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ABSTRACT 

We propose a real-time system for blur estimation using wavelet decomposition. The system is based on an emerging 
multi-core microprocessor architecture (Cell Broadband Engine, Cell BE) known to outperform any available general 
purpose or DSP processor in the domain of real-time advanced video processing solutions. We start from a recent 
wavelet domain blur estimation algorithm which uses histograms of a local regularity measure called average cone ratio 
(ACR). This approach has shown a very good potential for assessing the level of blur in the image yet some important 
aspects remain to be addressed in order for the method to become a practically working one. Some of these aspects are 
explored in our work. Furthermore, we develop an efficient real-time implementation of the novelty metric and integrate 
it into a system that captures live video. The proposed system estimates blur extent and renders the results to the remote 
user in real-time. 
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1. INTRODUCTION 
The appearance of high definition (HD) digital content provides more impressive visual sensation by offering higher 
level of details compared to the standard definition. At the same time, the amount of data to be transmitted and processed 
has significantly increased which amplifies the urge for high processing power. Given the high demands for both 
capacity and speed, it needs no debate that the techniques to guarantee the quality of service (QoS) are of utmost 
importance. In this respect, the quality of video material has to be evaluated in real-time for live streams or even faster 
for offline content.  

One of the most common causes of image quality distortion is image blur which is inevitably introduced not only at the 
point of image acquisition but also during the iterations of image processing and broadcasting. Consequently, blur 
estimation is high among priorities of image quality analysis. Different types of blur include linear motion blur, 
atmospheric turbulence blur and uniform focal, or out-of-focus blur. In this work, we will consider focal blur modeled by 
a Gaussian function as a conventional blur that often occurs in images. 

A large and growing body of literature has investigated blur estimation techniques. Many of the existing methods 
strongly depend on the results of edge detection in the degraded image. For example, Rooms et al. [1], Tong et al. [2] 
and Lin et al. [3] use the ability of wavelet transform to detect location of the edges. Marziliano et al. [4], and more 
recently Wang et al. [5] make use of rather simple techniques of Canny or Sobel filtering to determine the edge 
positions. These edge detection techniques are affected by the level of noise in the degraded image. Hence, the related 
blur metrics are not only sensitive to edge detection but to noise as well. Alternatively, Hu et al. [6] proposed a new blur 
estimation method based on the difference between two re-blurred versions of an image. To its advantage, this metric 
involves no computationally demanding transformations and needs no edge detection thus the cost of data processing is 
significantly lower compared to the aforementioned methods. Nevertheless, similar to the others, Hu's metric also 
demonstrates high dependency on the content and fails to discriminate between higher levels of blur. 

Recently, some of the authors of this paper have proposed a metric named CogACR [7] that is based on the wavelet 
transform and local regularity measure named average cone ratio (ACR) [8]. Tested for artificaly blurred natural scene 
images, CogACR demonstrates high level of discrimination between different levels of blur and for a significant range of 
blurrines in the image. Especially, CogACR is highly robust to noise which is one of the most common types of 
degradation in video sequences. Similar to other existing methods, however, CogACR as it is currently defined, suffers 
from content sensitivity and requires further investigation in that direction. Overall, despite its computational complexity 
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and content sensitivity, the results presented in [7] indicate high potentials of CogACR metric. Therefore, we chose this 
method for our real-time implementation. Further on, the implementation is used to verify the conclusions from [7] for 
real live HD content and evaluate the potentials for using the CogACR metric in actual real life applications. 

