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Abstract—Compressed Sensing (CS) methods using sparse
binary measurement matrices and iterative message-passing re-
covery procedures have been recently investigated due to their low
computational complexity and excellent performance. Drawing
much of inspiration from sparse-graph codes such as Low-Density
Parity-Check (LDPC) codes, these studies use analytical tools
from modern coding theory to analyze CS solutions. In this paper,
we consider and systematically analyze the CS setup inspired by
a class of efficient, popular and flexible sparse-graph codes called
rateless codes. The proposed rateless CS setup is asymptotically
analyzed using tools such as Density Evolution and EXIT charts
and fine-tuned using degree distribution optimization techniques.
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I. INTRODUCTION

In recent years, a number of studies considered the in-
terplay between the compressed sensing (CS) and modern
coding theory. Sarvotham et al. were the first to consider
reconstruction of strictly sparse signals using sparse binary
measurement matrices and iterative message-passing recon-
struction algorithms [1]. Their scheme, called Sudocodes, is
later identified to be a version of verification-based (VB)
decoding algorithms (LM1/LM2) previously proposed for the
decoding of Low-Density Parity Check (LDPC) codes [2]. The
same authors proposed more general framework called Com-
pressed Sensing via Belief Propagation (CSBP), introducing
factor graph modeling and Belief-Propagation reconstruction to
recover sparse signals from noisy measurements [3]. However,
CSBP is rather complex both from the analysis and implemen-
tation perspective, since the messages exchanged across factor
graph represent continuous probability distributions. As low-
complexity versions of CSBP amenable to rigorous analysis,
VB decoding algorithms (such as LM1 and LM2) have been
investigated in noiseless CS scenario in [4][5]. Using the
CS setup analogue to LDPC codes, in these works, coding-
theoretic tools such as the density evolution (DE) and stopping
set analysis are applied to assess the CS recovery performance.
A related class of recovery algorithms that operate as message-
passing on sparse graphs, called Interval Propagation Algo-
rithms (IPA), have also been recently considered in the CS
context and analyzed using coding-theoretic tools borrowed
from LDPC codes analysis [6][7].

In this paper, we consider a CS setup that applies sparse
binary measurement matrices and iterative recovery procedures

Dino Sejdinovic
Department of Statistics &
University College,
University of Oxford, UK
Email: dino.sejdinovic@gmail.com

A Rateless Coding Perspective

Aleksandra Pizurica
Department of Telecommunications and
Information Processing
Ghent University, Belgium
Email: sanja@telin.ugent.be

in a way that is inspired by rateless coding theory [8][9].
We aim to explore the benefits of rateless coding: simplicity,
efficiency, flexibility and versatile analysis tools, in order
to design novel or improve current CS methods. Although
connections between CS and rateless codes have been indicated
elsewhere (see, e.g., [10]), to the best of our knowledge, no
systematic study is currently available. As a starting point,
in this study, we provide asymptotic analysis (both using the
DE and the EXIT chart approach) of a rateless CS system.
The key observation here, in contrast to the rateless coding
setup, is that the noiseless rateless CS setup considered in
this paper inherently exhibits unequal error protection (UEP)
property. Namely, the feature of efficient verification-based
recovery procedures is to favour recovery of zero-valued
signal coefficients along the recovery process. Thus using
UEP-based asymptotic analysis derived in this paper, we are
able to asymptotically predict both zero and non-zero signal
recovery performance as a function of the number of received
signal measurements. Furthermore, we are able to address the
optimized design of the rateless CS system and fine-tune it
using the degree distribution optimization techniques.

