomly valued impulse
noise reduction method), HAF [28] (histogram adaptive fuzzy), EIFCF [29]
(extended iterative fuzzy control based filter), SFCF [29] (smoothing fuzzy
control based filter), DWMAV [30] (decreasing weight fuzzy filter with mov-
ing average centre), GMAV [30] (Gaussian fuzzy filter with moving average
centre), AFSF [31] (the adaptive fuzzy switching filter), FSB [32, 33] (fuzzy
similarity filter) and AWFM [34, 35] (adaptive weighted fuzzy mean).

– WAVELET: the bivariate wavelet shrinkage function proposed by Şendur
[36], the feature-based wavelet shrinkage method proposed by Balster [37]
and the probabilistic shrinkage function proposed by Pižurica [1].

We have used a redundant wavelet transform with the Haar wavelet and four
resolution scales and a neighbourhood of size 9 × 9 (K = 4) for both the prob-
abilistic version and the proposed one. As a measure of objective dissimilarity
between a filtered image F and the original noisefree one O, we use the peak
signal to noise ratio (PSNR).

In order to get a clear idea of the performance of all mentioned methods we
have carried out experiments for three well known test images: ‘Lena’, ‘Peppers’



and ‘Barbara’, each of size 512 × 512. The numerical results for the corrupted
versions (for σ = 5, 20, 30 and 40) are shown in Table 2. From this Table we
can make the following conclusions:

– The wavelet-based methods perform generally better than the state of the
art fuzzy non-wavelet based methods for the additive noise type. Wavelet-
based methods reduce the noise quite well for both low and high σ values,
while the fuzzy-based methods only perform well for higher noise levels.

– The only fuzzy-based method that receives comparable results to the wavelet
ones is the GOA filter. This filter even results in the best PSNR value for the
Peppers images corrupted with σ = 30 and 40 additive Gaussian noise. But
the GOA filter is developed only for a specific group of images like the Lena
and the Peppers images. If an image contains regions with lots of fine details,
texture or contours (like grass, hair etc.) then the GOA filter destroys such
structures, which is confirmed by the low PSNR value for the Barbara image.

– Generally, the best numerical results were received by the proposed and
the probabilistic shrinkage method. The proposed fuzzy shrinkage method
performs quite similar as the probabilistic one.

The visual performance of the best numerical filters is given in Fig. 2, where
we show the denoised versions of the Barbara image corrupted with σ = 40
additive Gaussian noise. It is shown that the proposed and the probabilistic
shrinkage method do not only yield the highest PSNR values (Table 2), but also
the best visual results. The other wavelet-based methods reduce the noise well
but introduce typical wavelet compression artefacts. From Fig. 2 (f) we see that
the GOA filter destroys more images structures than the wavelet-based method,
which results in a blurrier image. We can also conclude that the other state of the
art fuzzy-based methods are not able to receive such good visual performances
as the wavelet-based methods.

Previous experiments have clearly confirmed that the proposed method per-
forms at least as well as the probabilistic method of [1]. In this paragraph we
will illustrate that the proposed method, which can be viewed at
http://www.fuzzy.ugent.be/ACIVS06.html, has a lower complexity than the prob-
abilistic version. In Table 3 we have compared the execution time between those
two methods for the noise reduction of one wavelet band of size 512 × 512. The
comparison is done by implementing both methods in the same programming
language namely Java (not Matlab because Matlab uses many C-files so that the
comparison would not be correct). The main difference of both methods is that
the probabilistic method has to estimate the (image dependent) distributions
first before the filtering can be started while the fuzzy shrinkage method can be
applied directly. This fuzzy shrinkage method uses membership functions that
are shown in Fig. 1, which functions as a kind of lookup-tables for the likelihood
ratios of the probabilistic versions [1]. This explains while the proposed method
is less complex. The execution time for the distribution estimation of [1] does not
depend on the used neighbourhood size. Next even if we observe the execution



Table 2. PSNR results for the (512×512-) Lena, Peppers and Barbara images corrupted
with additive Gaussian noise with σ = 5, σ = 20, σ = 30 and σ = 40 and several fuzzy
and wavelet based denoising methods.