Considering HD demand for high data throughput, we select to use Cell Broadband Engine (Cell BE) architecture for 
digital signal processing. This architecture proved to perform very efficiently in such cases. Moreover, it offers better 
solutions for the real-time advanced video processing than any other available general purpose or DSP processor based 
platform. Importantly, Cell BE architecture offers processing power comparable to FPGA DSP modules [9] while 
preserving speed and flexibility of the software development. Even so, to achieve best results, certain hardware 
constraints need to be taken into account when programming Cell BE. These include memory alignment, limited cache 
memory size, vector nature of processing elements and special inter-core synchronization techniques. When these 
constraints are satisfied, the theoretical peak performance can easily be achieved. Here, the major challenge of CogACR 
implementation, hereafter referred to as CellCogACR (CCACR), is the implementation of wavelet transform. To date, a 
number of different techniques for implementing the critically sampled discrete wavelet transform (DWT) using the Cell 
BE architecture have been introduced [10], [11]. To the authors knowledge, the Cell BE implementations of 
overcomplete wavelet transforms used in CogACR metric and especially blur estimation methods have not been studied. 

In this paper, we propose an efficient implementation of a novelty wavelet based CogACR metric on the Cell BE based 
platform, CCACR. Our results show that the implementation is able to achieve real-time performance for HD input 
stream (1080i, 60 Hz). Furthermore, we extend the existing video quality assessment system [12] with CogACR metric 
and test the new system’s behavior with a commercially available HD Set Top Box (STB). We used Sky+HD box from 
British Sky Broadcasting. 

The paper is organized as follows. In Section 2 provides an overview of selected wavelet based blur estimation method 
and compares it with existing methods. Destination platform is described in Section 3. Section 4 presents optimization 
techniques used to achieve real-time performance while implementing selected method on destination platform. Section 
5 gives overview of the achieved experimental results in terms of processing time of the optimized CogACR method and 
compares it with achieved results with other methods. Section 6 provides overview of the proposed system for real-time 
blur estimation. Conclusions can be found in Section 7. 

2. WAVELET BASED COGACR METHOD 
The main idea of the CogACR metric [7] is to estimate blur from the histogram of the local regularity estimates in the 
wavelet domain. The method employs the so-called average cone ratio (ACR) metric which is a noise-robust estimate of 
the local Lipschitz exponent. ACR is defined by Pižurica et al. [8] as a quantity which characterizes joint expansion of 
the magnitudes of wavelet coefficients inside a cone of influence which is centered at the given spatial position. It was 
shown in [8] that the ACR is a good estimate of the local Lipschitz exponent α, in particular an estimate of Lipschitz α + 
1. Moreover, the study proved that the ACR measure is insensitive to noise. Since this metric is highly insensitive to 
noise and depends on the regularity of the edges, it can measure blur. In [7], it was proposed to use the center of gravity 
of the ACR (hence the name CogACR) as a measure of blurriness. Furthermore, it was shown that the proposed blur 
metric is valid both in case where the reference image is available and in case where it is not available. 

For testing purposes, we used Kodak Test Images [13] transformed to the grayscale and cropped to the size of 512x512 
pixels. The images are blurred with Gaussian blur with radius r varied in the range of 0.25 pixels to 5.0 pixels with the 
uniform step of 0.25, r={r Є R: rk=0.25k, k=1,2,…,20}. To create noisy images, Gaussian noise with variance of 25 was 
introduced. 

In Fig 2 we compare performance of CogACR to Lin’s metric [3]. We choose Lin’s method for comparison as this 
method is also wavelet based method that uses ratio of the wavelet coefficients at different wavelet scales to estimate 
blur level in input image. The main differences between CogACR and Lin’s method’s is that CogACR uses non-
decimated wavelet transform and takes into account cone of influence which is centered at the given spatial position 
while Lin’s method calculates ratio on point wise basis. The results shown in Fig 2 clearly show that CogACR is more 
sensitive to the level of blur and able to detect higher levels of blur with more confidence.  