The rateless CS setup we consider is not only relevant in
terms of the CS methods that use sparse binary measurement
matrices and iterative recovery procedures. Rather, we set our
system model in the communication-theoretic framework that
includes both compressive signal acquisition and rateless data
communication, giving a strong flavour of joint source-channel
coding (JSCC) CS system [11][12]. Although simplified to
noiseless scenario (i.e., equivalent to erasure coding scenario)
for the convenience of analysis, the results and ideas presented
could be applied and extended to modelling JSCC systems
where remote compressive signal acquisition is combined with
reliable and adaptive rateless communications across wireless
access links. Finally, we note that several recently proposed
efficient CS methods based on two-stage approach [1][13][14],
effectively solve the same problem that Raptor coding solved
in rateless scenario [9]: an analogy that could be exploited for
devising new two-stage CS methods.

II. BACKGROUND

We consider compressed sensing (CS) signal acquisition
where a sparse signal x = (z1,22,...,7x) € RV containing
small number K < N of non-zero elements is recovered from
a set of measurements y = (y1,¥y2,...,Ynm) € RM where
K < M < N. The measurement set y = ® - x is obtained as



a sequence of signal projections onto the row-vectors ¢;, 1 <
i < M, of so called measurement matrix ®. We consider
sparse binary row-vectors ¢;, thus each measurement y; is a
sum of a small subset of signal elements.

We define a measurement graph G = (V = SU M, E) as
a bipartite graph consisting of the set S of N signal nodes
(SNs) that correspond to signal elements 1, s, ..., zxN, and
the set M of M measurement nodes (MNs) that correspond
to a sequence of measurements yi, ¥, ...,yp. The set & is
in one-to-one correspondence with non-zero entries of ®, i.e.,
an edge e = (z;,y;) € € of the graph connects a MN y; with
a SN z; iff ¢;(j) = 1. The neighbour set of MN y;: N (y;) =
{z; : (z;,y:) € £}, contains all the SNs that participate in the
measurement y;. The degree d; = |N (y;)| of the MN y; is the
number of edges incident to y;. The graph G may be described
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The sparse structure of G allows for low-complexity sig-
nal reconstruction using iterative message-passing algorithms
previously applied in decoding of sparse-graph codes. This
inspired the authors of Sudocodes scheme to propose such
reconstruction methods [1], later identified to be instances of
LM1 and LM2 decoding algorithms for Low-Density Parity
Check (LDPC) codes [2]. For completeness of exposition, the
two algorithms are repeated below.

LM1 Reconstruction: Let G(¢) be the measurement graph
after ¢ iterations of reconstruction procedure. Given MN values
y and the initial measurement graph G(0), the LM1 operates
iteratively over G by applying the following rules:

LM1 Reconstruction
while (G(t) # 0) A (G(t) # G(t — 1))
begin
[process sequentially all MNs of G(¢)]
Zero-MN Rule:
if (y; = 0)
begin
Va; e N(y;) :xj =05
E:=EN\ (2),v:); V=V \{N (i), ¥}

end

Singleton-MN Rule:

if (y; # 0) A (IN(ys)| = 1)

begin
VZ' € N(yl) = Yis
£LEN (1, )V 2V (i)
Yyr € N(25) @ yr = yx — 253
€= E\ (2 yn)iV = V\ {2}

end

end

LM2 Reconstruction: In addition to LM1 rules, the LM2

IThey are obtained as A\(z) = A’(z)/A’(1) and w(z) = Q' (x)/ (1),
where A’'(z) = dA(x)/dx and Q' (z) = dQ(z)/dz.

procedure adds an additional rule as described next:

LM2 Reconstruction
Equal-MN Rule:
[for each MN y; - process all MNs y; where j > 1]
it (N (yi) "N (y;) = {z}) A (i = ;)
begin
T =Y = Yy
Vay € {N(y;) UN (y;) \ 2} : 21 := 0;
Voo € {N(y;)} : 5 = 5\(me,yz)
p:€
ly

V. € {N( ) (xevyj)’
Vi=V\{Nw),N ( ) ylvyj}
end

III. SYSTEM MODEL AND RATELESS CODING ANALOGY

We set up the rateless CS system model from communica-
tions theory perspective. It is comprised of: i) the measurement
system, ii) the communication channel, and iii) the reconstruc-
tion system (Fig. 1) We next discuss each of the components.
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Fig. 1. Rateless CS system model.

