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Abstract 
 

This Chapter addresses virtual restoration and painter style characterization in 
digitized versions of The Adoration of the Mystic Lamb or The Ghent Altarpiece. Virtual 
restoration enables removal of the signs of aging, such as cracks. Today it is possible for the 
viewer to appreciate the finest details of the masterpiece by zooming into its high-resolution 
scans. Especially in these enlarged details, the appearance of inevitable signs of aging can 
become prominent. Virtual restoration enhances not only visual experience, which is important 
from the esthetical and psychological points of view, but in some cases it also facilitates 
deciphering the content (like text fragments) of the painting. For example, virtual restoration 
improves the legibility of the text in the Annunciation to Mary panel. Equally challenging is the 
development of new tools for painter style authentication. The second part of this Chapter 
reviews some of the metrics related to objective characterization of painted pearls, which are 
so beautiful and abundant in the works of Van Eyck. The potentials of these metrics to 
distinguish between painter styles are discussed as well as some side applications, such as 
bringing a painted object closer to the style of another painter.    
 
 

Introduction 

Digitization of art works has become a common practice. Museums are digitizing their 

collections mainly for the purposes of archiving and dissemination. This way the cultural 

heritage is protected and made accessible to a larger number of people. Digitization also enables 

the virtual restoration of art works and their mathematical analysis. For example, we can remove 

the signs of aging (such as cracks) from a digitized painting, visualize the effect of using 

different varnishes, discover patterns that would otherwise remain unnoticed or facilitate 

detection of forgeries.  
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FIGURE 1 ABOUT HERE 

 

 

 

Fig. 1 Zooming into a digitized scan. We see gradually enlarged details of Adam up to 

a level where pixels become clearly visible. The color of each pixel is characterized by the 

values of its three components: Red (R), Green (G) and Blue (B). 

 

In technical terms, digital images are composed of pixels. The name pixel was derived 

from picture element, which was shortened to pictel and evolved finally to pixel. Fig. 1 

illustrates zooming into a digitized scan of Adam from the Ghent Altarpiece polyptych. After 

sufficiently enlarging the digitized scan, individual pixels become visible (see Fig. 1 on the 

right). In a color image, each pixel is characterized by the values of its Red (R), Green (G) and 

Blue (B) components. Typically, images are stored with 8 bits precision per color channel, 

meaning that there are 2 to the power 8 distinctive values possible per channel, i.e., the 

intensities in each channel are integer values ranging from 0 to 255. In certain applications, a 

larger “bit depth” is used, e.g. 16 bits per channel, resulting in a “deep color” representation. 

The actual process of digitizing paintings, as well as challenges and technologies for accurate 

color reproduction are described in (Berns, 2001) and (Larue et al, 2007). 

With the rapid development of imaging sensors and various imaging modalities, the 

interest in scientific analysis of paintings is growing. It is now possible to zoom in on the tiny 

details of the painting or the brushstrokes, revealing structures that could never have been 

noticed by the naked eye. Moreover, imaging in different parts of the electromagnetic spectrum 

(from infrared to X-ray) as well as simultaneous imaging in a multitude of narrow spectral 

bands (hyper-spectral imaging) can reveal other amazing aspects, such as underdrawings 

(Walmsley et al, 1994; Ibarra-Castanedo et al, 2010) and differentiation between the paint 

layers that would otherwise remain undiscovered. Digitization of paintings also enables a 

marvelous interaction between art and vision science: vision scientists can learn from works of 

art about features that are important for our visual perception of a scene (Livingstone, 2002). 

Digital painting analysis is a rapidly growing field, attracting an increasing interest in 

the signal processing community (Abry et al, 2015). Image processing techniques have 
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already demonstrated potential in tasks such as characterization of painting style and forgery 

detection (Johnson et al, 2008; Platiša, et al. 2012) crack detection (Cornelis et al, 2013) and 

virtual inpainting (Spagnolo and Somma, 2010, Ružić et al, 2011, Pižurica et al, 2015).   

In this Chapter, we demonstrate and discuss application of image processing and 

machine learning techniques in virtual restoration and stylistic analysis of the Ghent Altarpiece. 