Further on, in Fig 3 we compare the performance of CogACR metric to the other two recent ones, Hu’s metric [6] and 
Tong’s metric [2]. We chose Hu’s method for comparison because this blur estimation method is not wavelet based and  
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Fig 1. A flowchart of the CogACR metric. The ACR is calculated from the wavelet coefficients at the estimated edge 

positions and the center of gravity of ACR (CogACR) is used as a blur measure. For more details, see [7]. 

thus not computationally desired as other wavelet based methods. Tong’s metric is chosen as example of complex 
wavelet based method with promising results in blur estimation. We are comparing CogACR with these two methods in 
terms of both computational complexity and achieved results in estimation of blur. For behavior in blur estimation 
comparison we used same test images, and test environment as described in previous paragraphs. The results shown in 
Fig 3 prove that the CogACR is able to distinguish between different levels of blur with higher level of confidence than 
the referent methods while preserving very low noise sensitivity, especially in case of lower levels of blur. Both referent 
methods reach saturation for blur radius of 1.5 while for higher radius of blur the methods are practically insensitive. The 
comparison shown in Fig 2 and Fig 3 together with the results presented in [7] motivates our choice of CogACR metric. 

Along with the aforementioned benefits of CogACR, in order to generate a practical method for out-of-focus blur 
estimation, further investigation is needed to resolve some of the drawbacks of the existing metric: an automated 
algorithm for mask selection in the phase of edge-detection, image classification in case where the degradation free 
image is not available (content sensitivity), and, quite general, options for further reducing computational intensity of the 
metric. 

3. CELL BE ARCHITECTURE 
Considering the complexity of the selected blur metric, hardware platform with high processing power is needed for real-
time implementation. To fit these requirements, we chose Cell BE based hardware architecture [14]. This platform offers 
high processing power, even comparable with programmable hardware architectures like FPGA [9], as well as increased 
programming comfort, flexibility and speed (use of high level programming languages like C/C++). Cell BE is an 
architecture of multi-core microprocessors dedicated for distributed data processing. It is comprised of two types of 
processing cores: a general purpose Power Processing Element (PPE) and a dedicated DSP cores known as Synergistic 
Processing Elements (SPE). Fig 4 presents architecture of processor based on Cell Broadband Engine Architecture 
(CBEA). 

The processor characteristics include multiple heterogeneous execution units (SPE and PPE processors), Single 
Instruction Multiple Data (SIMD) processing engines for parallel data processing, fast local store for smaller memory 
latency and a software managed cache for parallelization of data manipulation and acquisition process. As mentioned 
earlier, the Cell BE applications can achieve performance which is close to the theoretical peak performance assuming 
the specific hardware features are respected: memory alignment, limited cache memory, vector nature of SPE processor 
and special inter-core synchronization techniques. Cell BE based platform offers parallelism on three levels: 

1. Parallelism on the algorithmic level (different video algorithms and/or different parts of image being processed 
can be simultaneously executed on different SPE cores). 

2. Parallelism on data processing level (usage of SIMD instruction set enables processing of up to 16 data using 
single processor instruction). 

3. Parallelism on data acquisition level (processing of data and data acquisition are fully asynchronous processes). 

Combining these levels of parallelism, Cell BE based platform offers, in the ideal case, an average performance that is 
more than 100 times better than that of a platform based on general purpose processor with similar processor frequency. 
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Fig 2. CogACR metric compared to Lin’s metric. The results are obtained for test image Kodim07: (a) Degradation free 

image of 512x512 pixel size, (b) Degraded image with Gaussian blur of radius r=5, without noise, (c) CogACR metric 
for Gaussian blur with r= {0, 0.25, 0.5, … 5}. 

 

 
Fig 3. CogACR metric compared to Tong’s metric and Hu’s metric of blur. The results are obtained for test images 

Kodim07 and Kodim 18: (a) Degradation free image of 512x512 pixel size, (b) Degraded image with Gaussian blur of 
radius r=5, (c) Blur-free image with Gaussian noise, var = 25, (d) Degraded image with Gaussian blur (r=5) and 
Gaussian noise (var=25), (e) CogACR metric for Gaussian blur with r= {0, 0.25, 0.5, … 5}. 
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Fig 4. Architecture of a processor based on Cell BE architecture. Architecture consists of multiple heterogeneous execution 

units and those are: 1 general purpose PPE processor core and 8 dedicated DSP processing cores. Data throughput is 
guaranteed with fast Element Interconnect Bus (EIB) that connects cores with output peripherals and each other. 