Measurement System: we assume reconfigurable mea-
surement system that sequentially samples the signal x using a
sequence of sparse binary measurement row-vectors ¢;,¢ > 1,
in order to produce a stream of measurements y. The number
of measurements M may be arbitrarily extended in a rateless
fashion. The measurement ¢; is defined by the degree d;; un-
less otherwise stated, the d; neighbours of MN y; are selected
uniformly at random among SNs x. The measurement process
is defined using the MN degree distribution Q(x) which is
used to draw the sequence of degree’s d;. For simplicity, the
measurement process is assumed noiseless.

Communication Channel: the stream of measurements
y are sequentially communicated across a communication
channel to provide an input stream y to the reconstruction
system. For the initial study, we consider idealized case
where the noise-free channel conveys the real numbers without
errors/erasures, i.e., we assume y = y. We leave consideration
of realistic channel models, including noise, erasures, quanti-
zation and specific packetization models, for future work.

Reconstruction System: we consider CS reconstruction
using low-complexity iterative message-passing recovery al-
gorithms. In particular, we assume verification-based recon-
struction (LM1 and LM2 algorithms) is implemented at the
receiver [2][4]. The reconstruction is performed progressively
with the arrival of each new measurement until the signal is
fully recovered, which is signalled back to the measurement
system by a feedback message.

Rateless Coding Perspective: As described above, the mea-
surement system is equivalent to rateless (more precisely, LT)
encoder. In case the acquired signal satisfies x € F2, and
is not sparse, the above scenario reduces to rateless coding
problem. In that case, the reconstruction system that applies
LM1 recovery using only Singleton-MN rule is equivalent to



the standard iterative rateless decoder [8]. Thus rateless coding
system is a special case of the considered rateless CS model.

Measurement system that connects each MN to randomly
uniformly sampled subset of SNs operates akin to equal error
protection (EEP) rateless codes. The key observation that
underlies most of the analysis in the rest of the paper is
that, for the CS setup above, even if the EEP measurement
process is used, it is the reconstruction system that introduces
unequal error protection (UEP) effect among classes of zero
and non-zero SNs. In particular, for LM1 recovery, the Zero-
MN rule boosts recovery of zero-valued SNs, and for LM2
recovery, Equal-MN rule further enhances the UEP effect.
In the following, inspired by analysis of UEP rateless codes
[15][16], we analyze rateless CS system performance using
LM1/LM2 reconstruction algorithms.

It is worth noting that, inspired by the weighted [15] and
the windowed [16] UEP rateless codes, recently, non-uniform
CS schemes are proposed [10][17]. However, the efficiency of
these schemes varies depending on whether the measurement
system possess prior knowledge (or learning capabilities) on
where to search for more important SNs.

IV. ASYMPTOTIC ANALYSIS

We apply standard asymptotic analysis tools for sparse-
graph codes to analyze the above rateless CS system. For sim-
plicity and insight, we consider noiseless measurement system
and ideal channel model - we note that including erasures
of measurements in the channel could be straightforwardly
accommodated in our results.

A. Density Evolution Analysis

A special case of density evolution (DE) analysis called
AND-OR tree analysis is usually applied to asymptotically
evaluate the performance of rateless erasure codes [18]. AND-
OR tree analysis can be reshaped for the CS setup and
LM1/LM2 recovery. The key observation is that recovery prob-
abilities of zero and non-zero valued SNs behave differently
(UEP effect) thus leading to two-dimensional coupled system
of recursive equations as described below.