We present some results of our research that was conducted with the aim to support the physical 

restoration of the painting, its art-historical analysis or both. We first introduce the problem of 

crack detection and illustrate some of our techniques that make use of multi-modal data. Next, 

we address a related problem of detecting automatically paint losses (missing areas in one or 

more layers of the painting, often caused by abrasion or mechanical fracture and revealed after 

the cleaning process). We then show how digital image inpainting can serve as a simulation for 

the restoration of losses and also as a tool for virtual crack inpainting. Our results show that 

virtual crack inpainting can facilitate interpretation of inscriptions like the text on the intriguing 

book in the Annunciation to Mary panel. Finally, we explore how the statistical analysis of the 

relatively simple and frequently recurring objects (such as pearls in this masterpiece) may serve 

in the attribution of the painter’s style. Our statistical analysis of pearls in the Ghent Altarpiece 

offers also some insights into the consistency of the painter’s style, which may be helpful both 

for art-historical interpretation and physical restoration of the painting. We carry out our 

analysis on a recently released high-resolution data set and on some images taken during the 

current treatment of the altarpiece.  

 
 

Multimodal high-resolution data set 

Most of the earlier reported results of digital image processing on the Ghent Altarpiece, 

such as crack detection and inpainting in (Ružić et al, 2011; Cornelis et al, 2013) and pearl 

analysis in (Platiša, et al. 2011; Platiša, et al. 2012) were based on digitized scans of old 

photographic negatives, acquired by Alfons Dierick (Dierick, 1996). Until 2012, these old scans 

that are kept in the archives of Ghent University, were the only available high resolution data 

set of the Ghent Altarpiece. The development process of these negatives was mainly 

undocumented, which resulted in a data set where the images vary strongly in quality.  

In this Chapter, we report the results on extremely high-resolution images that are 

publicly available on the website Closer to Van Eyck: Rediscovering the Ghent Altarpiece1. 

 
1 http://closertovaneyck.kikirpa.be/ 
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This data set is the result of an interdisciplinary research project that ran from April 2010 till 

June 2011, with the goal to assess the structural condition of the Ghent Altarpiece and determine 

whether a full restoration of Van Eyck’s polyptych was necessary. The surfaces of the altarpiece 

were documented with the following imaging modalities: digital macrophotography (with a 

pixel size of 7.2 µm; full panels, 140 extreme close-ups, and some cleaning tests), infrared 

macrophotography (in the same resolution), infrared reflectography and X-radiography. New 

acquisitions are being added to this data set in the scope of the current conservation-restoration 

campaign.  

 

Virtual restoration of the Ghent Altarpiece 

The proces of virtual restoration starts with automatic detection of areas that need to be 

digitally corrected. We focus on digital inpainting of two types of deteriorations (i) cracks and 

(ii) paint losses. We describe next specifics of these degradations and in the following sections 

we present the corresponding detection methods and a virtual inpainting (i.e., filling) method.  

Cracking of the paint layers (or craquelure) is one of the most common deteriorations 

in old paintings, arising inevitably with aging of the materials. The severity of this degradation 

is affected by many factors, from mechanical stress exposure to climate changes such as 

variations in temperature and relative humidity or pressurization (e.g., during air transport) 

(Abas and Martinez, 2003). In most 15th century Flemish paintings on Baltic oak, including the 

Ghent Altarpiece, age related cracks were caused mainly by fluctuations in relative humidity 

that make the wooden support shrink or expand. Age related or mechanical cracks can affect 

the entire composition of the paint layers, including both the preparation and the paint layers 

on top of it. Different from this is premature cracking (Mohen et al, 2006) being more dull-

edged than the age-related cracks and originating in only one of the paint layers. Premature 

cracks arise from a defective technical execution at the painting stage, such as not leaving 

enough time for a layer to dry, or applying a layer that dries faster than the underlying one. 

These cracks should be further distinguished from varnish cracks, formed only in the varnish 

layer, when it becomes brittle through oxidation (Cornelis et al 2013). 

