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Passive error concealment for wavelet-coded
I-frames with an inhomogeneous Gauss-Markov

Random Field Model
Joost Rombaut, Aleksandra Pižurica, Member, IEEE, and Wilfried Philips, Member, IEEE,

Abstract— In video communication over lossy packet networks
(e.g., the Internet) packet loss errors can severely damage the
transmitted video. The damaged video can largely be repaired
with passive error concealment, where neighboring information is
used to estimate missing information. We address the problem of
passive error concealment for wavelet coded data with dispersive
packetization. The reported techniques of this kind have many
problems and usually fail in the reconstruction of high frequency
content. This paper presents a novel locally adaptive error
concealment method for subband coded I-frames based on an
inhomogeneous Gaussian Markov Random Field model. We
estimate the parameters of this model from a local context
of each lost coefficient, and we interpolate the lost coefficients
accordingly. The results demonstrate a significant improvement
over the reported related methods both in terms of objective
performance measures and visually. The biggest improvement of
the proposed method compared to the state-of-the-art in the field
is the correct reconstruction of high frequency information such
as textures and edges.

Index Terms— Video reconstruction, image reconstruction,
video communication, image communication, error concealment,
wavelet coding.

I. INTRODUCTION

In lossy packet networks such as the Internet, packets can
be dropped, e.g., in case of network congestion. Even over
highly protected fiber-based ATM networks, error bursts or
processing delays can cause loss of data packets. This data loss
is particularly annoying for compressed data, as the loss of a
single bit can in some cases make the rest of the data stream
unusable. These problems are typically solved by protecting
the data (e.g., forward error correction, error control coding)
or by implementing a protocol for resending lost packets. A
good overview of the corresponding Active Error Concealment
techniques, is given in [1]. However, even with data protection,
if the error rate is too high (exceeding the error correction
capacity), the receiver may not be able to decode the correctly
received information. Also, in certain applications, packet
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retransmission is not an option, either because it is too slow
(e.g., for real time video) or because there is no return channel
(e.g., broadcasting). In these cases, Passive Error Concealment
(also known as post processing error concealment) is essential.
In video applications, passive error concealment [1] exploits
the remaining redundancy within and between frames: missing
pixel values (or coefficients, or blocks) are estimated from
the correctly received neighboring pixels (or coefficients, or
blocks). An implicit assumption by passive error concealment
schemes is that the probability of a simultaneous loss of two
or more neighboring pixels (or coefficients, or blocks) is low.
This maximal availability of correctly received neighbors is
ensured by spreading spatially adjacent pixels (or coefficients,
or blocks) over different packets. This is called dispersive
packetization and is also known as multiple description coding
[2]. Our method requires a dispersive packetization scheme,
but it is not restricted to any particular scheme.

We focus on error concealment for wavelet-coded intra
coded frames (I-frames). In particular, these I-frames are the
reference frames in traditional Motion Compensated Predic-
tion (MCP) coding, or the lowest frequency band in Motion
Compensated Temporal Filtering (MCTF) coding which is
mainly used in wavelet-based scalable video coding. In this
work, we do not address the concealment for lost motion
vectors nor for missing samples from the predictive frames
(P-frames) in the MCP approach or for missing samples from
the high temporal frequency bands in the MCTF approach.
The lost motion vectors can be estimated using motion vec-
tor reconstruction methods from Discrete Cosine Transform
(DCT) based video coding, e.g., vector median filters [3], [4].
A missing sample from a P-frame can be estimated as the
median of its available spatial neighbors as shown in [2]. The
optimization of this concealment scheme for P-frames will be
the topic of further research. As the reconstruction of wavelet-
coded I-frames is in essence equal to the reconstruction of
wavelet-coded images, we will use the terms image and
I-frame interchangeably in the rest of this paper, and we
will also compare our method to the existing passive error
concealment methods for wavelet-coded images. To evaluate
our error concealment scheme for wavelet-coded I-frames,
we compress images by dispersively spreading neighboring
wavelet coefficients over different packets, and by coding these
packets independently from each other with the coder of [2].
Then we simulate the loss of coded packets. In reality, if a
packet gets lost during the transmission, the missing data are
typically replaced by zeros, which results in annoying black
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holes in the incompletely received images. In our simulations,
we recover the underlying image by an adaptive interpolation
of the lost coefficients.

A. Related Work
Compared to more common block-based approaches, rel-

atively few passive concealment methods were reported for
wavelet coded images and video [2], [5]–[7]. For the recon-
struction of lost low frequency coefficients (the scaling coeffi-
cients), the existing methods are mainly traditional error con-
cealment algorithms from the image domain which are slightly
adapted to be able to work in the wavelet domain. Bilinear
interpolation (the lost coefficient is replaced by the average of
its four adjacent neighbors) has proved very efficient despite
its simplicity [2]. The results of this simple interpolation are
quite good in smooth areas but artifacts arise near edges and
other discontinuities. In [5], a bicubic interpolation method
was proposed. Correct edge placement is achieved by adapting
the interpolation grid in horizontal and/or vertical direction
according to the high frequency content. The method in [5]
was only tested on uncompressed images and not in a realistic
compression scenario. In [6], a Maximum A Posteriori (MAP)
approach was applied using a Markov random field prior.
This technique gives slightly better results than bilinear inter-
polation, but it requires much more computational effort. In
our previous work [7], the lost low frequency coefficients are
reconstructed with a locally adaptive interpolation scheme. For
each lost coefficients, the interpolation weights are estimated
based on the interpolation errors that arise from interpolating
nearest correctly received neighbors in both horizontal and
vertical directions. While this method of [7] interpolates the
lost data from the immediate horizontal and vertical neighbors
like the proposed method, the concept behind determining
the weights is totally different. In our earlier method [7], we
derive a closed form expression under the side constraint that
the sum of the horizontal and vertical interpolation weights
equals 1. In the proposed method, we employ the GMRF prior
model and all the underlying expressions are different. For the
reconstruction of lost high frequency coefficients (the wavelet
coefficients), even fewer methods were proposed. In [2], [5],
[7], lost coefficients from the LH and HL-subbands are
reconstructed by a one dimensional linear interpolation in the
direction where there has been only low-pass filtering in the
wavelet transform. The lost coefficients in the HH-subbands
are set to zero as errors in these subbands are less visible. In
[6], lost high frequency coefficients are reconstructed with a
simplified version of the MAP approach that is used for the
lost low frequency coefficients.