4. REAL-TIME IMPLEMENTATION ON CELL BE 
In order to achieve real-time performance, implementation of CogACR metric needs to be adapted to take into account 
hardware specifications of Cell BE. To start with, the size of HD field (~2MB) exceeds limited cache size of SPE 
processors (256 KB) which caused implementation of line based memory buffers and double buffering techniques for 
image data acquisition from the main memory. Secondly, vector nature of SPE processors forced the use of SIMD 
instructions and adapting algorithm to SIMD processing in order to achieve most efficient performance. 

4.1 Multi-core programming model 

In general, two different models of multi-core programming exist on Cell BE architecture: PPE and SPE centric model 
[15]. In the former model, every SPE core is performing the entire processing chain but on a reduced amount of data 
(only part of the input image). In SPE centric model, each SPE processor is responsible for different processing steps and 
special synchronization mechanisms are needed. This method is preferred in situations when data cannot be easily 
divided into independent segments. Based on our experience, the former model outperforms the latter one in achieving 
real-time performance. Hence, we select PPE centric model for our implementation. In our work, the processing time is 
accelerated by dividing input image into horizontal stripes and assigning one SPE processor to every generated stripe, as 
illustrated in Fig 5. The results from all SPE processors are gathered on PPE core, and combined into the final 
measurement result. PPE core is also responsible for data acquisition and dividing of the input image into independent 
horizontal stripes. 

4.2 The SIMD implementation of the non-decimated wavelet transform 

As proposed in [8], an oversampled (non-decimated) cubic-spline wavelet transform is used for calculation of ACR. This 
wavelet filter bank uses floating point coefficients for both high and low pass filters. However, Cell BE processor is 
optimized for processing of the fixed point data types. Cell BE SIMD fixed point instructions can process 4, 8, or 16 
operands depending on operand’s bit length, while floating point instructions can only process 2 or 4 floating point 
numbers. These limitations are introduced with the fact that register bit length of SPE processor is 128 bits. For CogACR 
method only 3 bands are of interest at every wavelet scale: detailed images in LH and HL band for ACR calculation and 
LL band for calculation of the next wavelet scale. In [7] it is observed that CogACR method shows best results when 
ACR2-4 is used (wavelet scales from second to fourth). 

Aiming to generate the most efficient implementation of the wavelet transform, floating point calculations had to be 
avoided. In order to transform the coefficients from floating to fixed point domain, they had to be multiplied by scalar 
value M, in our case M=8. By multiplying coefficients by factor M, detail images HL and LH on first scale had values M 
times grater than they should have, while LL values were M2 times greater (due to the double low pass filtering on every  
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Fig 5. Cell BE multi-core programming model used for implementation of the CogACR. The enlarged part illustrates SPE 

program block diagram. This model is used when processing can be divided between multiple cores by dividing input 
data into blocks and allocating specific blocks of data to single core. For this model ne inter-core communication is 
needed. 