Lemma 4.1: [LMI1 reconstruction asymptotic analysis]
Let G be described by SN and MN degree distributions
A(z) and Q(z). Let pi* and p{"* denote the asymptotic
probabilities that zero and non-zero SNs are not recovered after
l iterations of the LM1 reconstruction, respectively. Then:
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where o = K /N is called sparsity factor; and we use compact
notation £ = 1 — x (where x is constant, variable or function
evaluation). The initial values are p(()z) = p(()nz) =1

Proof: The proof follows from the fact that, for MN to
recover a non-zero valued SN, it needs to recover all remaining
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Fig. 2. Asymptotic (/N,! — oco) and simulated (N = 5000) performance
of rateless CS as a function of e = M /N for LM1/LM2 recovery (Z and NZ
denotes zero and non-zero coefficients, respectively).

zero and non-zero SN neighbours. In contrast, to recover zero-
valued SN, MN needs to know only its non-zero valued SN
neighbours, after which its value drops to zero thus revealing
remaining zero-valued SN neighbours.

In CS, similarly to rateless coding scenario, the measure-
ment subsystem can control only (z), while A(z) depends
on how SNs are sampled by MNss. If this selection is uniformly
at random, then A(x) asymptotically tends to the Poisson
distribution, and A(z) = e#<(®*=1_1In the latter, u = Q'(1)
is the average measurement node degree, and € = M/N is
known as the reception overhead in rateless coding, while in
CS, ¢ is the product of the oversampling ratio § = M /K and
the sparsity factor « = K/N.

Lemma 4.2: [LM2 reconstruction asymptotic analysis]
The asymptotic non-recovery probabilities plz) and pl("z) of
LM2 recovery have the same form as equations (1) and (2),
except that in each equation, one of the terms within the inner
sum is updated. In particular, the terms j = 0 in eq. (1) and

j =1 in eq. (2), are respectively replaced by:
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Proof: The proof of LM2 case, as for LM1 case, follows
from detailed analysis of AND-OR tree recovery. For LM?2
case, it is somewhat more involved. The details of both proofs
are relegated to the extended version of this paper.

Example 4.1: Fig. 2 shows asymptotic recovery probabil-
ities (as N — o0) obtained from Lemma I and Lemma 2
for MN-regular CS scheme where Q(z) = 23 after LM1
and LM2 reconstruction of input message of sparsity-factor
a = 0.05 for zero and non-zero input symbols. The same figure
illustrates finite-length simulated performance of both schemes
for signal length N = 5000. We note excellent agreement
between simulation results for large but finite-length signals
and the predicted asymptotic behaviour.

B. EXIT-Chart Analysis

Another useful method to asymptotically analyze sparse-
graph recovery process applies extrinsic information transfer



(EXIT) charts [19]. For erasure coding scenario, EXIT charts
are known to be equivalent to AND-OR tree analysis. For
completeness, and due to the fact that EXIT charts are useful
independently of AND-OR tree analysis, we reshape EXIT-
chart analysis for CS scenario and LM1/LM2 recovery. Due
to space constraints, we provide EXIT-chart description only
for LM1 recovery (the LM2-case follows the same approach).

In the context of CS, EXIT charts track exchange of ex-
trinsic mutual information among two constituent parts of the
measurement graph: the MN-part and the SN-part. However,
due to LM1/LM2 recovery rules that favour zero-valued SN,
the extrinsic mutual information of zero and non-zero valued
SNs behave differently (UEP effect). This leads to two EXIT-
chart pairs as functions of two input (mutual information)
variables, one pair for both MN-part and SN-part processing.

LM1 reconstruction - EXIT functions, MN-part: For
CS scenario and LM1 recovery, EXIT functions of the MN-
part processing are given by the following coupled pair of
functions:

) i—1 .
nz - 1_1 nz i —_r(z i—1—1
Wi =Y w3 (1) rfi - @)
i=1 j=0
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The above EXIT functions map a pair of input (a priori) mutual
information variables (II(IJZV)[ N IX)M ) into a pair of output (a
posteriori) mutual information variables (1\7%) ., 15 ).
LM1 reconstruction - EXIT functions, SN-part: In con-
trast, the two EXIT functions for the SN-part are essentially a

single function applied independently on both input variables:

