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Abstract

Compressed sensing (CS) using sparse measurement matrices and iterative message-
passing reconstruction algorithms have been recently investigated as a low-complexity
alternative to traditional CS methods. In this paper, we investigate the adaptive version
of well-known Sudocodes scheme, where the sparse measurement matrix is progres-
sively created based on the outcomes of previous measurements. Inspired by resem-
blance with rateless coding, we provide a detailed analysis of the adaptive Sudocodes
approach in combination with the verification-based LM1 reconstruction. The results
show that the adaptivity is a promising feature for reducing complexity and improving
performance of CS methods based on sparse measurement matrices.

1 Introduction
Recovery of strictly sparse signals using sparse measurement matrices and iterative message-
passing reconstruction algorithms was first discussed by Sarvotham et al [1]. The recon-
struction algorithm applied in their Sudocodes scheme was later identified to be a version
of the verification decoding algorithm (LM2) proposed for the decoding of Low-Density
Parity Check (LDPC) codes [2]. Inspired by the iterative Belief-Propagation (BP) decod-
ing of LDPC codes, the same authors extended the Sudocodes scheme into a more general
framework called Compressed Sensing via Belief Propagation (CSBP) [3], that trigerred
significant interest in CS methods using sparse measurement matrices by both compressed
sensing and sparse-graph coding community.

CSBP is a powerful solution that introduces factor graph modeling and BP reconstruc-
tion to recover sparse or approximately sparse signals from noisy measurements. However,
CSBP is rather complex both from the analysis and implementation perspective, since the
messages exchanged across factor graph represent continuous probability distributions. As a
simplification of CSBP amenable to fast implementation and rigorous analysis, verification-
based decoding algorithms known as LM1 and LM2 algorithm [2] for noise-free CS recovery
of strictly sparse signals have been investigated [4,5]. A related class of reconstruction algo-
rithms are so called Interval-Passing Algorithms (IPA) proposed in [6] and recently analyzed
using coding-theoretic tools [7].

The approaches mentioned above apply non-adaptive design of measurement matrices.
Recently, benefits of CS methods with adaptive measurement matrices have been demon-
strated (see [8–12] and the references therein). In an adaptive scenario, the measurements
are constructed sequentially making use of the feedback from the observations, such that
the sensing energy can be focused on the suspected non-zero components. Most of the re-
ported adaptive CS approaches focus on improving the performance of the support recovery
in the presence of noise (reducing the required signal to noise ratio), either by using adaptive
Gaussian random matrices [9], collections of independent structured random matrices [10]
or repeated bisection of the signal support [11,12]. Much less work has been done on explor-
ing the benefits of adaptive designs for the reduction of the number of measurements. The
results in [8] indicate great potentials in this respect. To the best of our knowledge, adaptive
designs for the CS schemes based on message passing, such as Sudocodes or generalizations



thereof have not been reported yet. In this paper, we introduce and analyze an adaptive ver-
sion of Sudocodes scheme with LM1 recovery. We provide in-depth analysis of this scheme
using tools borrowed from analysis of rateless codes. Our results demonstrate that the adap-
tivity represents a promising feature for further improvement of CS methods based on sparse
measurement matrices.

2 Adaptive CS System Model
We observe a setup where the goal is to recover a strictly sparse signal x = (x1, x2, . . . , xN) ∈
RN containing K ≪ N non-zero components (the remaining N −K being zero) from a set
of measurements y = (y1, y2, . . . , yM) ∈ RM where K < M ≪ N . The CS system model
comprises the adaptive measurement subsystem, communication channel and the reconstruc-
tion subsystem.

The adaptive measurement subsystem sequentially samples the signal x using a sequence
of measurement vectors ϕi, 1 ≤ i ≤ M , in order to produce a stream of measurements y,
where ϕi is a sparse vector of length N and yi = ϕi · xT . The number of measurements M
is not fixed in advance and may be arbitrarily extended. Measurement vectors are adaptively
designed, i.e., ϕl = f({ϕi}i<l, {yi}i<l). The measurement vector ϕi is defined by the degree
di: the number of non-zero elements where, unless otherwise stated, the positions of di
non-zero values are selected uniformly at random among the elements of x. Overall, the
measurement process can be described as y = Φ · xT , where the measurement matrix Φ is a
sparse M ×N matrix.

The measurements yi are sequentially communicated to the reconstruction subsystem via
a communication channel. We consider an ideal noise-free channel that conveys real numbers
without errors/erasures, leaving considerations of imperfect channels and quantization for
future work.