pixel value). Consequently, the values of detail images on all scales are multiplied by factor M2*j+1, j Є N, j≥ 0, where j 
represents the scale. Clearly, to neutralize this effect of "trick" multiplications by M, after all wavelet scales are 
calculated, the coefficients from detail images have to be normalized by M2*j+1. Given the fact that fixed point 
instructions are multiple times faster than their floating point counterparts, it is better to do floating point only at the end 
of wavelet transformation instead of calculating all wavelet scales in floating point. Another advantage of using the fixed 
point data types for calculations is the fact that these data types can have different bit length (8, 16, 32 or 64 bit), while 
floating point data types are always either 32 or 64 bit in length. This practically means that one can use data type that 
has appropriate length according to the range of the data to be stored. This fact is illustrated in Fig 6 where different data 
types are used in different wavelet scales. First scale uses SIMD instructions that handle vectors comprised of sixteen 8 
bit values (for 8 bit input video sequences, allowing parallelism on data level by processing 16 pixels in parallel), and 
output results to two vectors comprised of eight 16 bit values. Second scale of wavelet uses SIMD instructions that 
handle vectors comprised of eight 16 bit values (outputs from the first scale, allowing parallelism on data level by 
processing 8 pixels in parallel), and output results to four vectors each comprised of four 32 bit values. This allows 
wavelet implementation to be as efficient as possible, concerning instruction set being used. If we decided to use float 
point data types, maximum parallelism on the data level that we could expect is 4 (four 32 bit values fit into one 128 bit 
vector). The only exception is the fourth scale for which the LL wavelet coefficients are not calculated. This is due to the 
fact that our implementation makes use of only the first four wavelet scales and thus calculation of the LL band can be 
omitted. 

5.  EXPERIMENTAL RESULTS AND DISCUSSION 
Fig 7 (a) depicts the processing times of the compared measures on a single SPE core. Expectedly, Hu’s metric achieved 
the highest frame rate due to the fact that this method is not based on wavelet transform. Unlike CogACR, Tong’s metric 
is based on decimated wavelet transform which attributes to its higher frame rate compared to CogACR. 

In Fig 7 (b), the number of SPE cores needed for CogACR real-time performance is shown. Because all cores are 
running in parallel and no inter-core communication is needed, the achieved frame rate only depends on the time needed 
for the slowest core to complete its processing part. For the PAL HD signal (50 Hz) 2 SPE cores are adequate, but for the 
NTSC HD signal 3 SPE cores are needed. The deployment of PPE core is mandatory in both cases, because it is 
responsible for input data acquisition and collection and afterword combining of partial results from the used SPE cores. 

Table 1 shows how different parallelism on data level can influence execution time of appropriate scale. Execution time 
expressed in milliseconds is approximately doubled with every ascending wavelet scale, due to the fact that parallelism 
on data level is reduced by 50% (fewer pixels can be processed in parallel, due to the minimum data length). The only 
exception is the fourth scale for which the LL wavelet coefficients are not even calculated. This is due to the fact that our 
implementation makes use of only the first four wavelet scales and thus calculation of the LL band can be omitted. 

Table 2 shows code profiling of the CCACR for different input video resolution. Target resolution for the real-time 
performance is HD (1080i, 60Hz). The part of the algorithm that is the most computationaly expensive, around 38% of 
processor time, is wavelet transform with coefficient normalization. This result is expected due to the fact that CogACR  
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Fig 6. Block scheme of SIMD implementation of the non-decimated wavelet transform 

uses non-decimated wavelet transform and that for our calculations we need first four wavelet scales (other metrics use 
fewer scales). As the results show, for target real-time performance (16.6 ms) several SPE cores will have to be 
employed. Core allocation will be addressed in later paragraphs. 

We used the novel real-time implementation of CogACR metric to improve an existing platform for image quality 
estimation described in [12]. 
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Fig 7. Cell BE implementation of CogACR metric compared to the implementation of Tong’s and Hu’s metric. (a) Frame 

rate on single SPE core (b) Frame rate of CogACR implementation when divided on multiple SPE cores 

 

Table 1. Measured execution time needed for 4 different wavelet scales. The measurements are performed on a single SPE 
core. The values are given in milliseconds, ms. 