Other recent approaches are the block-based techniques of
[8] and [9]. The approach of [8] is very different from ours
because it recovers complete blocks of wavelet coefficients
(for block-based wavelet coders such as JPEG2000) simulta-
neously, while we consider the case of (more or less) isolated
lost coefficients because of the dispersive packetization of
coefficients. Traditional error concealment algorithms such
as [9] also recover complete pixel blocks for block-based
image coders such as JPEG and JPEG2000, and are also not
applicable in a non-block-based coding approach.

B. The Proposed GMRF Approach

In this paper, we propose a reconstruction scheme for
both low frequency and high frequency coefficients based
on a Gauss-Markov Random Field (GMRF) model. Markov
Random Field (MRF) models [10] have already proved to
be very effective for image processing, as these models are
ideal to model global (joint) image statistics in terms of local
spatial interactions. In a typical gray-level image the intensity,
i.e., the brightness level of each pixel, is very similar to
the intensities of surrounding pixels. Therefore, the concept
of a neighborhood, which is usually a local surrounding,
is central for MRFs. MRF models have been successfully
applied in different areas of image processing, such as: texture
modeling and classification [11]–[13], image restoration [14],
[15], segmentation of noisy and textured images [16]–[20],
deinterlacing [21], and reconstruction of lost pixel blocks in
DCT image coding [22]. Although the wavelet transform tends
to decorrelate the image, neighboring coefficients are still
statistically dependent to some degree [23]. Significant wavelet
coefficients appear in spatial clusters. The scaling coefficients
(a low pass filtered, subsampled version of the original image)
closely resembles the original image. Therefore, an MRF
model is also very suitable for wavelet-based image processing
such as wavelet-based image denoising [24], [25], and recon-
struction of lost coefficients in wavelet based image coding
[6]. In image processing, commonly used MRF models are
automodels [26]. An important class, the auto-normal models
(also known as Gaussian Markov Random Field models) [12],
[27], [28] are often used, e.g., for segmentation [16], [17],
[19] and texture analysis [12]. In most of these applications,
the MRF model is homogeneous which means that the clique
potential does not depend on the position in the image. We
develop an inhomogeneous GMRF model with local parameter
estimation and apply it to modeling statistical dependencies
among the wavelet coefficients within a given subband. Based
on this model, we develop a passive error concealment method.

The clique potential (i.e., the function that controls the local
statistical properties) of a GMRF model is of quadratic form,
which tends to smoothen the processed image. As noted in
[22], this type of potential function may result in blurred es-
timates when reconstructing lost pixel blocks. To address this
issue, the authors of [22] use (a modified version of) the Huber
function [29], which does not penalize the edges as heavily
as a quadratic function, and thus preserves edges and other
structural information much better. The drawback of using
the piecewise Huber function is that the optimal solution, i.e.,
the minimization of the energy function, can only be reached
by iteratively recalculating the lost pixels. In [22], this is
done with the iterative conditional modes algorithm, resulting
in slower processing. In a related MRF-based approach for
wavelet coded images [6], the clique potential is also a Huber
function. There, the minimization of the energy function is
based on the golden search procedure, which also needs a
lot of operations for each lost coefficient. In [6], the clique
potentials for each lost coefficient depend on the corresponding
high-frequency coefficients. While this approach allows a nice
adaption of the clique potentials to local edge structures, it also
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poses some problems. Firstly, it hinders parallel processing
of the subbands (because of possibly missing high-frequency
coefficients need to be reconstructed first). Secondly, in some
important coding strategies like zero-tree based coders [30],
the high frequency coefficients necessary for the reconstruction
of lost low frequency coefficients according to this scheme are
also lost since they are encoded in the same zero-tree.

The main contribution of this paper is a new error con-
cealment method for wavelet coefficients based on an original
inhomogeneous GMRF model. The GMRF model is attractive
because of its computational simplicity. Its quadratic clique
potentials yield a fast calculation of the lost data without
iterative recalculation as is the case for more complex piece-
wise clique potentials such as in the method of [6]. However,
the homogeneous GMRF model tends to smooth out the
discontinuities. Therefore we introduce an original inhomo-
geneous model, which keeps the simplicity of the ordinary
GMRF but enables an efficient local adaptation. This is done
through local estimation of the parameters of the GMRF
model. Our approach offers several improvements over the
competing recent schemes like the MRF-based scheme [6] and
our previous method [7]. Firstly, the reconstruction quality in
textured areas is much better (up to 2.5 dB in PSNR and with
obvious visual differences). Secondly, the proposed method
is much faster (e.g., the speed improvement over [6] is a
factor of 10), and suitable for a parallel implementation which
can yield a further speed-up. This is interesting especially
when we consider the reconstruction of I-frames in video
communication. In this case, the communication delay should
be kept as small as possible. The proposed method is also less
restrictive in terms of the coders than other related methods
like [6]: contrasting to these approaches, our method can be
used with, e.g., tree-like coders as in [30], wavelet layered
PCM coders as in [2], the quadtree-limited coder as in [31],
. . .

In the next section, we introduce the Gauss-Markov Random
Field (GMRF) model. In Section III, we explain the proposed
interpolation method. Results and findings are in Section IV,
and conclusions in Section V.

II. THE GAUSS-MARKOV RANDOM FIELD (GMRF)
MODEL

In this section, we briefly introduce the GMRF model. For
more details, we refer to [12], [19]. We use the following
notation:

s, t s = (s1, s2), t = (t1, t2), the coordinates of grid points on a two dimensional (2D) lattice.
Ω {s : 0 ≤ s1 ≤ M − 1, 0 ≤ s2 ≤ N − 1}, a 2D lattice of M ×N grid points.
X Random field on Ω, represented as a vector by row-wise scan ordering:

X = {X0, . . . , XM×N−1}.
Xs Random variable at site s.
x A configuration of X, corresponding to a given realization of the image field. The notation

X = x will be used to abbreviate the joint event (X0 = x0, . . . , XM×N−1 = xM×N−1).
η Set of coordinate offsets defining a neighborhood.
η? Set of anti-causal offsets defining a neighborhood.
ηs Neighborhood of s; ηs = {s + r : r ∈ η} = {s± r : r ∈ η?}.

X exhibits the Markov property which means that the
conditional probability of the pixel value Xs given all other

5 4 3 4 5
4 2 1 2 4
3 1 s 1 3
4 2 1 2 4
5 4 3 4 5

Fig. 1. The elements of the nth order neighborhood set are marked with n
[13].

pixel values in the image reduces to a function of neighboring
pixel values only:

P (Xs = xs|XS\s = xS\s) = P (Xs = xs|Xηs = xηs). (1)

The neighborhood ηs usually consists of the spatially ad-
jacent neighbors up to a certain distance, i.e., the or-
der of the neighborhood. For the first-order case, the set
of coordinate offsets defining the neighborhood is η =
{(1, 0), (−1, 0), (0, 1), (0,−1)}, and the neighboring elements
are ηs = {s + r : r ∈ η}. A visualization of the nth
order neighborhoods is given in Fig. 1, where each nth order
neighbor of the element s is marked with the label n.

