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H
anging in the Saint Bavo Cathedral in Ghent, Bel-
gium, is The Ghent Altarpiece, also known as The 
Adoration of the Mystic Lamb (see Figure 1).  
According to an inscription on the outer frames, it 
was painted by brothers Hubert and Jan van Eyck for 

Joos Vijd and his wife Elisabeth Borluut in 1432. It is one of the 
most admired and influential paintings in the history of art and has 
given rise to many intriguing questions that have been puzzling art 
historians to date [11]. Moreover, the material history of the panels 

is very complicated. They were hidden, dismantled, moved away, 
stolen, and recovered during riots, fires and wars. The recovery of 
the panels by the U.S. Army in the Nazi hoards deep in the 
Altaussee salt mines has particularly marked memories. One panel 
was stolen in 1934 and never recovered. Besides varying conserva-
tion conditions, the panels underwent numerous restoration treat-
ments and were even partially painted over. 

One of the most important unresolved questions related to this 
painting goes back to its creation: the division of hands between the 
two brothers and their respective workshops. The meticulous study 
of the painting technique, its different layers and materials, as well 
as the underdrawings and perhaps even numerous intriguing palm 

[Aleksandra Pižurica, Ljiljana Platiša, Tijana Ružić, Bruno Cornelis, Ann Dooms, Maximiliaan Martens, 
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and fingerprints could bring us closer to answering that question. 
However, The Ghent Altarpiece hides many other secrets, like the 
meaning of inscriptions that are difficult to decipher, such as the 
text in the book depicted in the panel Virgin Annunciate. 

A major conservation and restoration campaign carried out by 
the Royal Institute for Cultural Heritage (KIK-IRPA), which is 
expected to take at least six years, started in October 2012. One of 
the questions of the treatment, supported by an international com-
mission of experts, concerns uncovering van Eyck’s original paint 
to the extent which can be safely carried out. Indeed, the paintings 
were covered over centuries with disfiguring retouchings, over-
painting, and varnishes. Certain decisions regarding the restora-
tions benefit from multidisciplinary research and signal processing 
could help in this regard. 

In this article, we show progress in certain image processing 
techniques that can support the physical restoration of the paint-
ing, its art-historical analysis, or both. We first introduce a multi-
modal crack detection algorithm, which gives a clear improvement 
over earlier reported crack detection results on The Ghent Altar-
piece. We then show how a relatively simple analysis of the crack 
patterns could indicate possible areas of overpaint, which may be of 
great value for the physical restoration campaign, after further vali-
dation. Next, we explore how digital image inpainting can serve as a 
simulation for the restoration of losses (missing areas in one or 
more layers of the painting, often caused by abrasion or mechanical 
fracture and revealed after the cleaning process). As a separate 
problem, we address crack inpainting by outlining the main chal-
lenges and proposing a solution that improves upon earlier 
reported results on this painting [7]. Finally, we explore how the 
statistical analysis of the relatively simple and frequently recurring 
objects (such as pearls in this masterpiece) may characterize the 
consistency of the painter’s style and thereby aid both art-historical 

interpretation and physical restoration campaign. We carry out our 
analysis on a recently released high-resolution data set and on 
some images taken during the current treatment of the altarpiece. 

Data set: “Closer to Van eyCk”
Until 2012, digitized scans of old photographic negatives, acquired 
by Alfons Dierick [12] and kept in the archives of Ghent University, 
were the only available high-resolution data set of The Ghent 
Altarpiece. The development process of these negatives was 
mainly undocumented, which resulted in a data set where the 
images vary strongly in quality. Earlier reported results of digital 
image processing on The Ghent Altarpiece, such as crack detec-
tion, virtual crack inpainting [7], [24], and pearl analysis [23], 
were all based on images from that old data set. 

We report the results on extremely high-resolution images 
that are publicly available in [31]. This data set is the result of an 
interdisciplinary research project that ran from April 2010 until 
June 2011, with the goal to assess the structural condition of The 
Ghent Altarpiece and determine whether a full restoration of van 
Eyck’s polyptych was necessary. The surfaces of the altarpiece 
were documented with the following imaging modalities: digital 
macrophotography (with a pixel size of 7.2 nm; full panels, 140 
extreme close-ups, and some cleaning tests), infrared macropho-
tography (in the same resolution), infrared reflectography, and 
X-radiography. New acquisitions will be added to this data set in 
the scope of the current conservation-restoration campaign. 