Wavelet scale/Resolution 1080i 720p 576i 480i 

1st scale 1.44 1.28 0.29 0.24 

2nd scale 2.69 2.39 0.54 0.45 

3rd scale 4.45 3.96 0.89 0.74 

4th scale 1.19 1.06 0.24 0.20 

First four scales 9.77 8.69 1.95 1.63 

 
Table 2. Measured execution time needed for specific algorithmic parts of the optimized CogACR. Measurement is 

performed on single SPE core and illustrated in ms 

Function/ 

Resolution 
1080i 720p 576p 480p 576i 480i Overall 

contribution 

Wavelet 9.77 8.69 3.91 3.26 1.95 1.63 28.48% 

Normalization 3.50 3.11 1.40 1.17 0.70 0.58 10.20% 

ConesMagSu
mVertical 6.35 5.65 2.54 2.12 1.27 1.06 18.52% 

RatioSectorR
ow 3.95 3.51 1.58 1.32 0.79 0.66 11.52% 

ConesMagSu
mHorizontal 6.78 6.03 2.71 2.26 1.36 1.13 19.76% 

RatioSectorR
ow 3.95 3.51 1.58 1.32 0.79 0.66 11.52% 

All together 34.31 30.50 13.72 11.44 5.86 5.72 100.00% 
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6. THE PROPOSED REAL-TIME ENVIRONMENT 
Fig 8 represents architecture of the real-time Video Quality Analysis (VQA) platform used in our study. This platform 
consists of three main components: capture device (network attached capture device, NACD), processing server (PS) and 
monitoring workstation (MW). Input of NACD is live video feed provided by an external source that can be either 
analog or digital, SD or HD (component, composite, S-Video, SDI or HDMI interface). 

Captured data is streamed to PS using 1Gbps Ethernet connection. As the bandwidth required for transmission of raw 
video data of HD resolution at full frame rate exceeds the capability of the network, lossless compression of input video 
is applied. Lossless compression is used to avoid the introduction of new artifacts. In particular, the selected compression 
achieves an average compression ratio of 2.5. When this compression is applied on high definition video, generated bit 
rate never exceeds 500 Mbps. This throughput is comfortably below the theoretical physical limit of network in use (1 
Gbps). 

Video quality measurement is performed on PS in real-time. Measurement results, combined with downscaled preview 
of input video are sent to MW via LAN. MW may be dislocated, meaning that remote access to PS is possible via 
Internet. Frame rate and downscale factor of preview video depend on connection quality between PS and MW. 
Measurement results are always transmitted at same rate as input video. The system considers blocking, ringing and 
blurring artifacts. Existing blur estimation metric in this system distinguishes only three levels of blur degradation: good, 
intermediate and bad. 

We substituted system’s existing blurring measurement algorithm with the proposed real-time implementation of the 
CogACR metric. Fig 9 shows task allocation of the proposed real-time environment. In order to achieve real-time 
performance for live HD content (1080i, 60Hz) three SPE cores are reserved for CogACR. The system is tested and 
evaluated with commercially available STB. Results obtained when CogACR is used as blur estimation metric in this 
system indicate that we can detect more subtle gradations of blur extent, and this with more confidence. This enables 
differentiation of more subtle levels of blur degradation that consequently expands areas in which this system can be 
successfully employed, like assessment of medical images, digital panels, etc. 

7. CONCLUSION 
In this paper we proposed a real-time blur estimation system using wavelet decomposition, CCACR. We motivated the 
choice of CogACR as a blur metric showing its superior performance over related methods in terms of sensitivity, 
measurable range of blur levels and robustness to noise. The proposed system is based on IBM Cell BE multi-core 
microprocessor architecture. 

Encouragingly, the results of our work suggest that even complex metric for blur estimation based on the non-decimated 
wavelet transform can be efficiently implemented on a commercially available processor and achieve real-time 
performance for HD input. Our implementation uses only part of the strength that Cell BE platform offers (3 out of 8 
SPE cores are used for real-time performance). Moreover, we extended an existing video quality assessment platform 
with this metric and tested its performance with commercially available STB. Further research is ongoing in order to 
improve the existing CogACR metric, and thus the CCACR system. 
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Fig 8. Architecture of the real-time VQA platform 
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Fig 9. Task allocation in the improved VQA scheme with added CogACR blur assesment. 
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