The joint probability of an MRF can be written as a Gibbs
distribution for the neighborhood η [10]:

P (X = x) =
1
Z

exp
(
−H(x)

T

)
(2)

where Z is a partition constant, T is called the temperature,
and H(x) is the energy function. In case X is an MRF, the
energy function is a sum of clique potentials:

H(x) =
∑

C∈C
VC(x), (3)

with C the set of all possible cliques. A clique is a set
of pixels that are all neighbors of one another. Typically
in image processing, cliques consisting of two sites (pair-
site cliques) are used because of their simple form and the
relatively low computational cost. Single-site cliques may be
additionally used if the prior probabilities of different labels
are known. When using higher order neighborhoods, the num-
ber of clique types grows rapidly with the neighborhood order,
which can significantly increase the computational complexity.
Some researchers use higher-order neighborhoods with pair-
site cliques only (for a motivation see [14]). In the proposed
method, we use the first-order neighborhood consisting of
single-site and pair-site cliques. For estimating the parameters
of our inhomogeneous model, we will employ larger neigh-
borhoods, but these should not be confused with the first-
order neighborhood from which we interpolate the missing
data. Commonly used MRF models in image processing are
auto-models [10], where the energy function is of the form:

H(x) =
∑

s∈S

xsgs(xs) +
∑

s∈S

∑
r∈η

θs
rxsxs+r, (4)

in which gs(xs) are arbitrary functions and θs
r are constants

reflecting the pair-site interactions. When the distribution is
homogeneous, we have θs

r = θr regardless of the spatial
position s. This is typically the case for texture processing.

An important class of auto-models are auto-normal models,
also called Gaussian Markov Random Field (GMRF) models
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[10], [12], [19]. These models are defined for continuous
MRFs. Their energy function (4) is of the form:

H(x) =
∑

s∈S

x2
s

2σ2
+

∑

s∈S

∑
r∈η

θs
rxsxs+r

2σ2
. (5)

The conditional probability of a GMRF is given by:

p(Xs = xs|Xηs = xηs) =
1√

2πσ2
exp




−

[
xs −

∑
r∈η

θs
rxs+r

]2

2σ2





,

(6)
with θs

r = θs
−r, ∀r ∈ η, as been proved in [12]. The

two dimensional, homogeneous, bilateral, GMRF model with
symmetrical neighborhood is defined as [12], [19]:

Xs =
∑
r∈η

θrXs+r + Ns, (7)

where Ns is a sample of zero mean Gaussian noise, with
autocorrelation given by [10, p. 18–19], [12, p. 85], [19,
p. 252]:

E[NsNs+r] =





σ2 if r = (0, 0),
−θrσ

2 if r ∈ η,
0 otherwise.

(8)

From (8), it follows that ∀r ∈ η : θr = θ−r. As such, we can
rewrite (7) as

Xs =
∑
r∈η?

θr(Xs+r + Xs−r) + Ns, (9)

where η? is defined as the set of anti-causal offsets. For
the first-order case, the set of anti-causal offsets defining the
neighborhood is η? = {(1, 0), (0, 1)}, and the coordinates of
the neighboring elements are ηs = {s± r : r ∈ η?}.

The expected value of a coefficient xs in an homogeneous
GMRF model (∀s : θs

r = θr) is the value with highest
probability (see [12, p. 85] and [19, p. 255]). To find this
value, the derivative of (6) with respect to xs is set to zero.
The expected value is then:

x̂s =
∑
r∈η

θrxs+r. (10)

and since ∀r ∈ η : θr = θ−r:

x̂s =
∑
r∈η?

θr(xs+r + xs−r). (11)

The optimal (in the Mean Squared Error sense) interpolation
weights θ̂ = [θ̂r, r ∈ η?] are estimated by the linear least
squares method [12], [19]:

θ̂ = [θ̂r, r ∈ η?] =

[∑

t∈Ω′
qT

t qt

]−1 [∑

t∈Ω′
qT

t xt

]
, (12)

where
qt = [xt+r + xt−r, r ∈ η?], (13)

and Ω′ is the pool of samples from which the weighting factors
θ̂ are calculated.

III. THE PROPOSED RECONSTRUCTION ALGORITHM

The new method proposed in this paper is meant for the
reconstruction of wavelet coded I-frames in broadcasted video
streams. In this paper, we will use a critically sampled bi-
orthogonal wavelet transform, which is used in most of the
wavelet coders [30], but the proposed method can be applied
to other types of wavelet transforms [32]–[35], and other
multiresolution codecs (such as those based on bandelets,
contourlets, etc.). We use the following notation: LLJ denotes
the low-pass subband (the scaling coefficients) at the decom-
position level J ; the wavelet coefficients are organized into
the subbands LHj , HLj and HHj , which denote respectively
horizontal, vertical and diagonal details at the decomposition
level j where j ∈ {1, . . . , J}).

In this section, we describe our reconstruction method
for both the scaling coefficients and for the lost wavelet
coefficients. As we reconstruct each subband independently,
we will represent a scaling/wavelet coefficient as Xs, thereby
— for clarity — we will omit the subband type and the scaling
indices J or j. As previously introduced, the subscript s will
denote the spatial position.

In our reconstruction algorithm we use a first order Gaussian
Markov process for the reconstruction of lost coefficients.
As each coefficient depends on its first order neighborhood,
η? = {(1, 0), (0, 1)}, a lost coefficient is interpolated par-
tially from its vertical neighbors, partially from its horizontal
neighbors. However, in contrast to the homogeneous GMRF
model introduced in the previous section where the weighting
factors θr were calculated over the global image/subband
and are the same for all interpolated pixels/coefficients, we
now estimate the weighting factors θs

r locally for each lost
coefficient. In our approach, the clique potentials are different
for horizontal and for vertical cliques (θs

r depends on r), and
as they now depend on the spatial position of the central pixel
(θs

r depends on s), our model is an inhomogeneous GMRF
model. The energy function and the conditional probability
of an inhomogeneous GMRF model are given in (5) and (6)
respectively. The expected value of a lost coefficient according
to the proposed GMRF model is:

x̂s =
∑
r∈η?