Image proCessIng In servICe   
of paIntIng restoratIon
We address two potential applications of image processing to support 
restoration of paintings: 1) detecting possible areas of overpaint based 
on the analysis of crack patterns and 2) virtually inpainting losses. 

(a) (b)

[fIg1] The Ghent Altarpiece: (a) open and (b) closed. Image copyright ghent, kathedrale kerkfabriek, luksaweb. 
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CrACk deTeCTion in pAinTinGs
Being able to accurately detect cracks can be very relevant to 
painting conservation, since cracking is one of the most com-
mon forms of deterioration. Fluctuations in humidity, causing 
the wooden support to shrink or expand, is the main reason for 
crack formation. Because the way in which cracks develop and 
spread partly depends upon the choice of materials and methods 
used by the artist, assessing cracks is useful for judging authen-
ticity [4]. Cracks can also assist conservators by providing clues 
to the causes of degradation of the paint surface. An in-depth 
study of the factors contributing to their formation can support 
preventive measures [1]. Furthermore, the analysis of crack pat-
terns provides noninvasive means of identifying the structural 
components of paintings [4]. 

Visually, cracks can be categorized into bright cracks on a dark 
background or dark cracks on a bright background. One can fur-
ther distinguish between different types of cracks such as ageing 
cracks, premature cracking (generally due to drying defects 
related to the painting materials or their application), or cracks 
formed only in the varnish layer when it becomes brittle through 
oxidation. The literature discusses mainly dark cracks; they are 
typically considered as having low luminance and being local (gray 
scale) intensity minima with elongated structure [14]. Different 
crack-detection techniques include simple thresholding, line 
detectors, and various morphological filters (see [1] for an over-
view). The method in [7] operates on a single image modality (visi-
ble image) and combines by means of a voting scheme three-crack 
detection techniques: oriented elongated filters, a multiscale 
extension of the morphological top-hat transformation, and a 
detection method based on dictionary learning [13].

The BAyesiAn CondiTionAl Tensor fACTorizATion 
meThod for mulTimodAl dATA
The newly acquired multimodal data set (see Figure 2 for an exam-
ple) allows for new crack detection techniques that are able to make 
use of the information provided by each modality, thereby yielding a 
more reliable detection scheme. However, a pixel-perfect registration 

is required prior to using all modalities together. The panels of The 
Ghent Altarpiece were already roughly registered for adjacent view-
ing in [31], but the spatial alignment of these preregistered images is 
not sufficient in the current context, as the images can be shifted by 
a few pixels or even exhibit local inconsistencies due to the different 
acquisition modalities. The nature of the different modalities and the 
stringent requirements for crack detection make direct registration 
a challenging task. However, since the cracks themselves are a more 
or less consistent component throughout all modalities, we used 
them for the registration process. Crude crack maps are first 
obtained by filtering the unregistered images with elongated filters 
and subsequent thresholding (more details of the exact procedure 
can be found in [7]). It should be noted at this point that the pres-
ence of false positives is not a nuisance as long as the locations of 
most of the cracks in each modality are identified. The crude crack 
maps obtained from the X-radiograph and the visual and infrared 
images are mutually registered using the algorithm described in [5] 
(using the infrared crack map as the reference). The resulting trans-
formation is then applied to the original images. 