For the reconstruction subsystem, we consider iterative verification-based LM1 and LM2
algorithms [2, 4]. Both algorithms exchange messages across a measurement graph, which
is a bipartite graph consisting of N coefficient nodes that correspond to signal coefficients x
and M measurement nodes that correspond to a sequence of measurements y. Edges of the
graph connect each measurement node yi to its neighbor set N(yi) of coefficients determined
by non-zero positions of the measurement vector ϕi. Thus the degree di = |N(yi)| is the
number of edges incident to yi. Edges in the graph are in one-to-one correspondence with
non-zero entries of the measurement matrix Φ. If the non-zero entries of Φ are arbitrary
reals, then the graph is weighted and the edge weights correspond to real entries of Φ. For
simplicity, we assume binary matrix Φ, thus weights are not needed. Below, we briefly
describe LM1 and LM2 algorithms noting that we assume they operate progressively with
the arrival of each new measurement until the signal is fully recovered (i.e., all coefficients
are verified).

LM1: The LM1 operates iteratively over the measurement graph as follows: 1) If yi = 0
then ∀xj ∈ N(yi) : xj = 0; Verify all xj : xj ∈ N(yi). 2) If (yi ̸= 0) ∧ (|N(yi)| = 1) then
xj = yi for the node xj ∈ N(yi); Verify xj . 3) Remove verified coefficient nodes and their
incident edges from the graph; Subtract out verified values from remaining measurements. 4)
Repeat until the LM1 successfully recovers the signal or does not progress in two consecutive
iterations.

LM2: Besides the above LM1 rules, LM2 adds the additional one: If (N(yi) ∩N(yj) =
{xk}) ∧ (yi = yj) then xk = yi = yj and ∀xl ∈ {N(yi) ∪ N(yi) \ xk} : xl = 0; Verify all
xl ∈ {N(yi) ∪N(yi) \ xk}.

Note that, in the above setup, if ϕi’s are created non-adaptively using fixed degree di = L,
we obtain the (first stage of the) Sudocodes scheme. Furthermore, if x ∈ FN

2q , K = N (i.e.,
the signal is non-sparse), ϕi’s are created independently (non-adaptively) using degree’s di
drawn from a given degree distribution Ω(x), the channel is 2q-ary erasure channel, and we
apply LM1 decoder, we obtain standard rateless (LT) coding scenario [13].
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Figure 1: Asymptotic performance of Sudocodes scheme.

3 Asymptotic Analysis
Using sparse-graph coding methodology, the measurement graph may be described using

coefficient and measurement node degree distributions Λ(x) =
∑d

(c)
max

i=1 Λi · xi and Ω(x) =∑d
(m)
max

i=1 Ωi · xi, where Λi and Ωi are the fraction of coefficient and measurement nodes of
degree i, respectively, while d(c)max and d

(m)
max are maximum coefficient and measurement node

degrees. It is also useful to define so called edge-oriented degree distributions λ(x) =∑d
(c)
max

i=1 λi · xi−1 = Λ′(x)/Λ′(1) and ω(x) =
∑d

(m)
max

i=1 ωi · xi−1 = Ω′(x)/Ω′(1) [14]. For a
given measurement graph, one can (asymptotically) analyze probabilities of reconstruction
of signal coefficients using well established tools from coding theory. For LM1 reconstruc-
tion algorithm, the iterative “graph-peeling” process is the same as the rateless decoding
over erasure channels, with the only difference being signal sparsity and existence of zero-
valued measurements. Below, we provide and-or-tree analysis of non-adaptive Sudocodes
CS scheme in combination with LM1 recovery:

Lemma 3.1 Let p(z)l and p
(z̄)
l denote the probabilities that a zero and non zero signal coeffi-

cient, respectively, is not recovered after l iterations of LM1 recovery. Then

p
(z̄)
l = λ

(
1−

d
(m)
max∑
i=1

ωi ·
i−1∑
j=0

(
i− 1

j

)
(αp̄

(z̄)
l−1)

j · (ᾱp̄(z)l−1)
i−1−j

)
(1)

p
(z)
l = λ

(
1−

d
(m)
max∑
i=1

ωi ·
i−1∑
j=0

(
i− 1

j

)
(αp̄

(z̄)
l−1)

j · ᾱi−1−j
)
,

where α = K/N is sparsity-factor, we use compact notation x̄ = 1 − x, and the recursion
is initialized at p(z)0 = p

(z̄)
0 = 1. Finally, pl = αp

(z̄)
l + ᾱp

(z)
l is the average probability that a

signal coefficient is unrecovered after l iterations of LM1.

Proof: The proof follows directly from and-or-tree analysis [14] by exhaustively analyz-
ing all cases when zero and non-zero valued coefficient nodes are recovered∗.

∗The above Lemma is exact and improves over an approximate version provided in [15](Lemma 2), which
does not exhaustively cover all recovery scenarios for zero-valued nodes.



Example 3.1 Fig. 1 shows asymptotic recovery probabilities (as N → ∞) obtained from
Lemma 1 for Sudocodes scheme that applies Ω(x) = x20 after LM1 recovery of input mes-
sage of sparsity-factor α = 0.05 for zero and non-zero input symbols and the average value.