θs
r(xs+r + xs−r)

= θs
(1,0)(x(s1+1,s2) + x(s1−1,s2)) + θs

(0,1)(x(s1,s2+1) + x(s1,s2−1)).(14)

We estimate the weighting factors as:

θ̂s =

[
θ̂s
(1,0)

θ̂s
(0,1)

]
=

[ ∑

t∈Ωs

qT
t qt

]−1 [ ∑

t∈Ωs

qT
t xt

]
, (15)

where qt is defined as in (13):

qt = [x(t1+1,t2) + x(t1−1,t2), x(t1,t2+1) + x(t1,t2−1)]. (16)

In contrast to (12), the interpolation weights θ̂s are now
calculated from a pool Ωs of selected samples, instead of
one big pool Ω′ containing all samples as is the case in the
homogeneous GMRF model. The choice of Ωs is important
for the quality of the reconstruction. If Ωs is too big (too
many neighbors are involved in the estimation of θs), spatially
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varying statistics will be averaged out which is detrimental in
edge regions. On the other hand, if Ωs is too small, θ̂s cannot
capture textural properties. We experimentally optimized the
size of Ωs for the loss of low-frequency and high-frequency
coefficients which is given in Section III-A and Section III-B
respectively.

In some cases, (15) may not be stable. This is the case
if the determinant of

∑

t∈Ωs

qT
t qt is zero or close to zero.

If the equation matrix is ill-conditioned, this may lead to
unpredictable (and probably incorrect) results for θ̂s. While
this instability problem can be solved by using an orthogonal
decomposition (like the singular value decomposition) to solve
the linear least squares problem, these methods are relatively
slow compared to the normal equations method of (15),
which is why we have chosen the latter. Furthermore, the
probability that (15) is unstable is very low and instability
mainly occurs in flat areas. In flat areas, lost coefficients can
be easily reconstructed with a bilinear interpolation in case
of a low-frequency coefficient, with a horizontal or vertical
interpolation in case of an LH or HL coefficient respectively,
or by replacing it by zero in case of an HH coefficient. An
efficient and simple solution to find these unstable cases is to
check if the absolute value of the determinant of

∑

t∈Ωs

qT
t qt is

bigger than a certain threshold. In practice, 10−10 is a useful
threshold.

A. The reconstruction of lost low frequency coefficients

When the coefficient xs is lost, it cannot be used to estimate
the optimal interpolation weights θ̂s. Also, its first order
neighbors cannot be part of Ωs, since they require xs in
the calculation of qt in (16). However, as the first order
neighbors generally have the highest correlation with the lost
coefficient, it would be best to include them in Ωs. To be
able to do this, we calculate a rough estimate of xs with a
bilinear interpolation scheme as we did in [7] from the four
nearest coefficients. If it is impossible to calculate the bilinear
interpolation, the average of the available first order neighbors
is used.

Secondly, the lost coefficient is re-estimated with the pro-
posed GMRF interpolation scheme of (14) and the weighting
factors are estimated by (15). For the reconstruction of a
lost low frequency coefficient, we experimentally found that
the optimal Ωs (Fig. 2 (a)) consists of the first and the
second order neighbors, and of the bilinear interpolation of
the lost coefficient xs itself. Note that if any of the necessary
neighboring coefficients used in the calculation of θ̂s are lost,
their bilinearly interpolated value (or average of the available
first order neighbors) is used. By taking more coefficients
(from third or higher order neighborhoods) into account, the
reconstruction quality decreases. This is so because there is
little correlation between a low frequency coefficient and its
nth order neighbors for n > 2. In particular, this is true for
wavelet decompositions with bigger decomposition depth.

(a) (b)

Fig. 2. Visualization of the optimal Ωs for the reconstruction of (a)
low-frequency coefficients, and of (b) high-frequency coefficients. The lost
coefficient xs is marked as a black square. The set Ωs consist of all grey
coefficients and the black center coefficient. The coefficients used in the
calculation of {qt : t ∈ Ωs} are all the white, grey and black coefficients.

B. The reconstruction of lost high frequency coefficients

Like in the case of lost low frequency coefficients, the
reconstruction of lost high frequency coefficients benefits from
taking into account first order neighbors in Ωs. Since xs, which
is then necessary in the calculation of qt in (16), is missing,
we calculate a initial estimate of it. This initial estimate is:
• for the HL-subbands, a vertical linear interpolation since

there is generally much more vertical than horizontal
correlation in this subband. This is due to the horizontal
high pass filtering in the creation of the HL-subbands.

• similarly for the LH-subbands, a horizontal linear inter-
polation.

• for the HH-subbands, a replacement of the lost coeffi-
cient by zero, since a large majority of the coefficients
in these subbands are zero or nearly zero. This is es-
pecially true after compression. Furthermore, replacing
a large coefficient by zero results in a loss of detail
that is visually much less disturbing than the artifacts
that arise from falsely creating a large coefficient. We
also experimentally examined some other simple initial-
ization approaches, like bilinear interpolation, median
value filtering, horizontal and vertical linear interpolation,
. . . These other approaches brought no improvement as
compared to initializing the missing coefficients by zero,
so this simple initialization is reasonable.

Note that these initial estimates correspond to the reconstruc-
tion schemes used in [2], [5], [7].

Secondly, the lost high frequency coefficient is re-estimated
with the proposed GMRF interpolation scheme of (14) and the
weighting factors are estimated by (15). For the reconstruction
of the high frequency coefficients, we experimentally found
that the optimal Ωs (Fig. 2 (b)) consists of the first, the second,
the third and the fourth order neighbors, and of the initial
estimate of the lost coefficient xs itself. Note that if any of
the neighboring coefficients is also lost, it is also replaced by
its initial estimate. By increasing the number of elements in
Ωs, the reconstruction quality may increase a little bit more,
but this is too small compared to the invested processing time.

C. Summary of the proposed algorithm

In a real time communication application with packet loss,
the receiver knows which coefficients are lost, since both the
sender and the receiver know which packetization is used. In
our passive error concealment method, subbands are processed
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Fig. 3. Summary of the proposed algorithm for the concealment of a lost
coefficient Xs.

independently which facilitates parallel processing. We can
summarize our algorithm for the reconstruction of a lost
coefficient xs as follows (Fig. 3):
• Step 1: Calculate an initial estimate of xs. For LL coeffi-

cients: bilinear interpolation; for HL coefficients: vertical
linear interpolation; for LH coefficients: horizontal linear
interpolation; for HH coefficients: replacement by zero.

• Step 2: Check the stability of (15). If it is unstable, stop.
Otherwise, go to step 3.

