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ABSTRACT

Spectral unmixing is an important technology in hyperspec-
tral image application. Recently, sparse regression is widely
used in hyperspectral unmixing. This paper proposes a dou-
ble reweighted sparse regression method for hyperspectral un-
mixing. The proposed method enhances the sparsity of abun-
dance fraction in both spectral and spatial domains through
double weights, in which one is used to enhance the sparsity
of endmembers in the spectral library, the other is used to im-
prove the sparseness of abundance fraction of every material.
Experimental results on both synthetic and real hyperspectral
data sets demonstrate effectiveness of the proposed method
both visually and quantitatively.

Index Terms— Hyperspectral unmixing, sparse regres-
sion, double weights

1. INTRODUCTION

Due to the low spatial solution of the sensor, mixed pixels are
often encountered in hyperspectral imagery (HSI). To some
extent, the existence of mixed pixels will restrict the exploita-
tion, processing, and applications of HSI in practice. Thus,
spectral unmixing is an important technique for hyperspectral
data exploitation, which decomposes a mixed pixel into a col-
lection of constituent materials (also called endmembers) and
their relative proportions (also called abundances) [1].

In the past few years, many methods have been proposed
for hyperspctral unmixing. For the linear mixing model
(LMM), it is assume that the spectrum of each pixel can be
approximately represented by a linear mixture of endmember
spectra weighted by the corresponding fractional abundances
[2]. The geometrical and statistical frameworks [2] are two of
widely used methods for hyperspectral unmixing. However,
they generally require the presence of pure materials and the
estimation of the number of endmembers in a given scene.
Sparse unmixing [3], as semisupervised approach for linear
spectral unmixing, has been approached in recent years. In
sparse unmixing method, we try to find the optimal subset
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of signatures in a (potentially very large) spectral library that
can best model each mixed pixel in the scene. Although
sparse unmixing techniques have been shown obviously ben-
efits, it is limited by the high correlation of spectral libraries.
To improve the performance of sparse unmixing, spatial
information of the given sence is taken into account. In [5],
sparse unmixing via variable splitting augmented Lagrangian
and total variation (SUnSAL-TV) is developed to sidestep
the limitations of sparse unmixing. However, the sparsity in
the HSI is not fully exploited and the estimated abundances
by SUnSAL-TV are oversmooth.

In this paper, we propose a new sparse method for hy-
perspectral unmixing. The proposed method exploits dou-
ble weights to enhance the sparsity of the abundance in both
spectral and spatial domains. Extensive experiments on both
synthetic and real hyperspectral data were conducted, whose
results show the advantages of the proposed algorithm over
some other hyperspectral unminxing approaches. The rest of
this paper is organized as follows: Section 2 briefly describes
the related work including linear sparse unmixing model and
weighted l1 minimization. Section 3 introduces the proposed
method in detail. Our experimental results with simulated and
real hyperspectral data sets is described in section 4. Section
5 concluds this paper.

2. RELATED WORK

2.1. Linear Sparse Unmixing Model

Linear sparse unmixing model [3] assumes that the observa-
tion of a mixed pixel can be expressed as a linear combina-
tion of available spectral signatures in a given spectral library
A ∈ RL×m, i.e.,

y = Ax+ n (1)

where y ∈ RL×1 denotes a spectrum vector of a mixed pixel
with L bands, x is anm×1 fractional abundance vector com-
patible with library A ∈ RL×m, and n is an L × 1 vector
collecting the errors affecting the measurements at each spec-
tral band. The fractional abundance x generally satisfies the
abundance nonnegativity constraint (ANC): x ≥ 0 and the
abundance sum-to-one constraint (ASC): 1Tx = 1. Due to



the fact that only a few of the signatures in A likely con-
tribute to the observed spectrum, the unmixing problem can
be formulated as

min
x

1

2
‖y −Ax‖22 + λ‖x‖0, s. t. x ≥ 0 (2)

2.2. Weighted l1 Minimization

Sparse regression optimization can be represented as follow-
ing:

min
x
‖x‖0, s. t. Ax = b. (3)

Its relaxing problem is

min
x
‖x‖1, s. t. Ax = b (4)

where x and b are p×1 and L×1 vectors. In order to enhance
the sparsity of l1 norm in (4), the approach of [6] proposed a
weighted formulation of l1 minimization,

min
x
‖Wx‖1, s. t. Ax = b (5)

where W = diag(w1, w2, ..., wp) is a diagonal matrix, whose
entry wt+1

i = 1

|xt
i|+ε

, with ε being a small positive vaule.

This formulation suggests more generally that large weights
could be used to discourage nonzero entries in the recov-
ered signal, while small weights could be used to encourage
nonzero entries.

3. METHODOLOGY

Inspired by the success of weighted l1 minimization [6] in
sparsity promotion, in this paper we propose a novel hyper-
spectral unmixing (HSU) method based on double reweighted
sparse regression. As the weight is composed of two parts, the
proposed method is called double reweighted sparse unmixing
(DRSU).