Simply applying the methods described in [7], which were 
designed for a single image, requires choosing an additional set of 
parameters per modality, which would be too cumbersome. Here 
we adopt a semisupervised Bayesian approach that estimates for 
each pixel a posterior probability of belonging to the “crack” cate-
gory given a large set of feature vectors extracted over all modali-
ties. These feature vectors are obtained by processing each image 
modality with a number of different filters, commonly used in 
image processing, ranging from morphological filters to multiori-
entation filter banks, as described in [8]. The resulting feature vec-
tors, hereafter denoted as categorical predictors, or predictors for 
short, are quantized into an experimentally chosen number of 
bins. Let , ...,X Xp1  denote p  predictors at a given pixel location, 
and let Y  denote a hidden random variable, taking values 

{ , },y 0 1!  where the label “1” denotes a crack pixel and “0” a 
noncrack pixel. The conditional probability ( | , , )P Y X Xp1 f  is a 
d dp1 # #f  dimensional tensor, with d j  the number of quanti-
zation bins of the jth predictor .X j

(a) (b) (c)

[fIg2] acquisitions of The Ghent Altarpiece: (a) macrophotography, (b) infrared macrophotography, and (c) X-ray radiography. Images 
used with permission from [31]. Image copyright ghent, kathedrale kerkfabriek, luksaweb. 
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Using the Bayesian conditional tensor factorization (BCTF) of 
[30], inspired by higher-order singular value decomposition [10], 
the conditional probability tensor can be decomposed as 
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for every combination of ( , ) .m xm  The factorization coefficients 
( )y, , ,j j j p1 2m f  can be seen as the latent class allocation probabilities 

and ( )x( )
j
m

mmr  as the response class probabilities, which control in a 
probabilistic manner how the levels of each predictor are clustered. 
The { , , }k d1m mf!  value impacts the number of parameters 
used to characterize the mth predictor. In the special case where 

,k 1m =  (2) yields ( ) ,x 1( )m
m1r =  which means that 

( | , , )P y x xp1 f  will not depend on xm  and the mth predictor can 
be excluded from the model. If k 1m =  for most ms, the categori-
cal predictor model becomes sparse. In practice, we do expect that 
only a few features have a significant impact on the classification 
results. More details on the exact posterior computation can be 
found in [30]. The resulting conditional probability tensor can be 
used as a lookup table where each entry contains a crack probability 
for a specific combination of predictor values. If this probability 
exceeds 0.5, we label the pixel as being part of a crack. 

A comparison between the multimodal BCTF method and 
the crack detection method introduced earlier in [7] on the 
same part of the painting is depicted in Figure 3. It can be 
observed that the older method fails to detect some thin cracks, 
while it falsely labels some thin dark brushstrokes as cracks. It 
is clear that the multimodal BCTF method detects more cracks 
with fewer false positives. 

idenTifyinG overpAinT from CrACk pATTerns
Some features of the detected crack patterns may have potential to 
guide the restorers to places of interest such as retouchings or 
heavily damaged areas. As an example, we applied the BCTF 
method, described previously, on the upper left corner of the Joos 
Vijd panel. Figure 4(a) shows that part of the painting and its cor-
responding crack map. A rather simple analysis consists of count-
ing the number of crack pixels in a sliding window of .100 100#  
In doing so we obtain a crack density map (see Figure 4) where we 
can identify low crack density zones as well as high crack density 
zones. The lowest (and highest) crack density zones are obtained 
automatically by hysteresis thresholding, where the first chosen 
threshold is chosen to be very close to the minimum (respectively max-
imum) value of the crack density. Painting conservators confirmed 
that the areas of lowest density marked in white in Figure 4(d) are 
old losses covered with retouching that also overlap on the sur-
rounding original paint. Other zones of low crack density however, 

[fIg3] Crack detection and inpainting. (a) and (b) show a comparison between BCtf and the method in [7], where cracks detected by both 
methods are marked in red and the differences in yellow. (a) yellow indicates cracks detected only by BCtf. (b) yellow indicates cracks 
detected only by [7]. (c) and (d) show the original visible data and the result of our patch-based inpainting after BCtf-based crack detection.

[fIg4] a crack density analysis within the upper left corner of the 
Joos vijd panel. (a) the high-resolution macrophotograph. (b) a 
detected crack map. (c) Crack density map (blue: low density; red: 
high density). (d) Detected zones of lowest crack density.