The crack pattern can take different shapes: from nearly rectangular, circular or web-

shaped to one-directional, tree-shaped or can even appear completely random (Bucklow, 1997; 

Abas, 2005). The appearance of the cracks and the whole crack pattern depends upon the choice 

of materials and methods used by the artist, and can hence be used for judging authenticity of 
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the painting (Bucklow, 1997) and in general for non-invasive identification of its structural 

components (Bucklow, 1998). Analysis of crack patterns can reveal causes of degradation of 

the paint surface, which is of particular interest to conservators and which can help 

preventing/reducing further degradations (Abas, 2005) or even discover possible areas of 

overpaint and retouching (Pižurica, 2015). 

Detection of paint losses is another problem where image processing techniques may be 

of great help to art conservators and restorers. Loss of paint in one or more layers can arise due 

to abrasion and mechanical fracture. In old oil paintings, paint losses were often overpainted 

during various restoration campaigns. Modern conservation treatments typically require not 

only removal of old varnish, but also removal of old retouches and overpaint, which may reveal 

paint losses underneath. Detection of such paint loss areas is needed for estimating the extent 

of the damaged area, which needs to be maintained for documenting purposes, but also as a 

crucial step for virtual inpainting to provide simulations for the actual restoration. While crack 

detection has been widely studied in the literature, the problem of automatic paint loss detection 

has received little attention so far, despite its importance. In the following, we give an overview 

of the state-of-the-art in relation to both of these problems and illustrate the corresponding 

results on the Ghent Altarpiece. 

 

Crack detection 

Specific methods for crack detection in old paintings were reported e.g. in (Barni et al, 

2000; Giakoumis et al, 2006; Solanki and Mahajan, 2009; Spagnolo and Somma, 2010; Cornelis 

al, 2013). Most of these are semi-automatic procedures, where users need to specify a location 

believed to belong to a crack network. The algorithm will then track other suspected crack 

points based on two main features, absolute gray-level and crack uniformity. Initial crack 

patterns are often detected by thresholding the output of a morphological top-hat transform 

(Meyer, 1979; Serra, 1984). Cracks are subsequently separated from brushstrokes either by 

feeding some color features to a neural network or by letting a user manually select seed points. 

We found crack detection on the Ghent Altarpiece challenging especially due to the 

following: 1) strongly varying length and width of the cracks, ranging from hairline structures 

to larger areas of missing paint; 2) varying color (Fig. 2 shows examples of dark cracks on a 

lighter background and bright cracks on a dark background); 3) interference with image details 

(see Adam’s eye in Fig. 1: some cracks are difficult to distinguish from fine details such as eye 

lashes) and 4) whitish clouds present around some cracks, caused by light reflections on the 
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elevated ridges around the cracks. Also, during previous cleaning, the surface paint on these 

elevated ridges may have been accidentally removed, revealing parts of the underlying white 

preparation layer. The effect can be accentuated by the acquisition of the image data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 A detail of the broach from the God the Father panel. Cracks range from thin, hairline 
structures to wide lines and parts of missing paint. Also clearly visible is a strong variation in 

the crack color: from dark cracks on the golden part to very bright ones in dark regions. 
 

To cope with these problems, a hybrid approach for crack detection from (Cornelis et al 

2013) combines different crack detection techniques within a voting scheme. The employed 

methods are based on multiscale morphological transformations (Serra, 1989), oriented 

elongated filters (Poli and Valli, 1997) and dictionary learning principles (Elad et al, 2006). It 

was found that by fusing the results of these different detection methods, a more complete crack 

pattern can be extracted.  

Although the hybrid crack detection method of (Cornelis et al, 2013) has been rather 

successful, its performance is limited by the fact that it has been designed for a single imaging 

modality (typically, visual data). Combining information from different imaging modalities, 

including X-ray and infrared can improve crack detection, especially in areas where cracks are 

visually difficult to distinguish from the background. The newly acquired multimodal data set, 

that we use in this study (see Fig. 3 for an example) allows for new crack detection techniques 

that are able to make use of the information provided by each modality, yielding thereby a more 

reliable detection scheme. 
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FIGURE 3 ABOUT HERE 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Acquisitions of the Ghent Altarpiece: macro photography, infrared macro photography 
and X-ray radiography. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb. 