Ipsy =3 Xi-(1—(1—=Iasn)™). (7)

Thus the above EXIT function maps IXL?N and IX)S v into

Igb?N and IS’)SN, respectively. In usual case, where MNs

sample SNs uniformly at random, the right hand side of eq.
(7) can be reduced to 1 — e #<la.sN

Example 4.2: We generate a sequence of EXIT function
mappings for the CS scheme Q(z) = 230 after LM1 recovery
at the reception overhead ¢ = M/N = 0.2912 of the sparse
input message of sparsity-factor o = 0.05. The process is ini-
tiated at the point (IAZ’)MN, II(f’)MN) = (0,0) and proceeds by
iterative exchange of mutual information among MN and SN-
part until convergence?. The path of convergence (see footnote

2In usual EXIT charts (e.g., in EEP channel coding), the conver-
gence process is represented by a pair of single-variable EXIT functions:
Ig,mN(Ta,mN) and Ig,lsN(IAYSN)' The extrinsic mutual information
exchange either converges to their intersection point (if such exists), or to max-
imum achievable mutual information if I'g aprn(Ta,muN) > Iy 15 y{a,sN)
for all T4 € [0,1]; i.e., if the “tunnel” between the curves is,open. In CS
scenario, due to inherent UEP nature of zero and non-zero SN recovery, we
need 3D-EXIT charts. In this case, convergence depends on the existence
of a “tunnel” among four surfaces over (IXLZ), IAZ>) € [0,1]2. Due to the
space constraints, we do not visualise 3D-EXIT charts here, but only provide
2D-projection of evolution of (I (En?N’ 1 I(EZ)S ) pairs in Fig. 3.
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Convergence path for Q(x)=x
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Fig. 3. Evolution of EXIT chart pairs (I ;Jng)Nv I S)S ) until convergence.

below) ends at the pair (I 5y, Li sy ) = (0.9998,0.9998) in
Fig. 3, which, due to equivalence with DE analysis for erasure
channel, corresponds exactly to the values of LM1 curves (at
e = 0.2912) on Fig. 2.

V. DEGREE DISTRIBUTION OPTIMIZATION

Given the analytic description of the asymptotic behaviour,
the typical next step in the design of rateless coding systems is
the optimization of the degree distribution Q(x). We proceed
the same path for the CS scenario. Using EXIT charts, it was
recently shown (see [20], Chap. 5) that the optimization of
Q(x) (or w(zx)) can be cast as a convex optimization problem.
We apply the same approach on the CS setup.

We focus on the standard case where a MN selects neigh-
bouring SNs uniformly at random. The degree distribution of
SNs converges to A(z) = e#<(®*=1_ Denoting n = A’(1) as
the average SN degree, we have that 7 = pe depends on the
employed MN degree distribution (since p = €2'(1)) and the
reception overhead e. For fixed 7, the recovery probability of
both zero and non-zero SNs is upper bounded by e~", due to
SNs that remain uncovered. Finally, by fixing n (acceptable
error floor), one can search for €(z) that minimizes the
overhead conditioned that the recovery probability of both zero
and non-zero SNs converges to 1 —e~". In other words, among
all Q(z) for which EXIT charts converge (i.e., there exists an

open “tunnel”), we search for the one which results in the
.. alm
minimal overhead € ~ >, ™ i, as formulated below.

i

Degree Distribution Optimization Problem:

asm),

min i ®)
=1 ¢

st w; >0 ©)]

dowi=1 (10)
[J(ET,L;}N(IXLZ)’[X)) 2 [E,lsN(I,(qm)) (11)
I I57) > Ik (1) (12)

Unfortunately, unlike optimizing standard EEP rateless
codes (see [20] and references therein), the above optimiza-
tion problem is much more involved due to constraints (11)
and (12). Namely, once we fix (), the convergence path
consisting of (IgEng)N,IJ(;g ) points becomes fixed (Fig. 3).
Thus the “tunnel” between 3D-EXIT surfaces need not to exist
over the entire domain [0, 1]?, but only over the convergence
path corresponding to a given (x). This dependence of the
constraints (11) and (12) on the optimization variable Q(z) (or
w(x)) is what makes the problem particularly challenging.