(a) (b) (c) (d)

(a) (b)

(c) (d)
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such as the ones seen in the upper left corner of the density map, 
correspond to thinner original paint that developed a different 
crack pattern over time. The interpretation of the crack maps, like 
any other diagnostic tool in art conservation, needs to be checked 
by conservators using other examination techniques and linking 
the evidence by their critical and material skills. 

virTuAl inpAinTinG
During the ongoing physical restoration of The Ghent Altarpiece, 
deteriorated retouching and overpaint are removed, revealing 
underlying losses in the original (see Figure 5). Digital image 
inpainting can virtually fill in these areas and provide a “simula-
tion” for the impact of certain actions to be taken during the phys-
ical restoration process. 

A recent overview of inpainting methods is given in [15], and 
applications to virtual restoration of paintings include [21] and 
[22]. Patch-based methods are capable of replicating both struc-
ture and texture by filling in the missing region patch-by-patch. In 
general, for each patch of the missing region (target patch), a well 

matching replacement patch is found in the available part of the 
image (source region) and copied to the corresponding location. 
Preserving structures is achieved by defining the filling order [9], 
which gives priority to the target patches containing object 
boundaries and fewer missing pixels. The so-called global meth-
ods, like [17] and [25], allow the choice of multiple candidate 
patches (instead of choosing just one best match in a “greedy” 
manner) and define inpainting as a global optimization problem. 

Figure 5 shows a part of the John the Evangelist panel that has 
been cleaned in the current restoration campaign of The Ghent Altar-
piece. Removing overpaint revealed many losses that will be carefully 
inpainted by the conservators, using stable and reversible materials, 
to restore the visual coherence of the original image. In contrast to 
losses and abrasions, age cracks are not inpainted in actual conserva-
tion unless they severely interfere with the painted form. For this rea-
son, the cracks are not inpainted intentionally in this experiment 
(unless they are inside a larger loss and assigned, therefore, to a miss-
ing region). Here we provide a virtual inpainting simulation of some 
parts obtained with the patch-based algorithm of [25] [see  Figure 5 
and the enlarged part in Figure 6(a)]. We have chosen to inpaint sev-
eral figurative parts that contain structure and texture. The results 
show how challenging this problem is even for state-of-the-art 
inpainting methods. None of the methods tested so far produced a 
satisfying result that fully (albeit virtually) restored the painted form. 
Experienced conservators master a knowledge of the physical charac-
teristics of the paint layers and of the painted forms that call upon 
complex visual perception and interpretation skills. Virtual inpaint-
ings do not provide alternatives to their work on the original but test 
the potential of the methods that need to be further developed. 

Does CraCk fIllIng Help you reaD tHat Book?
While cracks are rarely inpainted in the actual, physical restora-
tion, virtual crack removal can be of interest in certain aspects. 

(a) (b)

[fIg5] (a) a part of the cleaned John the evangelist panel. the marked regions are inpainted in (b). Image copyright ghent, 
kathedrale kerkfabriek; photo courtesy of kIk-Irpa, Brussels.

(a) (b) (c)

[fIg6] the results on a small part of the cleaned John the 
evangelist panel. (a) the original image, (b) overlay with 
damaged regions marked in red, and (c) the result of the 
algorithm from [25]. Image copyright ghent kathedrale 
kerkfabriek; photo courtesy of kIk-Irpa. 
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For example, crack inpainting may improve the legibility of the 
text present in parts of the polyptych, which can be of great impor-
tance to art-historical and iconographical studies. Virtual inpaint-
ing of the book in the Virgin Annunciate panel was reported in [7] 
on the scans from the Dierick collection. Here we identify some 
limitations of state-of-the-art inpainting techniques for this type of 
problem and introduce an improved method and report the 
results on the new high-resolution scans from the data set in [31]. 

ChAllenGes in The Book of virGin AnnunCiATe
Since cracks typically appear in images as very thin and elongated 
regions, crack inpainting methods are often based on rather sim-
ple, pixel-wise operations, including median filtering [14], [26], 
interpolation [2], and controlled anisotropic diffusion [14]. In 
cases where high-resolution scans are available, such that the 
width of some cracks spans multiple pixels, patch-based inpaint-
ing methods [9], [17], [24] typically yield better results [7], [27]. 