 
 

A pixel-perfect registration is required prior to using different modalities together. This 

means applying the necessary transformations such that the content in different modalities is 

perfectly overlaid. The panels of the Ghent Altarpiece were already roughly registered for 

adjacent viewing on the Closer to Van Eyck website but the spatial alignment of these pre-

registered images is not sufficient in the current context as the images can be shifted by a few 

pixels or even exhibit local inconsistencies due to the different acquisition modalities. Since the 

cracks themselves are a more or less consistent component throughout all modalities, they can 

be used as reliable landmarks in the registration process. It is hence advisable to detect first 

crude crack maps from each modality separately, using some single-modal method, and then 

align the modalities using a registration method such as (Carreras et al, 2006). 

A multi-modal crack detection method of (Cornelis et al, 2013a) extracts a large number 

of features from each modality by applying various filters, and combines these features within 

a Bayesian framework. In particular, a posteriori probability of crack presence is inferred, given 

the information supplied by the various features from the registered modalities. A comparative 

analysis between crack detection approaches reported in (Pižurica et al, 2015) shows that the 

multi-modal approach is able to detect more cracks, while at the same time reducing the false 

detections. An example in Fig. 4 demonstrates this clearly, on a challenging example, where 

cracks interfere with the text and painted features. Note that relatively many actual cracks are 

detected only by the multi-modal approach (see detections marked yellow in the second image), 

and that much more false alarms are produced by the single-modal approach (see detections 

marked in yellow in the third image in Fig. 4).  
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FIGURE 4 ABOUT HERE 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Comparison between single-modal and multi-modal crack detection on a part of the 
book from Fig. 3. The first image shows original visual data and the other two images show 

crack maps. Cracks detected by both methods are marked in red and the differences in yellow. 
The image in the middle: yellow marks cracks detected only by the multi-modal approach. 
The image on the right: yellow marks cracks detected only by the single-modal approach. 

 
 

Emerging deep learning tools (LeCun et al, 2015; Jacobsen et al, 2017) offer great 

potentials for improving further crack detection. Two main advantages of such a framework are 

the following. Firstly, there is no need to hand-engineer features and tune the corresponding 

parameters. The discriminative features and the corresponding weights are instead learned 

automatically from the provided examples. Secondly, the processing speed is drastically 

improved: once the network is trained, the processing is rapid and memory-efficient. Deep 

convolutional neural networks (CNN) are currently widely used in computer vision providing 

state-of-the-art in various image classification, and object categorization tasks (Krizhevsky et 

al, 2012; Simonyan and Zisserman, 2014; He et al, 2016). Two recent works applied deep 

networks to crack detection in roads (Lei et al 2016; Cha et al, 2017). Our work reported in 

(Sizyakin et al, 2018) is to the best of our knowledge the first one to apply deep learning to 

crack detection in paintings. A detailed analysis in (Sizyakin et al, 2018) indicates a huge 

potential of multi-modal deep convolutional neural networks in crack detection compared to 

the more traditional multi-modal approach from (Cornelis et al, 2013a; Pizurica et al, 2015) 

described above, both in terms of detection accuracy and speed.  

A deep convolutional neural network consists of two main stages: feature extraction and 

classification, as illustrated in Fig. 5. In the feature extraction stage, the input images are passed 

through a sequence of filters followed by nonlinearities and (optionally) pooling operations to 

yield a sequence of feature maps. Mathematically, filtering is expressed as convolution with a 
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given kernel, hence the name convolutional network. A nonlinearity called Rectified Linear 

Unit (ReLU): f(x) = max(x,0) is commonly applied as the activation function to the convolution 

outcomes, yielding the corresponding feature maps. Optionally, pooling is performed by taking, 

e.g., the maximum value from a square window of pixels. This operation progressively reduces 

the spatial size of the representation, which is of interest in object categorization but less so in 

pixel-wise labelling such as crack detection. The weights with which various feature maps are 

fed into the subsequent layers of convolutions as well as the parameters of the convolutional 

kernels are learned based on the supplied examples of the desired input-output pairs. This is 

called supervised learning. State-of-the-art deep networks, like those employed for face 

recognition, often have 16 or more layers and hundreds of millions of these adjustable weights, 

and hundreds of millions of labelled examples with which to train the machine (LeCun et al, 

2015). For the purpose of crack detection, our network from (Sizyakin et al, 2018) employed 

three convolutional layers and was efficiently trained on manually labelled cracks from several 

details of the Ghent Altarpiece. 

