HYPERSPECTRAL UNMIXING BY REWEIGHTED LOW RANK AND TOTAL VARIATION
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ABSTRACT

In recent years, sparse regression has drawn much attention
in hyperspectral unmixing. The well known sparse unmixing
via variable splitting augmented Lagrangian (SUnSAL) and
sparse unmixing via variable splitting augmented Lagrangian
and total variation (SUnSAI-TV) aim to find the sparsest
abundance of every data vector individually. However, these
methods ignore the global structure of all the vectors. In this
paper, we propose a novel hyperspectral unmixing method by
exploiting low rank property of the abundance matrix. Our
proposed method find the lowest-rank representation of a col-
lection of the abundance vectors by using reweighted low rank
constraint. This way, our proposed unmixing method better
captures the global structure of the abundance matrix and im-
prove the accuracy of abundance estimation. Our approach
also takes the spatial context into account by a TV constraint.
Experimental results on both the synthetic and real hyperspec-
tral data demonstrate the effectiveness of our proposed algo-
rithm.

Index Terms— Hyperspectral remote sensing, unmixing,
low rank, reweighted

1. INTRODUCTION

Due to the low spatial resolution of the sensor, mixed pix-
els are often encountered in hyperspectral imagery (HSI). To
some extent, the existence of mixed pixels restricts the ex-
ploitation, processing, and applications of HSI in practice.
Thus, spectral unmixing is an important technique for hyper-
spectral data exploitation, which decomposes a mixed pixel
into a collection of constituent materials (also called endmem-
bers) and their relative proportions (also called abundances)
[1].

In the past few years, many methods have been pro-
posed for hyperspctral unmixing. Linear mixing models
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(LMM) assume that the spectrum of each pixel can be ap-
proximately represented by a linear mixture of endmember
spectra weighted by the corresponding fractional abundances
[2]. The geometrical and statistical frameworks [2] are two of
widely used methods for hyperspectral unmixing. However,
they generally require the presence of pure materials and the
estimation of the number of endmembers in a given scene.
Sparse unmixing [3], as a semisupervised approach for linear
spectral unmixing, has been approached in recent years. In
sparse unmixing method, we try to find the optimal subset of
signatures in a (potentially very large) spectral library that can
best model each mixed pixel in the scene. Although sparse
unmixing techniques have shown obvious benefits, they are
limited by the high correlation of spectral libraries. Sparse
unmixing via variable splitting augmented Lagrangian and
total variation (SUnSAL-TV) [4] sidesteps the limitations of
sparse unmixing by taking spatial information of the given
scene into account. However, [; norm aims to find out the
sparsest representation of each vector individually without
any global constaint on its solution. This will lead to poor un-
mixing performances, especially for observed HSI degraded
by noise.

In this paper, we propose a new method for hyperspec-
tral unmixing by reweighted low rank and total variation
(HURLR-TYV). Typical abundance matrices are both low rank
and spase. Here we model the sparsity of the abundance in the
domain of finite differences by imposing a TV regularizer as
in [4]. This way we take into account the spatial smoothness
properties of the abundance entries too. In constrast to [4],
where the TV regularizer was combined with the /; norm,
we employ the low-rank model. Extensive experiments on
both synthetic and real hyperspectral data were conducted,
and the results show clear advantages of the proposed algo-
rithm over some other hyperspectral unmixing approaches.
The rest of this paper is organized as follows: Section 2
briefly describes low rank representation. Section 3 details
the proposed method. Our experimental results with simu-
lated and real hyperspectral data sets are described in Section
4. Section 5 concludes this paper.



2. BACKGROUND

2.1. Low-Rank Representation

Low rank is an important characteristic in image, which is
widely used in image restoration [5], texture characterization
[6], hyperspectral image processing [7] and many other appli-
cations. Consider a set of data vectors Y = [y1,y2,...,¥n] €
RE*N | which can be represented by a linear transformation
of a dictionary A € RLxP:

Y=AX+N 1

where X = [x1, X2, ..., xn] € RP*¥ is the coefficient matrix
with each x; being the representation of y;. The use of a low
rank assumption leads to solving the follwing problem

m)g’n rank(X)  subjectto AX =Y. 2)
where the optimal solution X* is the lowest rank representa-
tion of data Y. The resulting optimization problem is difficult
to solve, hence, it is typically relaxed such that it admits con-
vex optimization, as follows [9]

m)gn 1X | subjectto AX =Y 3)
where | X||. = ). 0; denotes the nuclear norm [10] of X
and o; is a singular value of X.

3. PROPOSED APPROACH

In this paper, we develop a new hyperspectral unmixing
method called hyperspectral unmixing via reweighted low
rank and total variation (HURLR-TV). Low rankness treats
all the vectors together, thus better captures the global struc-
ture of the recovered abundance matrix. Inspired by the
success of weighted /; minimization [11], we use weighted
low rank regularizer to improve the low rank of the abundance
matrix. Our method based on reweighted low rank and the
spatial regularizer sovles the following optimization problem

1
min =Y — AX||% + XY wio; + Ay TV(X)
X2 2.1 4)
subjectto X > 0

where Y € REXN A € REXP. X e RP*N are the observed
data, spectral library and abundance matrix, respectively. o;
is the singular value of the abundance matrix X, the w; is the
weight of singular value for singular value o;

(t+1) 1
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The rank of the abundance matrix is actually the num-
ber of nonzero singular values of the abundance matrix. We
explore large weights to discourage nonzero singular values

and small weights to encourage nonzero singular values. The
reweighted low rank promotes the low rank of the abundance
matrix and captures the global structure better. The TV reg-
ularizer penalizes the differences between the vectors in the
abundance matrix that correspond to neighboring pixels as in

[4]:
D lxi—x5lh (6)

{i,j}€e

TV(X) =

where € denotes the set of horizontal and vertical neighbors.
The problem (4) can be written in the following equivalent
form

1
min o ||Y AX||Z + A Z wio; + Ay TV (X) + 1ry (X)
(7

where g4+ (X) = Zf\;l tr+(x;) is the indicator function (x;
represents the ith column of X. ¢ (x;) is zero if x; belongs
to the nonnegative orthant and +o0o otherwise).