TABLE 1. OPTIMIZED LM 1/LM2 DEGREE DISTRIBUTIONS

Recovery | Optimized w(z) (dgn";)r = 30) Reception Avg. SN

method overhead ¢ | degree n

LM1 0.573822° + 0.0685227 + ... | 0.2443 6
...0.14212%8 + 0.215622°

LM2 0.3511z%Y + 0.10542%7 + ... | 0.1770 4.675
...0.216322% 4 0.32722%°

Using the insight from constraints (9)-(12), we were able
to obtain optimized degree distributions by performing random
sequential search over the probability simplex (Table I).

VI. DISCUSSION AND FUTURE WORK

As a conclusion, we comment on the rateless CS system
features that we find promising for future research.

A. Two-Stage Reconstruction in Rateless CS

In rateless coding, it is well known that sampling SNs
uniformly at random using the degree distribution (x) of
constant average degree 7 yields an error floor due to uncov-
ered SNs [8][9]. The same problem is noted in CS schemes
that apply sparse binary measurement matrices and resolved
using two-stage reconstruction methods [1][13][14]. Therein,
after the first stage (that employs sparse-graph approaches
and iterative recovery methods) recovers majority of SNs, the
error floor is cleaned by switching to more powerful but more
complex measurement/recovery methods (e.g., a combination
of non-sparse measurements and matrix inversion [1], or basis-
pursuit [13], or iterative hard-thresholding [14]). This post-
coding approach is in sharp contrast to how this problem is
solved in rateless coding, where precoding approach is used
[9]. With precoding in the CS scenario, the measurement
system could initially produce a fraction of additional SNs,
called intermediate SNs, from the original ones. Then, rateless
CS approach (as described earlier) could be applied over both
original and intermediate SNs and the resulting Raptor-like
(bi-layer) graph could be decoded using the iterative methods.

B. Adaptivity Feature of Rateless CS

In contrast to the rateless coding encoder, the CS mea-
surement system may have significant abilities to learn the
signal along measurement process. As a simple example, every
zero-valued MN reveals its zero-valued SN neighbours that are
no longer relevant in subsequent measurements. Some initial
steps towards the design of adaptive CS using sparse binary
measurements was part of our prior work [21], however, we
believe that this topic deserves further analysis.

C. Noise-Resistance Feature of Rateless CS

Majority of the real-world applications of the rateless CS
system would involve additive noise, either at the measurement
subsystem or within the communication channel, or both. For
simplicity and convenience of analysis, our work in this paper
is based on the noiseless assumption. This is consistent with
the nature of recovery process since LM 1/LM2 methods cannot
cope with noisy coefficients [4][5]. Noisy extensions have been
considered elsewhere [3][14], however, we believe that there
is a room for improvement in their simplicity and efficiency.
As a promising path in this direction, we identify adaptation of

approximate message passing (AMP) [22], originally proposed
for high-density graphs, to the rateless CS model.

REFERENCES

[1] S. Sarvotham, D. Baron and R. G. Baraniuk: “Sudocodes: Fast Mea-
surement and Reconstruction of Sparse Signals,” [EEE Int’l Symp.
Information Theory - ISIT 2006, pp. 2804-2808, Seattle, USA, July 2006.

[2] M. Luby and M. Mitzenmacher:*Verification-based decoding for packet-
based low-density parity-check codes,” IEEE Trans. Information Theory,
Vol 51, No 1, pp. 120-127, January 2005.

[3] D. Baron, S., Sarvotham, R. G. Baraniuk: “Bayesian compressive sensing
via belief propagation,” IEEE Trans. Signal Processing, Vol. 58, No. 1,
pp- 269-280, January 2010.