Fig. 6 illustrates the process of supplying examples of cracks and non-cracks to the 

system and the corresponding result of crack detection using the network architecture from 

(Sizyakin et al, 2018). Another example of crack detection using this new methodology is 

employed in the next section as input to virtual restoration of cracks in the book from Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 A conceptual scheme of a deep convolutional neural network (see text).  
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Fig. 6 An illustration of crack detection using a deep convolutional neural network (CNN) 
from (Sizyakin et al, 2018). Top: examples of cracks (green) and non-cracks (blue) provided 

by the user in a training stage. Bottom: automatic crack detection result using the trained 
network. 
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FIGURE 7  ABOUT HERE 
 

 

 

 

Fig. 7 A detail of Prophet Zachariah in four modalities infrared macrophotography, infrared 
reflectography and X-radiography before treatment, and the macro photograph during 

treatment. Image copyright: Ghent, Kathedrale Kerkfabriek, Luksaweb. 
 

Paint loss detection 

Localization of paint losses is an important part of documenting the restoration process 

of a painting. With current commercial tools, the restores can either do a tedious manual job or 

annotate the damage areas only roughly. We do not know of any reported signal/image 

processing techniques that address this specific problem except for the preliminary works of 

some of the authors, reported in (Huang et al, 2016) and (Meeus et al, 2018). Both of these 

techniques make use of multi-modal data, including visible images before and after treatment, 

infrared macrophotography, infrared reflectography and X-radiography. An example of a multi-

modal data set (consisting of a subset of these available modalities) is illustrated in Fig. 7.  

The approach reported in (Huang et al, 2016) makes use of the so-called sparse representation 

classification (SRC) framework, which was first introduced in machine learning and computer 

vision areas for the purpose of face recognition (Wright et al, 2009). The main idea behind this 

approach is to construct a dictionary of prototype functions (atoms) that can represent well 

signals/images from a certain class. An image is represented well in a given dictionary if each 

of its local regions can be reproduced as a linear combination of relatively few atoms from the 

dictionary. Then we say that the particular image (or class of images) has a sparse representation 

in the given dictionary. In the training phase, the SRC method constructs structured dictionaries, 

where each sub-dictionary is composed of representatives of a given class (such as, e.g. ‘paint 

loss’, ‘cracks’, ‘non-damaged’, etc.). In the classification stage, each test sample (a small image 

region or a pixel with its values across the available modalities) is assigned to the class for 

which the corresponding sub-dictionary gives the smallest reconstruction error. Fig. 8 shows an  
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FIGURE 8 ABOUT HERE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Examples of automatic paint loss detection during treatment of the Ghent Altarpiece, 
using the method of (Huang et al, 2016), followed by virtual inpainting using the method of 

(Ružić et al, 2015). 
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example of binary classification into ‘paint loss’ and ‘non paint loss’ areas obtained by this 

technique. The results of virtual inpainting starting from these detections are shown as well. 

A deep learning method for paint loss detection described in (Meeus et al, 2018) 

employs a similar architecture as the crack detection method of (Sizyakin et al, 2018) presented 

in the previous Section. The initial results indicate similar performance in terms of detection 

accuracy as the sparse representation method of (Huang et al, 2016), but with the potential to 

process much faster large panels. Fig. 9 illustrates the application of this technique. 

 

 

 

 

 

 

 

 

FIGURE 9 ABOUT HERE 

 

 

 

 

 

 

 

Fig. 9 An example of paint loss detection on the panel John the Evangelist using a deep 
convolutional neural network architecture from (Meeus et al, 2018).  