We solve (7) by the alternating direction method of mul-
tipliers (ADMM) method [12].

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, unmixing experiments are performed on the
synthetic and real hyperspectral images. Results of some very
recent methods such as sparse unmixing via variable splitting
augmented Lagrangian (SUnSAL) [3] and SUnSAL-TV [4]
are compared to the results of our HURLR-TV method.

The spectral library used in these synthetic image exper-
iments is A € R2?24%240which is generated by randomly
selecting 240 different materials from the USGS library ! . It
comprises spectral signatures with reflectance values given in
224 spectral bands and distributed uniformly over the interval
0.4—2.5pm. We simulate the synthetic data cube with 75 x 75
pixels and 224 bands per pixel based on LMM by using five
randomly chosen spectral signatures from the library A as the
endmembers and by generating the abundances following the
methodology of [4]. Finally, the simulated hyperspectral data
is degraded by Gaussian noise with three different levels of
the signal-to-noise ratio, i.e., 20dB, 30dB, and 40dB.

We adopt the signal-to-reconstruction error (SRE) and the
probability of success (ps) as the objective metrics for quan-
titative evaluation. Specifically, the SRE in dB is defined as
SRE = 10log, o (E[[}x[3]/E[[x — %3]) [3], and p, is given
by ps = P(||x — x||?/|x||* < 3.16), where X is the esti-
mated fractional abundance vector of the true fractional abun-
dance vector x and F[-] stands for mean value[3]. These met-
rics indicate the quality of the reconstruction of spectral mix-
tures. The larger these values are, the better the performance
of the algorithm for recovering the abundances are. Table 1
demonstrates the unmixing results of SRE and p,. Figure 1

Thttp://speclab.cr.usgs.gov/spectral.lib06



shows the abundance maps estimated by different methods
for one randomly selected endmember in synthetic data with
SNR=20dB.

Table 1. Performance of different unmixing approaches on
simulated hyperspectral data

SNR(in dB) Algorithm SRE(in dB) Ps
20 SUnSAL 4.4661 0.3552
SUnSAL-TV 10.8890 0.9889
HURLR-TV 11.9134 1
30 SUnSAL 9.4353 0.9292
SUnSAL-TV 18.7212 1
HURLR-TV 22.0214 1
40 SUnSAL 11.1475 1
SUnSAL-TV 28.1640 1
HURLR-TV 30.0855 1

The results in Table 1 show that HURLR-TV outforms
other methods in terms of SRE at different noise levels. In
terms of py, HURLR-TV and SUnSAL-TV give optimal re-
sults, and SUnSAL fails at low-SNR. Fig. 1 demonstrates that
the abundance obtained by SUnSAL looks very noisy because
the spatial information is not taken into account. By con-
sidering the spatial information, the abundances estimated by
SUnSAL-TV and HURLR-TV appear very similar visually,
but the proposed method retrieves more details (compare the
reconstructed squares in the sencond and the third row of Fig.
1(c) and Fig. 1(d)).

The real HSI used in the experiments is a subimage of
250 x 191 pixels and 188 bands from the publicly available
AVIRIS Cuprite data collected in 1997. The Cuprite site is
well understood mineralogically, and it has several exposed
minerals of interest. The standard spectral library for this data
is the USGS library containing 498 pure endmember signa-
tures. Essential calibration was undertaken in order to miti-
gate the mismatches between the hyperspectral image and the
signatures in the library [3]. The estimated results are demon-
strated in Fig. 2.

From Fig. 2, we have similar findings: sparse unmixing
methods either perform poor on noise reduction (e.g.SUnSAL)
or oversmooth the abundance map (e.g.SUnSAL-TV). By
exploiting the low rank property and capturing the global
structure of the data, our proposed method produces better
results.
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Fig. 1. Abundance maps obtained by different unmixing
methods for 5th endmembers in the synthetic data with
SNR=20dB : (a) Ground truth, (b) SUnSAL, (c) SUnSAL-TV
and (d) HURLR-TV.

5. CONCLUSIONS

This paper proposes a novel hyperspectral unmixing method
based on reweighted low rank to improve the accuracy of
abundance estimation. The reweighted low rank can capture
the global structure of the abundance matrix through finding
the lowest rank representation of all data jointly. The spa-
tial information is utilized throgh a TV regularizer. Simulated
and real hyperspectral data sets are used to test the perfor-
mance of the proposed HURLR-TV. The experimental results
show consistently improvement over the related SUnSAL-TV
method.

References

[1] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE
Signal Process. Mag., vol. 19, no. 1, pp. 44-57, 2002.

[2] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Per-
ente, Q. Du, P. Gader, and J. Chanussot, “Hyperspectral
unmixing overview: geometrical statistical, and sparse-
regression-based approaches,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379,
2012.

[3] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza,
“Sparse unmixing of hyperspectral data,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 6, pp. 2014-2039,
2011.

[4] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “To-
tal variation spatial regularization for sparse hyperspec-



(b)

()

®

Fig. 2. Fractional abundance maps estimated for the AVIRIS Cuprite subscene with the USGS library. From left to right:
Alunite, Buddingtonite, and Chalcedony. (a)-(c) SUnSAL, (d)-(f) SUnSAL-TV, (g)-(i) HURLR-TV.
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