• Step 3: Estimate θs from the neighborhood Ωs using
eq. (15). For an LL coefficient, Ωs consists of 9 coeffi-
cients; for an high frequency coefficient, Ωs consists of
21 coefficients (see Fig. 2).

• Step 4: Estimate x̂s from its first order neighbors using
eq. (14).

D. Complexity analysis of the proposed algorithm

We define the number of coefficients in Ωs as NΩs . The
number of operations for the calculation of one lost coefficient
depends only on NΩs . Note that for the calculation of a
lost LL-coefficient, NΩs = 9. For the calculation of a high
frequency coefficient, NΩs = 21. The calculation of a lost
coefficient consists of three main steps, as explained above.
These numbers of operations necessary for each step are
explained in detail in the appendix.
• An initial estimate. For the LL-subband this is a bilinear

interpolation with 3 additions (A) and 1 multiplication
(M). For the LH and HL-subbands, this is a linear
interpolation with 1A and 1M. For the HH-subband this
is a replacement by zero which requires no operations.

• The calculation of θ̂s which requires (7NΩs − 2)A and
(5NΩs + 9)M.

• The calculation of x̂s which requires 3A and 2M.
This requires for the reconstruction of a lost LL-coefficient:
67A and 57M; for the reconstruction of a lost LH or HL-
coefficient: 149A and 117M; and for the reconstruction of a
lost HH-coefficient: 148A and 116M.

For comparison, the bilinear interpolation scheme requires
3A and 1M for each lost low frequency coefficient, and 1A and
1M for each lost LH or HL-coefficient. As given in [6], the
adaptive MAP error concealment method requires 1540A and
1456M for each lost coefficient. The adaptive method of [7]
requires 14A and 13M for each lost low frequency coefficient,
and 1A and 1M for each lost LH or HL-coefficient. As such,
the proposed method is much faster than the method of [6]
but slower than the bilinear interpolation as being used in
[2] and the adaptive method of [7]. However, the increase
in complexity as compared to bilinear interpolation as in [2]
is justified by the quality of the reconstructed images, as
will be shown in Section IV. In Section IV-C, we propose
some techniques to speed up the computation process without
sacrificing too much of the reconstruction quality.

IV. RESULTS

A. General case

Typical packet loss rates in the Internet for communication
without packet retransmission techniques such as the User
Datagram Protocol (UDP), are in the range of 2% to 10%
[1]. For communication with packet retransmission techniques
such as the Transmission Control Protocol (TCP), each packet
will eventually reach the receiver as lost packets are retransmit-
ted by the sender. As explained in the introduction in Sect. I,
these packet retransmissions introduce a communication delay
which is intolerable in time-sensitive applications such as two-
way video communication.

As data packet loss is typically bursty in nature, the instan-
taneous packet loss rate can be much higher than the average
loss rate of 2% to 10%. We tested the proposed interpolation
method in a realistic scenario with both low and high packet
loss rates. In this experiment, we simulated the transmission
of 416 test images/I-frames of 512× 512 pixels over a lossy
packet network. The wavelet coefficients (calculated with the
Daubechies 9/7 bi-orthogonal wavelet with four levels1 of
wavelet decomposition) of each I-frame were each time stored
in 16 packets using the dispersive packetization strategy of [2].

After packetization, each packet was coded independently
of the other packets at a bit rate of about 0.8 bpp by using the
coder of [2]. The independent coding guarantees independent
decodability which is important for error recovery. We then
simulated the loss of every combination of p packets for
1 ≤ p ≥ 4. For p = 1, 2, 3 and 4, there are respectively
16, 120, 560 and 1820 possible combinations of lost packets.
The lost low frequency coefficients were repaired using four
reconstruction methods: bilinear interpolation as in [2], the
adaptive MAP approach of [6], the adaptive method of [7]
and the proposed GMRF method. For each p, we calculated
the average PSNR of all reconstructed I-frame for each recon-
struction method. The results of this experiment are given in
Table I.

1We use four levels of wavelet decomposition as this provides the ideal trade
off between compression ratio (which is close to optimal for four or more
levels) and reconstruction quality (reconstruction of low frequency coefficients
gives optimal results for four or fewer levels).
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TABLE I
AVERAGE PSNR [DB] OF all THE 416 TEST I-FRAMES FOR: BILINEAR INTERPOLATION (BI), THE ADAPTIVE MAP APPROACH [6], THE ADAPTIVE

METHOD OF [7] AND THE PROPOSED GMRF METHOD, FOR all POSSIBLE COMBINATIONS OF p LOST PACKETS

p BI MAP [6] Method of [7] Proposed GMRF
0 40.01 40.01 40.01 40.01
1 33.85 33.90 34.37 34.68
2 31.40 31.38 31.93 32.26
3 29.73 29.67 30.24 30.53
4 28.37 28.33 28.88 29.10

If no packets are lost, the PSNRs of the reconstructed I-
frames are equal to the PSNRs of the broadcast compressed I-
frames. On average the PSNR of our test I-frames, compressed
at 0.8 bpp, is 40.01 dB. The results in Table I show that our
proposed method outperforms bilinear interpolation on average
by 0.85 dB for low packet loss rates and by 0.75 dB for high
packet loss rates. The average improvement over the adaptive
MAP approach of [6] is 0.8 dB for both low and high packet
loss rates. The average improvement over the method of [7]
is 0.3 dB for low packet loss rates and 0.2 dB for high packet
loss rates.

For all possible combinations of three lost packets of all
416 test I-frames, we calculated the difference between the
PSNRs of the I-frames reconstructed by the proposed method
and the PSNRs of the I-frames reconstructed by the bilinear
interpolation method. In Fig. 4 (a) we plot the frequency
distribution of this PSNR difference. For only 4.25% of the
test frames, the PSNR of the reconstruction with the proposed
method is lower than the PSNR of the reconstruction with the
bilinear interpolation method. In only 1.10% of the cases the
PSNR drop is bigger than 0.5 dB. In 95.8% of the cases, the
proposed method performs better, or more specifically: in 34%
of the cases there is a PSNR gain between 0.0 and 0.5 dB, in
31% of the cases the gain is between 0.5 and 1.0 dB, in 17%
of the cases the gain is between 1.0 and 1.5 dB, in 13% of the
cases the gain from our method is over 1.5 dB. The frequency
distribution of the PSNR difference for one, two, and four lost
packets is similar to the one for three packets.