 

Virtual inpainting 

After detecting damaged parts (cracks and/or paint losses), we need to fill in the missing 

regions. In technical terms, this process is called inpainting. Digital image processing literature 

contains a vast number of general inpainting methods which can be roughly separated into two 

groups: pixel-based and patch-based methods. Pixel-based methods aim at replacing one 

missing pixel at the time (Bertalmio et al, 2000, Chan and Shen, 2001), while patch-based 

methods (Criminisi et al, 2004; Sun et al, 2005; Komodakis and Tziritas, 2007, Xu and Sun, 

2010, Le Meur et al, 2011, Ružić et al, 2015) fill in the missing region patch-by-patch. Patch-
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based processing is typically more intensive computation-wise but is also able to reconstruct 

underlying textures more faithfully. Crack inpainting methods reported so far are mostly pixel-

based, employing principles like order statistics filtering (Solanki and Mahajan, 2009), 

controlled anisotropic diffusion (Giakoumis et al, 2006) and interpolation (Barni et al, 2000). 

Patch-based crack inpainting was reported in (Ružić et al, 2011; Pižurica et al, 2015).  

Fig. 10 illustrates the problem to be solved by inpainting. The detected cracks are shown in 

black; all these “missing” pixels need to be inpainted. In the following we will discuss only 

patch-based inpainting. The idea is to transfer small and well-chosen image parts from 

undamaged regions of the image to the damaged positions, such that they fit well with the 

surrounding context. The actual process is explained in Fig. 11, where target denotes partially 

or fully damaged image patch and source denotes the patch that will be transferred (as a whole 

or in part) to the damaged position. Candidates for good source patches are identified by 

comparing the undamaged part in the target patch with corresponding parts in the possible 

source patches. When a source patch is identified, the needed part can be extracted to fill in the 

target, which results in a “composite” patch. There are a lot of possible variations of this 

method. For example, instead of replacing only the damaged part, a wider area (or in extreme 

cases the complete source patch) can be transferred in order to avoid visually disturbing 

discontinuities. For the same reason some local averaging of multiple source patches and the 

underlying non-damaged regions can be applied. However, this needs to be done with care. In 

most cases, preserving the authenticity of the undamaged parts should be more important than 

obtaining a visually pleasing result. 

 

 

 

 

 

 
FIGURE 10 ABOUT HERE 

 

 

 

Fig. 10 From left to right: a fragment of the text from Fig. 3 (with detected cracks shown in 
black) and enlarged details. The inpainting process has to “fill in” all the black pixels. 
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FIGURE 11 ABOUT HERE 
 
 
 
 
 
 
 
 
 

Fig. 11 An illustration of the patch-based inpainting process. The damaged part in the “target” 
patch is to be replaced by a region of the same shape from an undamaged “source” patch.  

 
 
 
 
 
 
 
 
 

FIGURE 12 ABOUT HERE 
 
 
 
 
 
 
 

Fig. 12 An illustration of defining filling in crack inpainting (see text).  
 

Patch-based inpainting methods can be further categorized in terms of the employed 

optimization process as local or global. The local optimization takes only one best suited 

candidate (patch) for each spatial position, while the global methods consider (or combine) 

multiple candidates in terms of a wider spatial context. In both cases it is important to define 

some priorities for filling the patches. Especially for local methods, the filling order is very 

important. In the case of a larger missing region, the inpainting process should always start 

from border areas, i.e. from those target patches that contain undamaged parts and preferably 

some distinctive structures (like edges) that can guide the search for correct source patches. 

Once these patches are filled in, the process continues towards the inner regions (see Fig. 12). 

Of course, this process is prone to error propagation and in this respect global methods are 

advantageous over the local ones.  
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FIGURE 13  ABOUT HERE 
 
 
 
 

 
Fig. 13 An example of patch-based inpainting, using the method of (Ružić et al, 2011). The 

original fragment on the left is an enlarged part of the broach from Fig. 2. 
 

 

An example of crack inpainting using the global patch-based approach from (Ružić et al, 2011) 

is shown in Fig. 13 on an enlarged part of the broach from Fig. 2. Notice that this virtual 

inpainting method is conservative in terms of preserving painted features and the authenticity 

of the painting. While large cracks have been removed some of the subtle ones remained and 

the underlying painting composition is kept intact. 