[4] F Zhang and H. D. Pfister: “Verification decoding of high-rate LDPC
codes with applications in compressed sensing,” IEEE Trans. Information
Theory, Vol. 58, No. 8, pp. 5042-5058, August 2012.

[5] Y. Eftekhari, A. Heidarzadeh, A. H. Banihashemi and I. Lambadaris:
“Density Evolution Analysis of Node-Based Verification-Based Algo-
rithms in Compressed Sensing,” IEEE Trans. Information Theory, Vol.
58, No. 10, pp. 6616-6645, October 2012.

[6] V. Chandar, D. Shah and G. W. Wornell: “A simple message-passing
algorithm for compressed sensing,” IEEE Int’l Symp. Information Theory
- ISIT 2010, pp. 1968-1972, Austin, USA, June 2010.

[7]1 V. Ravanmehr, L. Danjean, B. Vasic and D. Declercq: “Interval-passing
algorithm for non-negative measurement matrices: Performance and
reconstruction analysis,” IEEE Journ. on Emerging and Sel. Topics in
Circ. and Syst., Vol. 2, No. 3, pp. 424-432, September 2012.

[8] M. Luby: “LT Codes,” Proc. IEEE Symp. Found. of Comp. Science
(FOCS), Vancouver, Canada, Nov. 2002.

[9] A. Shokrollahi: “Raptor codes,” IEEE Trans. Info. Theory, Vol. 52, No.
6, pp. 2551-2567, June 2006.

[10] N. Rahnavard, A. Talari, and B. Shahrasbi, “Non-uniform compressive
sensing,” in 2011 Annual Allerton Conference, pp. 212-219, 2011.

[11] S. Feizi, and M. Medard, “A power efficient sensing/communication
scheme: Joint source-channel-network coding by using compressive
sensing,” in 2011 Annual Allerton Conference, pp. 1048-1054, 2011.

[12] A. Shirazinia, S. Chatterjee, and M. Skoglund, “Joint source-channel
vector quantization for compressed sensing,” IEEE Trans. Signal Pro-
cessing, 62(14), pp. 3667-3681, 2014.

[13] A. Talari and N. Rahnavard, “GBCS: A two-step compressive sensing
reconstruction based on group testing and basis pursuit,” in IEEE Military
Communications Conf. MILCOM 2011, pp. 157-162, 2011.

[14] Y. Ma, D. Baron and D. Needell, “Two-part reconstruction in com-
pressed sensing,” IEEE GlobalSIP 2013, Austin, USA.

[15] N. Rahnavard, B. N. Vellambi, and F. Fekri, “Rateless codes with
unequal error protection property,” IEEE Trans. Info. Theory, 53(4), pp.
1521-1532, 2007.

[16] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. J.
Piechocki, “Expanding window fountain codes for unequal error pro-
tection,” IEEE Trans. Communications, 57(9), pp. 2510-2516, 2009.

[17] Y. Liu, X. Zhu, L. Zhang, and S. H. Cho, “Expanding window
compressed sensing for non-uniform compressible signals,” Sensors,
12(10), pp. 13034-13057, 2012.

[18] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of
random processes via and-or tree evaluation,” ACM-SIAM Symp. on
Discrete Algorithms (SODA), pp. 364-373, 1998.

[19] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Comms., 49(10), pp.1727-1737, Oct.
2001.

[20] 1. Hussain, “Analysis and Design of Rateless Codes,” PhD Thesis, KTH
- Royal Institute of Technology, Stockholm, Sweden, 2014.

[21] D. Vukobratovic and A. Pizurica, “Compressed Sensing Using Sparse
Adaptive Measurements,” Symp. Inform. Theory in the Benelux - SITB
2014, Eindhoven, May 2014.

[22] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-

rithms for compressed sensing,” Proc. National Academy of Sciences,
106(45), pp. 18914-18919, 20009.