Lena Peppers Barbara

σ 5 20 30 40 5 20 30 40 5 20 30 40
Noisy 34.2 22.1 18.6 16.1 34.2 22.1 18.6 16.1 34.2 22.1 18.6 16.1

New 38.2 32.4 30.5 29.2 37.1 32.0 30.5 29.3 37.2 29.7 27.5 25.9

ProbShrink 38.3 32.3 30.4 29.2 37.1 32.0 30.5 29.3 37.2 29.4 27.1 25.5
BiShrink 37.4 31.2 29.3 28.1 35.7 31.0 29.3 28.1 36.2 28.2 26.1 24.8
Balster 37.2 31.5 29.8 28.5 34.4 31.7 30.1 28.9 35.8 27.6 25.3 24.0
GOA 36.4 31.2 29.5 28.3 35.6 31.7 30.0 28.6 33.9 25.8 24.2 23.5

FRINRM 34.9 26.2 23.8 21.3 34.3 25.4 22.2 20.4 34.2 23.7 21.4 20.2
HAF 33.7 29.5 26.9 24.8 33.1 28.8 26.2 24.0 25.3 24.4 23.3 21.1

EIFCF 33.6 29.3 27.2 25.5 33.8 29.5 27.3 25.6 25.5 24.6 23.7 22.8
SFCF 33.1 29.4 26.2 23.5 33.1 29.4 26.3 23.6 25.8 24.8 23.3 21.6

DWMAV 33.2 29.6 27.2 25.2 32.9 29.4 27.1 25.1 25.2 24.4 23.5 22.6
GMAV 33.5 29.3 26.7 24.7 33.3 29.4 26.8 24.7 25.1 24.3 23.3 22.2
AFSF 34.5 27.6 25.0 23.0 34.4 27.6 24.9 22.9 26.0 23.9 22.5 21.2
FSB 33.8 28.8 25.5 23.1 33.7 28.9 25.7 23.3 25.2 23.9 22.6 21.2

AWFM 34.3 29.2 26.1 22.1 34.2 29.4 25.2 23.0 26.1 24.5 22.9 22.9

time of the denoising methods only we see that the fuzzy shrinkage method is
faster. This small difference is analysed in Table 4, where we have compared
the amount of operations that have to be carried out to perform the denoising
method for one wavelet band only. We observe that the amount of logical opera-
tions is very similar. But if we know that memory operations cause more time to
be done than all other operations we see why the probabilistic method is slower.

In Fig. 3 we have illustrated the mean execution time of both methods (for a
neighbourhood size of 5× 5 and 9× 9 (i.e. K = 2 and K = 4, respectively)) and
the fuzzy non-wavelet based GOA filter [26]. We observe that the non-wavelet
based method GOA performs much faster than the two wavelet based algorithms.
The main two reasons for this difference are (i) in wavelet-based methods, the
images have to be transformed into the wavelet domain and (ii) for both methods
we have used a redundant wavelet transformation, so that the amount of data
becomes larger. The second observation that can be made from Fig. 3 is that the
proposed method is significantly faster than the probabilistic shrinkage method,
which confirms that the proposed method is less complex than the probabilistic
one.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. The restoration of a magnified part of the Barbara image corrupted with addi-
tive Gaussian noise (σ = 40): (a) the noise free part (b) the noisy part (c) the proposed
filter, (d) ProbShrink, (e) BiShrink, (f) GOA, (g) EIFCF (h), HAF, (i) DMWAV.



Table 3. Comparison between the proposed fuzzy shrinkage method (FuzzyShrink)
and the probabilistic shrinkage method (ProbShrink) in term of the execution time
(ms) for the denoising method of a noisy wavelet band of size (512 × 512).

Execution time in ms

K = 1 K = 2 K = 3 K = 4
FuzzyShrink Total 58.5 108.0 179.3 273.5

ProbShrink Denoising 63.4 110.6 195.8 282.0
Distribution estimation 179.9 180.0 180.3 180.3

Total 243.3 290.6 376.1 462.3

Table 4. Comparison between the proposed fuzzy shrinkage method (FuzzyShrink) and
the probabilistic shrinkage method (ProbShrink) of the amount of operations necessary
for the denoising methods of a noisy wavelet band of size (N × M) with η = M · N

(exclusive the amount of operations necessary to calculate the distribution estimation).

Execution time in ms

+ - / * memory
FuzzyShrink (4 + (2K + 1)2)η 6η 3η 4η ((2K + 1)2)η
ProbShrink (5 + (2K + 1)2)η η 2η 5η ((2K + 1)2 + 3)η
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Fig. 3. Comparison of the mean execution time for the ProbShrink method of [1], the
GOA filter of [26] and the proposed FuzzyShrink method with (a) a windowsize K = 2
and (b) a windowsize K = 4.

4 Conclusion

In this paper an alternative wavelet based soft-computing method for the re-
cently published probabilistic shrinkage method of Pižurica [1] for the reduction



of additive Gaussian noise in digital images was proposed. Experimental results
show that the proposed method receives the same noise reduction performance
as the probabilistic one, which outperforms the current fuzzy-based algorithms
and some recently published wavelet-based methods. Next we have shown that
the proposed method clearly reduces the complexies of the probabilistic shrink-
age method in terms of execution time. A future advantage of the method is the
ability of incorporate more information (e.g. interscale and/or colour informa-
tion) by adding other fuzzy rules to improve the noise reduction performance.
Future work should be done on this promising issue.

References
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