In CS, similarly as in rateless coding, the measurement subsystem can control only Ω(x),
while Λ(x) depends on how signal coefficients are sampled to participate in each measure-
ment. If this selection is uniformly at random, as in the case of Sudocodes (as well as rate-
less codes), then Λ(x) asymptotically tends to the Poisson distribution, and λ(x) = eµϵ(x−1),
where µ = Ω′(1) is the average measurement node degree, and ϵ = M/N is known as the
reception overhead in rateless coding, while in CS, ϵ is the product of the oversampling ratio
θ = M/K and the sparsity factor α = K/N .

4 Adaptive Sparse Measurements
In the following, we propose usage of adaptive sparse measurements in Sudocodes scheme
and analyze its performance in combination with the LM1 recovery. The adaptive version of
Sudocodes relies on two simple modifications to the measurement subsystem:

Modification 1: If the measurement subsystem records a measurement yi = 0, the signal
coefficients xj ∈ N(yi) are not considered in following measurements. Consequently, by
eliminating known zeros, the size of the problem N decreases and the sparsity-factor α =
K/N increases as the measurement process evolves.

Modification 2: As the sparsity-factor α changes, the measurement subsystem selects the
optimal degree d∗ = d∗(α) of each measurement row-vector ϕi that maximizes the expected
number of zero-valued signal coefficients that will be recovered by the following measure-
ment.

For a given sparsity-factor α = K/N , the optimal degree d∗ is obtained as follows. A
measurement of degree d is a zero-measurement with probability P0 =

(
N−K

d

)
/
(
N
d

)
. The

expected number of zero-valued signal coefficients recovered by a measurement of degree d
is n0 = P0 · d. The optimal strategy selects d = d∗ that maximizes n0:

d∗ = argmax
d

{n0} = argmax
d

{(
N−K

d

)(
N
d

) · d
}
. (2)

For a fixed and small α, using Stirling approximation† of binomial coefficients that holds
asymptotically as N → ∞, and taking the logarithm of the argument of maximization (which
does not change the optimal d), we obtain:

log(n0) = d log(
N −K

d
− 1

2
)− d log(

N

d
− 1

2
) + log d (3)

= d log(
2N(1− α)− 1

2N − 1
) + log d (4)

≈ d log(1− α) + log d. (5)

Taking partial derivative of the above with respect to d and making it equal to zero, we obtain:

d∗ ≈ (log
1

1− α
)−1, (6)

where the approximation‡ is asymptotically tight for small α and N → ∞. The optimal
degree d∗ asymptotically depends only on the sparsity-factor α. In addition, d∗ calculated
using (6) closely matches the one calculated by (2) for finite N ,K.

†log
(
n
k

)
≈ k · log(n/k − 0.5) + k − 0.5 log(2πk).

‡We note that the above result is derived in [16](Lemma 2) in order to optimize the (non-adaptive) Su-
docodes scheme. We rederive it here using different approximation that we use in the sequel of the paper.
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Figure 2: Evolution of Φ during measurement process.

To analyze the proposed adaptive Sudocodes scheme, we follow the evolution of the of
the measurement matrix Φ over the measurement process. Starting from the initial sparsity-
factor α0 = K/N , the first measurements are performed using the degree calculated from
(6) and rounded to the nearest integer d∗0 = ⌊d∗(α0)⌉. As the measurement system removes
known zero-coefficients during the measurement process, the process passes through the
sequence of increasing α-values {α1, α2, . . .} at which the optimal d∗-values decrement, re-
sulting in the corresponding set {d∗1, d∗2, . . .}§. The total of mi measurements are generated
using the degree d∗i during which the sparsity-factor is increased from αi to αi+1. The evo-
lution of sparsity-factor α = K/N(m) with the number of measurements m,m ≥ 1, can be
described recursively:

N(m+ 1) = N(m)− n∗
0 = N(m)−

(
N(m)−K

d∗

)(
N
d∗

) · d∗. (7)

Replacing (6) into (5), we obtain the approximation of the second term in (7), which, after
dividing (7) by K results in recursive evolution of α(m):

α−1(m+ 1) = α−1(m)− 1

K
e−(1+log(log 1

1−α(m)
)). (8)

Although mi can be implicitly obtained from (8) by counting the number of recursions in
the interval (αi, αi+1), it can be approximated by assuming that αi remains constant during
generation of degree-d∗i measurements:

mi =
K(αi+1 − αi)

α2
i e

−(1+log(log 1
1−αi

))
. (9)

We approximate the evolution of Φ during the measurement process as follows. Firstly,
observe a sequence of matrices Φd∗i

, i ≥ 0 of dimension mi × Ni, where Ni = K/αi, that
represent groups of measurements of the same degree d∗i . Then, we define the sequence of
measurement matrices Φi, i ≥ 0, where Φl is obtained from the set of Φd∗i

, 0 ≤ i ≤ l by
removing the columns corresponding to all the zero-valued coefficients identified after the
first Ml =

∑l
i=0mi measurements. This is shown in Fig. 2, where the columns are sorted

so that the rightmost K columns correspond to the non-zero signal coefficient. In addition,
starting from the first column, the zero-valued coefficients are sorted in the order they are
identified by a sequence of measurements.