The book in the panel Virgin Annunciate (Figure 2) is a very 
challenging case for virtual inpainting because the width of cracks 
varies greatly and some cracks are difficult to distinguish from 
parts of the letters. Moreover, as the cracks are typically sur-
rounded by bright clouds of background matching color, due to the 
lifting and abrasion of the surrounding paint and thereby imposed 
light reflections, the immediate areas around the cracks are also 
unreliable. The crack inpainting method from [7] specifically tai-
lored to this application already generally improved the legibility of 
the text and was shown to outperform some “general-purpose” 
patch-based inpainting methods like [9] and [17]. However, some 

problems are still present, e.g., parts of the letters through which 
wide cracks are passing are occasionally deleted after virtual 
inpainting. To alleviate this problem, a better approach to handling 
continuation of image structures is needed. We discuss a possible 
solution with encouraging initial results next. 

CrACk inpAinTinG
In cases where painted structures, like the characters in Figure 3, 
are relatively small compared to the crack width, it is very difficult 
for the inpainting algorithm to infer the correct structure locally. 
Patch-based inpainting methods typically handle structure propa-
gation by defining the right filling order [9], [15]. Once the filling 
order is determined, most of the methods choose plausible candi-
dates for replacement patches based solely on the agreement with 
the undamaged part of a single target patch [see Figure 7(a)], and 
concentrate on defining effective distance metrics between the 
known portion of the target and the candidates [20]. Matching only 
against a small part within the target patch increases the risk of 
propagating wrong textures and wrong colors into the missing 
region. Global methods, such as [17] and [25], allow multiple can-
didates and optimize their mutual agreement in the overlap 
regions [Figure 7(b)], but even this cannot ensure agreement with 
surrounding undamaged structures: the optimization that takes 
care that neighboring replacement patches mutually agree cannot 
“undo” the damage done by selecting wrong candidates in the first 
place. Ideally, undamaged areas around the target patch should be 
taken into account in the candidate selection as well, ensuring that 
plausible candidates agree with true structures [see Figure 7(c)]. 

(b)

(a)

(c)

[fIg7] patch-based inpainting and the proposed improvement. (a) a greedy approach chooses one replacement patch based on the 
known part of the damaged patch. (b) a global approach considers multiple candidates and their mutual agreement. (c) our approach 
in addition adapts the candidate selection according to the locally detected structures.
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Guiding the selection of candidate patches by the agreement 
with undamaged areas is related to the idea of global visual coher-
ence introduced in [29] for video completion. The approach of [29] 
is very effective for replicating larger missing areas and textures, 
but it does not treat continuation of curvilinear structures. Alter-
native solutions that propagate structures along user-specified 
lines [19], [28] showed excellent results in photo editing, but for 
our application the amount of the user intervention required by 
such methods would be prohibitive. 

The main idea of our approach is to simultaneously detect 
directions of local structure propagation and adapt the candidate 
selection accordingly. We propose a fully automatic and low-com-
plexity method for selecting the candidate replacement patches 
based on their agreement with the undamaged part of the target 
patch and with the neighboring undamaged areas, along direc-
tions where the structures are likely to propagate. Let iz  denote 
an image patch centered at position ,i  ( , )S i jz z  a certain mea-
sure of similarity between iz  and ,jz  and denote by N ,i k  a direc-
tional neighborhood of iz  along direction .k  We define prior 
preference P ,i j  for selecting a source patch iz  as a candidate 
replacement for the damaged target patch jz  as follows: 

 ( , ) ( , ) .maxP S S,i j i j
k l N

i l
,j k

z z z z= +
!

/  (3)

The first term measures, as usual, the similarity with the 
known part of the target patch. The novelty is in the second term, 
which takes care of the agreement with the wider context 
around the target patch. In particular, the more the candidate 
patch iz  fits with the neighborhood of the damaged patch jz  in 
any direction where structures of interest are likely to propa-
gate, the more preference it will get in the selection process. 
Common measures of patch similarity are defined in terms of 
the sum of squared differences among the patches ( , )D i jz z

,i j
2z z= -  calculated over the known pixels. We used 

( , ) ( , )S Di j i jz z z z=-  for the candidate selection in (3). With 
this improved candidate selection process in combination with 
simple greedy inpainting (selection of one replacement patch at 

each position), we already obtain a clear improvement over the 
earlier method from [7], as is visible in Figure 8 (notice, in par-
ticular, that the effect of deleting parts of letters is less severe). 
One can also select multiple candidates, with several largest val-
ues of P ,i j  in (3) and subsequently solve the resulting “puzzle” 
using a global optimization method like in [17] and [25]. It 
would be interesting to explore also alternative solutions, like 
the statistics of patch offsets [16] or hierarchical, superresolu-
tion-based inpainting [18]. 