 

Our recent context-aware patch-based inpainting method from (Ružić et al, 2015) improves 

further inpainting performance by incorporating textural descriptors and statistical modelling 

of the spatial context. Its application in virtual restoration of paint loss areas was already 

illustrated in Fig. 8. This method has been evaluated and further optimized for painting 

restoration in (Pižurica et al, 2015). Here we apply our context-aware approach to virtually 

restore the book from the panel Annunciation to Mary. In some of our previous publications 

(Ružić et al, 2011; Cornelis et al, 2013; Pižurica et al, 2015) parts of the inpainted book with 

different methods have been reported. In this Chapter, we report for the first time the complete 

inpainted text. Also, we used here for the first time as input a crack map produced by a deep 

learning technique, and in particular with our method from (Sizyakin et al, 2018) described 

earlier in this Chapter. Fig. 14 shows the original high-resolution image (before the last 

restoration treatment) and Fig. 15 shows the inpainted result. The inscriptions appear indeed 

clearer after inpainting. While the deciphering of this text is still under investigation, virtual 

inpainting proves already useful for enhancing the appearance of the characters. This 

preprocessing of the image should facilitate its further automatic analysis and visual inspection.  
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FIGURE 14  ABOUT HERE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Book in the panel Annunciation to Mary.  
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FIGURE 15 ABOUT HERE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 Patch-based inpainting of the book in Fig. 14 with the method of (Ružić et al, 2015) 
and using as input the crack map produced by a deep learning method (Sizyakin et al, 2018).  



19 
 

Analysis of pearls 

Another interesting application of digital image processing is the development of 

objective metrics that characterize and discriminate between styles of different painters. The 

Ghent Altarpiece is very rich in depictions of precious stones and jewels, which provide a 

magnificent test set for the experiments. For our impression of the beauty and realism of a 

painterly representation, as well as for distinguishing between the painter styles, the brightness 

distribution is usually much more important than the color attributes. A mathematical 

description of the spatial distribution of brightness in a painted pearl was introduced in (Platiša 

et al, 2011) and further elaborated in (Platiša et al, 2012, Pižurica et al, 2015). This description 

is related to the so-called spatiogram representation (Birchfield et al, 2005; Conaire et al, 2007), 

which extends the classical histogram with some information about the spatial arrangement of 

the pixel intensities. An image histogram tabulates the relative number of occurrences of a given 

grey value (brightness), or a range of grey values within that image. Each of these grey value 

ranges constitutes a bin (each bin will have an index b within some set {1,…, B}). By means of 

bin counts (i.e. the number of pixels with a grey value in a particular bin) cb, a histogram 

characterizes only global distribution of grey values without capturing their spatial relationships. 

In other words, the histogram tells us which fraction of image pixels belongs to a certain 

brightness range but gives us no clue about their spatial positioning or spreading.  

An image spatiogram gives certain information about spatial positioning of the pixel 

attributes next to their global distribution. Next to the bin count cb, two additional parameters 

exist in the spatiogram representation: spatial center of the bin μb, i.e. the mean value of the 

spatial positions of all the pixels that have intensities within the given bin, and the amount of 

spatial spreading (covariance of the spatial positions)  of those pixels. Note that the spatial 

center is a two-dimensional vector, with components along the horizontal direction (say, x-

direction) and vertical (y-direction) in the image, or formally: ;  is the 

covariance matrix (with diagonal elements and ). To enable comparison between 

regions of different sizes, all spatial coordinates are normalized to the same range. Visualization 

of these high-dimensional data is not trivial. An effective visualization of the spatiogram 

features was introduced in (Platiša et al, 2011), with three types of plots, illustrated on Fig. 16: 

(S1)  connected spatial centers of bins μb;  

(S2)  μb – positioned bin counts (circle size proportinal to cb);  

(S3)  μb –positioned bin variances (x and y error bars of length ±σxx and ±σyy, resp.).  

bΣ

),( ,, ybxbb µµ=μ bΣ
2
,xxbs

2
,yybs
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FIGURE 16 ABOUT HERE 
 

 
 

Fig. 16 An illustration of spatiogram plots of (Platiša et al, 2011). Different colors correspond 
to different bins. (S1): spatial centers of bins. (S2): corresponding bin counts (propotional to 

circle sizes); (S3): spatial variances within each bin. 
 