In Fig. 4 we also plot the frequency distribution of the
difference between the PSNRs of the I-frames reconstructed
by the proposed method and respectively the PSNRs of the
I-frames reconstructed by the adaptive MAP approach of [6]
(Fig. 4 (b)) and the adaptive method of [7] (Fig. 4 (c)). The
results for the adaptive MAP approach of [6] are similar to the
results for the bilinear interpolation: for 7.7% of the I-frames,
the reconstruction with the proposed method performs worse
than the reconstruction with the approach of [6]. In only 2.0%
of the cases the PSNR drop is bigger than 0.5 dB. In 92.3%
of the cases, the proposed method performs better, or more
specifically: in 30% of the cases there is a PSNR gain between
0.0 and 0.5 dB, in 26% of the cases the gain is between 0.5
and 1.0 dB, in 18% of the cases the gain is between 1.0 and
1.5 dB, in 18% of the cases the gain from our method is over
1.5 dB.

The frequency distribution for the PSNR difference between
the proposed method and the method of [7] is different
from the previous two: here, in 14.0% of the cases, the

reconstruction with the proposed method performs worse than
the reconstruction with the adaptive method of [7]. However,
again in only 1.71% of the cases the PSNR drop is bigger than
0.5 dB. In 86.0% of the cases, the proposed method performs
better, or more specifically: in 64% of the cases there is a
PSNR gain between 0.0 and 0.5 dB, in 18% of the cases the
gain is between 0.5 and 1.0 dB, in 3% of the cases the gain
from our method is over 1.0 dB.

B. Specific Images

In Table II, we show the results from a similar experiment
on some well known images such as Lena (512×512 image),
Couple (256 × 256 image), Peppers (512 × 512 image) all
compressed at 0.8 bpp. For the fourth image Barbara, an
image with a lot of high frequency information due to the
edges and textures on the tablecloth and clothes, we show the
results for three bitrates: 0.2 bpp, 0.8 bpp and 2.0 bpp.

If no packets are lost, the PSNR of the reconstructed image
is equal to the PSNR of the broadcast compressed image. For
Lena, Couple, Peppers (all compressed at 0.8 bpp), the PSNR
of the compressed image is respectively 38.29 dB, 33.33 dB
and 36.69 dB. The PSNR of Barbara compressed at 0.2, 0.8
and 2.0 bpp is respectively 25.32 dB, 32.81 dB and 40.54 dB.

The results in Table II agree with the results of Table I:
the proposed method outperforms the bilinear interpolation
and the methods of [6] and [7]. In particular, the results for
Barbara, compressed at three different bitrates, clearly show
the strength of the proposed method. At low bitrates (e.g.,
0.2 bpp), a lot of the high frequency information is discarded
during the compression. In that case, our method outperforms
bilinear interpolation and the approach of [6] by 0.3 to 0.6 dB,
and the improvement over [7] is between 0.25 and 0.4 dB. This
quality improvement is mainly due to the improved estimation
of the lost low-frequency and mid-frequency information.
For high bitrates (e.g., 2.0 bpp), much more high frequency
information is still present after compression. In this case, our
method outperforms bilinear interpolation and the approach
of [6] by 1.6 to 2.5 dB, and the gain over [7] is between 1.3
and 2.1 dB. This quality improvement is due to not only the
improved estimation of the lost low frequency information,
but also because of the improved estimation of the lost high
frequency information.

Fig. 5 and 6 show visual results for two images. Fig. 5
compares the performance of bilinear interpolation, the meth-
ods of [6], [7] and the proposed method for the Lena-image
compressed at 0.8 bpp with one packet lost (i.e., 6.25%
of the coefficients lost). This example clearly illustrates the
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Fig. 4. Frequency distribution of the PSNR difference between the PSNRs of the I-frames reconstructed by the proposed method and the PSNRs of the
I-frames reconstructed by respectively: (a) the bilinear interpolation, (b) the adaptive MAP approach of [6], (c) the adaptive method of [7].

TABLE II
AVERAGE PSNR [DB] FOR: BILINEAR INTERPOLATION (BI), THE ADAPTIVE MAP APPROACH [6], THE ADAPTIVE METHOD OF [7] AND THE PROPOSED

GMRF METHOD, FOR all POSSIBLE COMBINATIONS OF p LOST PACKETS.

Lena (0.8 bpp)
p BI MAP [6] Method of [7] Proposed
0 38.29 38.29 38.29 38.29
1 30.52 30.94 30.93 31.85
2 27.75 28.18 28.19 29.05
3 25.96 26.37 26.41 27.13
4 24.57 24.99 25.04 25.61

Couple (0.8 bpp)
p BI MAP [6] Method of [7] Proposed
0 33.33 33.33 33.33 33.33
1 30.27 29.94 30.50 30.55
2 28.38 27.94 28.66 28.71
3 26.95 26.49 27.26 27.30
4 25.74 25.33 26.11 26.09

Peppers (0.8 bpp)
p BI MAP [6] Method of [7] Proposed
0 36.69 36.69 36.69 36.69
1 29.64 29.62 30.14 30.45
2 26.87 26.77 27.39 27.70
3 25.04 24.90 25.54 25.82
4 23.61 23.47 24.09 24.33

Barbara (0.2 bpp)
p BI MAP [6] Method of [7] Proposed
0 25.32 25.32 25.32 25.32
1 24.22 24.28 24.34 24.58
2 23.29 23.37 23.46 23.83
3 22.45 22.54 22.66 23.07
4 21.68 21.78 21.91 22.30

Barbara (0.8 bpp)
p BI MAP [6] Method of [7] Proposed
0 32.81 32.81 32.81 32.81
1 28.07 28.19 28.36 29.66
2 25.74 25.84 26.05 27.47
3 24.12 24.19 24.44 25.72
4 22.85 22.89 23.16 24.22

Barbara (2.0 bpp)
p BI MAP [6] Method of [7] Proposed
0 40.54 40.54 40.54 40.54
1 29.38 29.48 29.76 31.90
2 26.39 26.45 26.76 28.65
3 24.52 24.55 24.87 26.44
4 23.11 23.13 23.44 24.70

benefits of our GMRF method for the reconstruction of the
low frequency content. Near the strongest edges we are able
to do a correct interpolation, where the bilinear interpolation
and the approach of [6] fail. This explains the PSNR gain of
more than 1.5 dB of the proposed method over the bilinear
interpolation and the PSNR gain of 1.2 dB over [6]. The gain
of 0.5 dB of the proposed method over the method of [7] can
be explained by the further improved reconstruction of the low
frequency content but also by the improved reconstruction of
the high frequency content.