WHat Can pearls tell us?
Painted pearls, which are abundant in The Ghent Altarpiece, 
provide a nice case study for the statistical analysis of the consis-
tency of the painterly execution. Spatial histograms, or spatio-
grams [3], were employed in [23] as digital signatures of painted 
pearls and showed potential to distinguish pearls painted by dif-
ferent artists. In particular, the pearls in the copy of the panel 
Just Judges, made by J. Van der Veken between 1939 and 1951 to 
replace the panel stolen in 1934, showed clearly different spatio-
grams than those from other panels of the altarpiece. Similar 
conclusions were drawn when comparing the spatiograms of the 
recent reconstructions by other artists. However, this earlier 
analysis in [23] was performed on the old scans of the altarpiece, 
with varying resolutions, which may have affected to some 
extent the numerical findings. It is important to verify the main 
conclusions of this earlier analysis in the light of the new high-
quality photographic material. We also go a step further, extend-
ing the study to different panels of the altarpiece and making a 
hypothesis that the consistency of the painted pearls could pro-
vide an additional support for the division of hands between the 
painters or within the workshop, as well as for detecting possible 
areas of former restorations and overpainting campaigns. 

diGiTAl peArl siGnATures from spATioGrAms
An image spatiogram [3] is a generalized histogram, with second-
order spatial moments. Suppose an image consists of N  pixels 
and denote the spatial position of the nth pixel { , ..., }n N1!  by 

(a)

(b)

(c)

[fIg8] (a) parts of the original image, (b) the results of our method, and (c) the method of [7].
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p x y n n n
T= ^ h  and its intensity by .In  Let b  denote a histogram 

bin, being a range of pixel intensities and let ( )x1b  denote the 
indicator function (returning one if x b!  and zero otherwise). 
The spatiogram triplet for bin b  is then computed as follows: 

 ( )1c Ib b
n

N

n
1

h=
=

/  

 ( )c I1pb b n
n

N

b n
1

1
n h= -

=

/  

 ( ) ( ) ( ) .c I1p pb b
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N

n b n b
T

b n
1

1
n nhR = - --
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/  (4)

The normalizing constant h  is chosen such that .c 1bb

B

1
=

=
/  

For bins with ,c 0b =  the values of bn  and bR  are also set to zero 
(not of interest). To enable comparison between images of differ-
ent sizes, we normalize all spatial coordinates to the range [-1, 1]. 
For the purpose of visualization of the highly dimensional spatio-
gram data, [23] proposed spatiogram triple-plots (S1, S2, S3) illus-
trated in Figure 9: 

 ■ S1: connected centers of bins, ( )x y b b bn = r r  
 ■ S2: bn –positioned counts of bins (the radii of the circles 

are proportional to bin counts)  

 ■ S3: bn –positioned variances in the x - and y -direction.
Figure 9 demonstrates that mutually similar pearls produce 

similar spatiogram triple-plots. 

ConsisTenCy of The peArls in The AlTArpieCe
Here, we evaluate the consistency of painted pearls in The Ghent 
Altarpiece on the data set in [31]. We measure similarity between 
two painted pearls with the spatiogram similarity index SSim  [6], 
where .0 1SSim# #  In particular, we select 12 sets of pearls 
from five different panels, as marked in Figure 10(a). The size of 
each set and the average radius of the pearls (in pixels) are given 
in parentheses: A1(4, 576), A2(12, 265), A3(24, 273), A4(12, 144), 
B1(7, 177), B2(20, 129), C1(5, 138), C2(6, 111), C3(8, 180), D1(3, 
276), D2(6, 224), and D3(3, 239). We make a comparative analysis 
of the similarity of painted pearls within each set (within-set simi-
larity) and between different sets (cross-set similarity). 