§The αi values can be obtained from (6) as αi = 1− e−1/d
(th)
i , where d

(th)
i =

d∗
i−1+d∗

i

2 .



The degree distributions of Φi sequence are approximated as follows. In the non-adaptive
case, Ω(x) tends to the Poisson distribution with the average value µϵ = µM/N = Mµ/N =
Mp, where p is the probability that a coefficient node is selected by a measurement. For the
adaptive case, p is a function of α:

p(α) =
d(α)

N(α)
=

α

K
· 1

log 1
1−α

. (10)

However, by Taylor expansion of log(1 + x) around x ≈ 0 and neglecting higher-order
terms, one obtains log(1 + x) ≈ x, thus for large interval around α > 0, p behaves as
p ≈ 1/K. Thus we approximate Ω(x) of the matrix Φl as a Poisson distribution with
the mean value Mlp = Ml/K. Regarding Λ(x) distribution of Φl, it is a mixture of l
hypergeometric distributions H(Ni, Nl, d

∗
i ), 1 ≤ i ≤ l, weighted by their relative number of

measurements mi/Ml.
Finally, we have all ingredients to track the recovery probability of adaptive Sudocodes

scheme by replacing parameters of the sequence of Φl’s into Lemma 3.1¶. Note from the
equations in this section that the entire analysis depends only on initial and final sparsity-
factors α0 and αl and the number of non-zero valued coefficients K.

5 Numerical and Simulation Results
We illustrate the performance of Sudocodes (SC) and adaptive-SC (aSC) scheme using
asymptotic analysis following Lemma 3.1 and equations in Sec. 4. For SC scheme and
the signal of sparsity factor α = 0.05, the optimal degree d∗ = 20. This is observable
from Fig. 3 where we present recovery probability Pr = 1 − pl→∞ for different values of
d = {5, 10, 15, 20, 30} as a function of the reception overhead ϵ. The SC performance curves
hold asymptotically as K,N → ∞. For finite K = 50 (N = 1000), in Fig. 3 we provide
an example curve obtained by simulations (we note that simulated curves converge to the
asymptotic one for large K).

For aSC scheme, we start from α0 = 0.05 and adaptively generate measurements until
successful recovery. We present the performance for both asymptotic and simulated case
(K = 50). Firstly, note that for the simulated case, aSC slightly outperforms SC (we ob-
tain similar performance advantage of aSC over SC for larger values of N ). This comes in
combination with significantly sparser measurement matrix since, during the measurement
process, the initial d∗ = 20 will gradually drop to as low as d∗ = 1 (if the recovery process
is not terminated earlier). Asymptotic analysis predicts well the simulated curve, however,
at large ϵ-values, the performance prediction of the error-floor is conservative due to the
approximation of (10) using p = 1/K that holds for small α.

Fig. 3 also shows SC scheme for d = 30 > d∗. In this case, the performance deteriorates
for intermediate ϵ-values and reaches Pr close to one for larger ϵ compared to the d∗ case,
however, the larger d values exhibit lower error-floors∥. In rateless coding, the error-floor
is removed by precoding [17] (which could be also applied in CS by taking a set of inter-
mediate “pre-measurements”), whereas in Sudocodes CS, it is cleared by postprocessing in
the second phase that applies small fraction of dense measurements and stronger recovery
algorithms [1] [16] [18].

¶Note that there are no zero-measurements in Φl. Thus, in eq. (2) of Lemma 3.1, we exclude the case j = 0
corresponding to a zero-measurement.

∥The error-floor follows from non-zero probability that a signal coefficient does not participate in any of the
generated measurements [17].
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Figure 3: Sudocodes (SC) and adaptive-SC (aSC) performance.

6 Conclusions
We introduced and analyzed adaptive Sudocodes scheme. For LM1 decoder, the adaptation
is shown to be simple yet resulting in slightly improved performance and reduced encod-
ing/recovery complexity. For the future work, we will explore adaptation in Sudocodes
scheme with LM2 decoder which increases learning opportunities at the measurement sub-
system, however, under more complex analysis of LM2 decoding. We will also further inves-
tigate connections between rateless coding and CS and how the two concepts could converge
in efficient joint source channel coding solutions (as indicated by our system model in this
work.)
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