Fig. 6 shows visual results for the Barbara-image com-
pressed at 2.0 bpp with two packets lost (i.e., with 12.5%
of the coefficients lost). The proposed method has a PSNR
gain of 2.2 dB over the bilinear interpolation, of 2.1 dB
over the adaptive MAP approach of [6], and of 1.7 dB over
the method of [7]. Again, this example clearly shows the
correct interpolation of low frequency content by the proposed

method. Moreover, the proposed method correctly interpolates
the lost high frequency coefficients where all the reference
methods fail. This is visible in enlarged details in Fig. 7.
These enlarged image parts clearly show that the proposed
method correctly interpolates the missing data on the trousers
of Barbara, while the other methods cause a striping effect
which is undesirable. Similar effects can be observed on the
tablecloth.

C. Fast version

In Section III-D we counted how many operations that
are necessary for the reconstruction of one coefficient. If we
extrapolate this, the required number of operations (additions
and multiplications) for the reconstruction of a 512 × 512 I-
frame with four levels of wavelet decomposition and with 1
of 16 packets lost is: 22 · 103 for the bilinear interpolation,
49 · 106 for the adaptive MAP approach [6], 23 · 103 for the
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) Lena compressed at 0.8 bpp (PSNR = 38.29 dB). (b) Lena after loss of packet 4. (c) Reconstruction with the bilinear interpolation (PSNR =
30.59 dB). (d) Reconstruction with the adaptive MAP approach of [6] (PSNR = 30.95 dB). (e) Reconstruction with the adaptive method of [7] (PSNR =
31.63 dB). (f) Reconstruction with the proposed method (PSNR = 32.14 dB).

adaptive method of [7], and 4.3 ·106 for the proposed method.
For time-critical applications, we can also consider a fast

version of the proposed method. In this fast version, we
reconstruct the coefficients of LH1 and HL1 with a one di-
mensional linear interpolation instead of the proposed GMRF
method, and we also do not process the HHj subbands with
the proposed method but we replace lost HHj coefficients by

zero. In this way, we can reduce the number of operations to
0.7 · 106, which is a speed increase of a factor 5.9, without a
big quality reduction in most cases.

In Table III, we show the results for the fast version of the
proposed method for the same experiment as in Table I. We
can conclude that, in general, the fast version of our method
gives only a small loss in quality, compared to our normal
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) Barbara compressed at 2.0 bpp (PSNR = 40.54 dB). (b) Barbara after loss of packets 4 and 12. (c) Reconstruction with the bilinear interpolation
(PSNR = 26.08 dB). (d) Reconstruction with the adaptive MAP approach of [6] (PSNR = 26.22 dB). (e) Reconstruction with the adaptive method of [7]
(PSNR = 26.60 dB). (f) Reconstruction with the proposed method (PSNR = 28.27 dB).

proposed method. However, for some specific images, the
resulting performance loss is higher than shown in Table III.

For Lena, Couple and Peppers the quality drop of the fast
version (Table IV) is low (on average about 0.01 dB). This
is because these images have few significant coefficients in
the HHj subbands and in the subbands HL1 and LH1. For
Barbara, the fast version results in a much bigger quality drop

because this image has much more high frequency information
(fine textures) than the other three images. Note that our
fast version still yields a much better quality than the three
reference methods.

The quality drop resulting from the simplification in the fast
version of the method increases with an increasing bitrate:
if Barbara is encoded at a low bitrate, a lot of the high
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Fig. 7. Enlarged image parts from the results in Fig. 6. From left to right: Detail of the reconstruction with the bilinear interpolation, the methods of [6],
[7], and the proposed method.

TABLE III
AVERAGE PSNR [DB] OF all THE 416 I-FRAMES FOR THE PROPOSED GMRF METHOD AND ITS FAST VERSION.

p Proposed Proposed (fast)
0 40.01 40.01
1 34.68 34.64
2 32.26 32.22
3 30.53 30.50
4 29.10 29.07

frequency information has gone missing in the compression
stage, and cannot be recovered in the reconstruction stage
anyway, so using the more complex method is less beneficial.
However, if the image is encoded at a high bitrate (e.g.,
2.0 bpp), almost all the high frequency information is still
present after compression, and can be successfully recovered
with the proposed method. Hence, in this case it is clearly
beneficial to apply the full version proposed method, with
GMRF-based reconstruction in all high frequency subbands.
We illustrate this with visual examples in Fig. 8. For the Lena-
image, there is no obvious difference between the results of
the full version and the fast version of the proposed method.
For the Barbara-image, the difference is visually obvious. In
terms of PSNR, there is more than 1 dB loss for the fast
version.

In practice, the importance of processing the coefficients of
the highest-frequency subbands can be estimated by measuring
the energy in these subbands from the correctly received
coefficients. The threshold for reconstructing these coefficients
must then be determined from the desired image quality, the
available processing power and the desired latency (e.g., de-

pending on the frame rate in real-time video communication).

D. Comparison with block-based error concealment ap-
proaches

In this section, we compare our method for the reconstruc-
tion of lost wavelet coefficients with the block-based error
concealment approaches. In general, comparing the perfor-
mance of the proposed scheme with schemes that are very
different in nature such as the block-based error concealment
approaches is not trivial. The comparison criteria should be
carefully defined. One scheme may perform better in case of
no packet loss, i.e., in terms of pure compression quality, while
another scheme can perform better in case of quality loss. We
selected two publications on block-based approaches [8], [36]
that provide enough information for a fair comparison with
the proposed method.

In [8], a reconstruction method for block-based wavelet
domain image coders (such as, e.g., JPEG2000) is proposed.
This method requires somewhat smaller tile sizes and smaller
code-block sizes than in the standard JPEG2000 compression
which results in a lower compression efficiency compared to
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TABLE IV
AVERAGE PSNR [DB] FOR THE PROPOSED GMRF METHOD AND ITS FAST VERSION.

Lena (0.8 bpp)
p Proposed Proposed (fast)
0 38.29 38.29
1 31.85 31.80
2 29.05 29.00
3 27.13 27.09
4 25.61 25.59

Couple (0.8 bpp)
p Proposed Proposed (fast)
0 33.33 33.33
1 30.55 30.57
2 28.71 28.73
3 27.30 27.31
4 26.09 26.11

Peppers (0.8 bpp)
p Proposed Proposed (fast)
0 36.69 36.69
1 30.45 30.45
2 27.70 27.70
3 25.82 25.83
4 24.33 24.34

Barbara (0.2 bpp)
p Proposed Proposed (fast)
0 25.32 25.32
1 24.58 24.51
2 23.83 23.72
3 23.07 22.96
4 22.30 22.20

Barbara (0.8 bpp)
p Proposed Proposed (fast)
0 32.81 32.81
1 29.66 28.98
2 27.47 26.72
3 25.72 25.05
4 24.22 23.67

Barbara (2.0 bpp)
p Proposed Proposed (fast)
0 40.54 40.54
1 31.90 30.68
2 28.65 27.58
3 26.44 25.56
4 24.70 24.01

TABLE V
AVERAGE PSNR [DB] OF THE RECONSTRUCTED Lena-IMAGE (512× 512)

AND Goldhill-IMAGE (512× 512). NO COMPRESSION IS USED.