To enhance the sparsity of solution and improve the un-
mixing quality, we propose the double reweighted sparse re-
gression for hyperspectral unmixing as follows

min
X

1

2
‖Y −AX‖2F + λ‖W2 · (W1X)‖1,1,

s. t. X ≥ 0
(6)

where the operator · denotes the component-wise product
(Hadamard product) of two variables. W1 ∈ Rp×p is a
diagonal matrix, its diagonal elements can be computed as

Wt+1
1 = diag(

1

‖Xt(1, :)‖2 + ε
,

1

‖Xt(2, :)‖2 + ε
, ...,

1

‖Xt(p, :)‖2 + ε
)

(7)

where Xt(i, :) is the ith row in the estimated abundance of the
tth iteration. The weight W1 works similarly as [6] to pro-
mote the sparsity of the rows in the abundance matrix largely.
However, the abundance distribution of each material is al-
most sparse in the scene. In the other words, the entries in
an abundance image corresponding to each material should
be sparse. W1 enhances the sparsity of spectra in library,
but treats the entries in the same abundance image with same
weight. Therefore, we propose the other weight W2 to further
enhance the sparsity of the abundance matrix as:

Wl+1
2 =

1

Xl
i,j + ε

(8)

where W2 ∈ Rp×N , Xt
i,j is the entry in the estimated abun-

dance of the tth iteration. The large weights of W2 dis-
courage nonzero entries in the estimated abundance, while
small weights could be used to encourage nonzero entries.
In DRSU, W1 enhances the sparsity of nonzero rows cor-
responding to the true endmembers in estimated abundance,
while the sparsity of the nonzero entries in the nonzero rows
is promoted by W2.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, unmixing experiments are performed on the
synthetic and real hyperspectral images to illustrate the effec-
tiveness of our proposed DRSU algorithm. Results of some
very recent methods such as sparse unmixing via variable
splitting augmented Lagrangian (SUnSAL) [3] and SUnSAL-
TV [5] are given for comparison purpose.

4.1. Synthetic Data Experiments

The spectral library used in these synthetic image experiments
is A ∈ R224×240, which is generated by randomly selecting
240 different materials from the USGS library, available on-
line at http://speclab.cr.usgs.gov/spectral.lib06. It comprises
spectral signatures with reflectance values given in 224 spec-
tral bands and distributed uniformly over the interval 0.4 −
2.5µm. We simulate the synthetic data cube with 75 × 75
pixels and 224 bands per pixel based on LMM by using five
randomly chosen spectral signatures from the library A as
the endmembers and generating the abundances following the
methodology of [5]. Finally, the simulated hyperspectral data
is degraded by Gaussian noise with three levels of the signal-
to-noise ratio, i.e., 20dB, 30dB, and 40dB.

We adopt the signal-to-reconstruction error (SRE) and the
probability of success (ps) as the objective metrics for quan-
titative evaluation. Specifically, the SRE in dB is defined as
SRE = 10 log10(E[‖x‖22]/E[‖x − x̂‖22]) [3], and ps is given
by ps = P (‖x̂−x‖2/‖x‖2 < 3.16), where x̂ is the estimated
fractional abundance vector of the true fractional abundance
vector x and E[·] stands for mean value [3]. These metrics
indicate the quality of the reconstruction of spectral mixtures.



 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

(a)
 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)
 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c)

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

(d)
 

 

0

0.05

0.1

0.15

0.2

0.25

(e)
 

 

0

0.1

0.2

0.3

0.4

0.5

(f)

Fig. 1. Estimated abundance fractions for the Cuprite data:
(from top to bottom) SUnSAL-TV and the proposed method.

The larger these values are, the better the performance of the
algorithm for recovering the abundances are.

Table 1. Performance of different unmixing approaches on
simulated hyperspectral data

SNR(in dB) Algorithm SRE(in dB) ps

20 SUnSAL 4.4661 0.3552

SUnSAL-TV 10.8890 0.9889

DRSU 10.9537 1

30 SUnSAL 9.4353 0.9292

SUnSAL-TV 18.7212 1

DRSU 20.5721 1

40 SUnSAL 11.1475 1

SUnSAL-TV 28.1640 1

DRSU 30.6724 1

For the latter, the real HSI used in the experiments is a
subimage of 250×191 pixels and 188 bands from the publicly
available AVIRIS Cuprite data collected in 1997. The Cuprite
site is well understood mineralogically, and it has several ex-
posed minerals of interest. The standard spectral library for
this data is the USGS library containing 498 pure endmem-
ber signatures. Essential calibration was undertaken in order
to mitigate the mismatches between the hyperspectral image
and the signatures in the library [3]. The estimated results are
demonstrated in Fig 1.

From Table 1 and Fig. 1, we can see that the abundance

images estimated by SUnSAL-TV are oversmooth and the re-
sults of our method are more sparsity than SUnSAL-TV. On
the whole, the proposed method outperforms the state-of-the-
art hyperspectral unmixing methods.

5. CONCLUSIONS

To improve the accuracy of hyperspectral sparse unmixing,
this paper proposes a double reweighted sparse unmixing
method. The double weights improve the sparsity of the end-
members in spectral library and abundance fraction of every
endmember. Simulated and real hyperspectral data sets are
used to test the performance of the proposed DRSU. The
experimental results in this paper consistently show that the
DRSU method performs better than SUnSAL-TV. The future
work will focus on choosing the parameters adaptively, as
they affect the performance of unmixing significantly.
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