Figure 10(b) shows within-set similarity for the 12 pearl sets, 
computed from 64-bin spatiograms. Clearly, the largest pearls 
(A1) are the most similar, which agrees with the findings of 
[23], but now we can also see that the consistency within each 
set depends also on the panel and the position of the pearls. For 
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[fIg9] (a) and (b) two pairs of pearls from The Ghent Altarpiece and their corresponding spatiogram triple-plots (s1, s2, s3). 
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[fIg10] exploring the consistency of the painted pearls in different panels. (a) the selected sets of pearls: a–clothing decoration of God 
the father; B–the hat of Cumaean sibyl; C–the diadem and brooch of The virgin Annunciate; D1–the decoration in prophet zachary; 
and D2, D3–the diadem and brooch in The Archangel Gabriel. (b) the corresponding SSim  values. the central marks show the medians, 
the boxes indicate 25th and 75th percentiles, the extreme vertical lines (whiskers) are 1.5 times the interquartile range, and + marks 
denote the outliers. (c) some cross-set and within-set SSim  histograms.
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example, C2 shows much higher within-set similarity than D1, 
even though D1 pearls are twice as large. This could be attributed 
to the position of D1 pearls (very high in the altarpiece, where they 
are less visible to viewers). Similarly, SSim values are less consis-
tent for B2 than for B1 of the Cumaean Sibyl, in line with the fact 
that B2 pearls are smaller, as well as less densely/neatly arranged 
than the B1 pearls. Sets C1–C3 (from The Virgin Annunciate) and 
D2 and D3 (from The Archangel Gabriel) are on equally impor-
tant places in the altarpiece: two outer panels in the middle row of 
the closed view; see Figure 1(b). Our analysis suggests that C3 
pearls are more consistent than C1 and C2, which agrees with the 
fact that they are larger, more visible, and have a more central 
place in the panel. Furthermore, D2 pearls are almost twice as 
large as C1 (which appear in the same relative position in the 
other panel) and indeed give more consistent spatiograms. How-
ever, there are some interesting exceptions that deserve extra 
attention. D3 pearls seem less consistent than D2, even though 
they are larger and at a more visible place (closer to the viewer). It 
is still unclear whether this could be (partly) attributed to less 
careful execution, the state of varnish, possible retouching or over-
paint, or simply to having a rather small set (three pearls). 

It is also interesting to assess consistency of the painted pearls 
of similar sizes in different panels. Figure 10(c) shows cross-set 
SSim  for three different combinations of pearl sets in comparison 
to within-set SSim  for the same sets. The SSim  histograms show 
a high similarity between B1 and C3 sets, and much less between 
B2 and C2. This can be attributed to the fact that B2 and C2 pearls 
are relatively small. Moreover, B2 is a large set of pearls decorating 
a hat, and executing them more consistently would not change 
the overall visual impression much. Also, the cross-set similarity 
between A3 and D3 is much smaller than the similarity within A3, 
which is not surprising since A3 pearls are in the central panel of 
God the Father in the open view and are brimming with jewels 
and reflections, while the D3 ones are in the closed view, figuring 
different type of lighting, possibly executed by different hands 
within the workshop and have quite likely undergone different 
conservation treatments in the past. 

ConClusIons
Signal processing shows promise in helping in the decision-mak-
ing process that is involved in a painting’s conservation and resto-
ration. Our initial results show that analysis of crack patterns 
could indicate certain areas of overpaint, even though the pro-
cessed crack maps still need to be interpreted by conservators 
using other examination techniques. State-of-the-art inpainting 
techniques still do not succeed in fully restoring the painted form 
at a level that would match the criteria of art conservators, but the 
interaction between the two communities provides already a cru-
cial feedback for improving virtual inpainting techniques in this 
challenging application. The use of statistical analysis to assess the 
consistency of the painting style can be of interest for art-histori-
cal interpretation of the content. Our analysis of the consistency of 
the painted pearls in The Ghent Altarpiece points to some 
instances (specific painted objects) that might be of interest to art 
historians and conservators to examine in more detail. 
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