Lena
loss rate block-based [8] Proposed
6.25% 33.8 36.0
12.50% 31.2 32.6

Goldhill
loss rate block-based [8] Proposed
6.25% 36.3 36.7

12.50% 32.3 33.4

the standard JPEG2000 coding. In [8], only the results for
uncompressed images were reported and hence we compare
our results with those from [8] on uncompressed Lena and
Goldhill images in Table V. For this comparison, we used
three levels of wavelet decomposition as in [8]. The results
show that the proposed method outperforms the block-based
one from [8].

The approach in [36] conceals the errors in block-based
image coding systems (such as the standard JPEG system)
by using neural network techniques in the spatial domain. In
Fig. 9, we compare the results of our method to those from [36,
Table 2] for the grayscale Lena-image (512×512) compressed
at 0.60 bits per pixel. The results show that our method with
2 decomposition levels yields a similar performance as [36].
The results also show that using more decomposition levels in
our approach provides better compression quality in case of
no loss, but at the same time degrades its performance in case
of packet loss.

In summary, a fair comparison of the proposed method
with the different concept of block-based approaches implies
weighting compression ability versus ability to reconstruct
packet losses. The way in which the images are compressed
and the compression factor influences the reconstruction abil-
ity. The compression schemes are sometimes altered to allow
reconstruction in case of data loss, which yields a slightly
worse compression efficiency. For example, in block-based
DCT image coding, the dc values of adjacent blocks are
usually compressed with differential coding. If a dispersive
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26
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32
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36
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loss rate

dB block−based [35]
proposed (2 levels)
proposed (4 levels)

Fig. 9. Comparison of the average PSNR [dB] for the reconstruction of the
Lena-image (512×512) compressed at 0.60 bits per pixel. The results for the
block-based error concealment approach of [36] are comparable to the results
for the proposed method with 2 wavelet decomposition levels. The results for
the proposed method with 4 wavelet decomposition levels are better in case of
no packet loss (i.e., a better compression quality) but worse in case of packet
loss (i.e., a worse reconstruction quality).

packetization is used, the efficiency of this differential coding
will be lower because it cannot operate on adjacent blocks
(which are spread into different packets) but on blocks that
are further away. However, without a dispersive packetization,
the reconstruction of the lost blocks will be difficult and it may
even be impossible. The results presented in this paper show
that the proposed error concealment method in combination
with a dispersive packetization compares well with the more
traditional block-based approaches.

V. CONCLUSION

This paper presents a novel locally adaptive error conceal-
ment method for subband coded I-frames based on a Gaussian
Markov Random Field model. Our method estimates the
optimal interpolation weights by imposing an inhomogeneous
GMRF model and estimating its parameters from the local
context of the lost coefficient. Experiments have demonstrated
a significant improvement over the state-of-the-art methods in-
cluding more complex MRF-based approaches. The proposed
method is especially effective for the reconstruction of high



13

Fig. 8. Performance comparison between the proposed method and its simplified fast version. Left: the full version of the proposed method (The PSNR of
Lena and Barbara is 32.14 and 28.27 dB respectively). Right: its fast version (The PSNR of Lena and Barbara is 32.08 and 27.25 dB respectively).

frequency information, where the existing methods usually
fail.

ACKNOWLEDGEMENT

The authors wish to thank Prof. Dr. Ivan Bajić for gen-
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APPENDIX

In this section, we explain how many additions (A) and mul-
tiplications (M) are needed in each step of the reconstruction
of a lost coefficient with the proposed method. As introduced
in Section III-D, NΩs

is the number of neighboring coefficients
in Ωs. For a lost LL-coefficient, NΩs

= 9; for a high frequency
coefficient, NΩs = 21.

A. Initial estimate

An initial estimate is made for both low and high frequency
coefficients:
• a bilinear interpolation for a lost LLJ -coefficient requires

3A and 1M;
• a linear interpolation for a lost LHj or HLj-coefficient

requires 1A and 1M;
• a replacement by zero for a lost HHj-coefficient requires

no operations.

B. Calculation of the interpolation weights θ̂s
(1,0) and θ̂s

(0,1)

1) Calculation of qt: For all NΩs neighbors,
the upper and lower, and left and right
neighbors have to be summed together. qt =[
x(t1+1,t2) + x(t1−1,t2) x(t1,t2+1) + x(t1,t2−1)

]
:

2NΩsA.

2) Calculation of qT q =
[
q1

q2

] [
q1 q2

]
=

[
a b
b c

]
:

3NΩsM
3) Calculation of

∑
NΩs

(qT q) =[
a1 + . . . + aNΩs

b1 + . . . + bNΩs

b1 + . . . + bNΩs
c1 + . . . + cNΩs

]
: 3(NΩs − 1)A.

4) Calculation of the inverse of a 2 × 2 matrix:
∑

NΩs
(qT q)−1 =

[
d e
e f

]−1

= 1
df−e2

[
f −e
−e d

]
. The

determinant: 1A and 2M. The multiplication of the
determinant and the matrix: 3M. Overall: 1A and 5M.

5) Calculation of
∑

(qT x) =
[
g1

h1

]
X1 + . . . +

[
gNΩs

hNΩs

]
XNΩs

: 2(NΩs − 1)A + 2NΩsM.

6) Calculation of θ̂s =
[
A B
B C

] [
D
E

]
=

[
AD + BE
BD + CE

]
:

2(1A+2M) = 2A+4M.

C. Calculation of the lost coefficient x̂s

Calculation of the lost coefficient x̂s = θ̂s
(1,0)(x(s1+1,s2) +

x(s1−1,s2)) + θ̂s
(0,1)(x(s1,s2+1) + x(s1,s2−1)): 3A+2M.

D. Overview

In Table VI we summarize the number of additions and mul-
tiplications necessary for the reconstruction of low frequency
(LLJ ) and high frequency (LHj , HLj and HHj) coefficients.
For a low frequency coefficient, we need 67 additions and 57
multiplications. For an LHj or HLj coefficient, we need 149
additions and 117 multiplications. For an HHj coefficient, we
need 148 additions and 116 multiplications.
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