  

 
 
 
 
 
 
 

FIGURE 17 ABOUT HERE 
 
 
 
 
 
 
 
 
 

Fig. 17 Spatiogram plots of type S2 are used as digital signatures for pearl images. Different 
colors represent bins with a particular grey value range, from 0 (blue) to 255 (red). From these 
plots we can read the spatial centers of different bins and the relative number of pixels within 

each bin (proportional to the size of the corresponding circle).  
 

The spatiogram-based representation of painted pearls from (Platiša et al, 2011) provides a kind 

of digital signature of the painter (see Fig. 17). Ideally we would like to have these signatures 

sufficiently consistent for the pearls of one painter and different enough for different painters. 

Fig. 18 shows a number of pearls extracted from the Ghent Altarpiece together with their 

spatiogram-based digital signatures. When looking at these pearls, we are overwhelmed by their 

beauty and realism; they are all different, but still so consistent. What is more important from a 

mathematical analysis point of view is that their digital signatures are pretty consistent as well. 

In particular, for pearls that are very similar in lighting, we can establish a high similarity 

between their signatures (see examples in Fig. 19). It is interesting to investigate whether digital 
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signatures for pearls painted by other painters, and especially the copyists of Van Eyck, will be 

significantly different. Before answering this question, it is useful to look at a somewhat more 

compact, summarized description that can be extracted from the analyzed digital signatures. 

Such a compact description was proposed in (Platiša et al, 2011) as an ensemble of four metrics 

M1 – M4 (corresponding to four numbers for each observed pearl spatiogram) and can be 

associated with certain visually observable features of the painted pearl, such as the degree of 

assymmetry or smoothness. These four metrics, given in Table 1, are derived from the centers 

of spatiogram bins, μi, and Euclidean distances between the centers of adjacent bins Di, where

, . M1 (mean of the distances Di) captures the (circular) symmetry 

of the pearl area: the smaller M1 the higher the symmetry (which might be related to the angle 

between the light source and the pearl surface). M2 (variance of the distances Di), relates to the 

uniformity of distances between different bin areas, and thereby to the impression of the surface 

smoothness. M3 and M4 relate to the ranges of bin centers in the x- and y-directions, 

respectively; these metrics tell us about the (dominant) orientation of the asymmetry in the 

painted pearl. 

 

 

Table 1. Spatiogram metrics for pearls images from (Platiša et al, 2011). 

Symbol Name Definition 

M1 Mean (D) 

!
"
∑# D#

 

M2 Var (D)   

M3 Rx 
max#µ$,#-min#µ$,#

 

M4 Ry max#µ&,#-min#µ&,#  

 

 

Table 2. Spatiogram metrics in identifying artists (Platiša et al, 2012). 

   Van Eyck Van der Veken 
M1 0.210  ±± 0.029  0.136  ± 0.013  
M2 0.055  ± 0.019  0.009  ± 0.002  
M3 0.767  ± 0.229  0.733  ± 0.028  
M4 0.899  ± 0.210  0.457  ± 0.139  
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FIGURE 18 ABOUT HERE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 A selection of pearls from the Ghent Altarpiece and their digital signatures 

presented as spatiogram plots of (Platiša et al, 2012). 
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The results reported in (Platiša et al, 2012) indicate a great potential of the spatiogram-

based digital signatures and the derived M1 - M4 metrics to distinguish between different 

painter styles. A clear difference was shown between the signatures extracted from the pearls 

of Van Eyck compared to those of Jef Van der Veken from the Just Judges panel (see Table 2 

and Fig. 20). Also, clear differences were established between pearls painted by Charlotte 

Caspers (2010) in the copy of the panel Angels Playing Music (2010) and other examined 

paintings, including pearls from Maria Maddalena Baroncelli of Hans Memling (1470). Our 

recent work, reported in (Pižurica et al, 2015) addressed the consistency of painted pearls in the 

Ghent Altarpiece on the new high-resolution data set. The results of that study suggest that the 

pearls that are larger, more visible and have, a more central place in the panel are indeed painted 

in a more consistent manner. The study pointed also to some some instances (specific painted 

objects) that are exceptions to this general rule and that might be of interest to art-historians, 

and conservators to examine in more detail. The interested reader is referred to our work in 

(Pižurica et al, 2015) for details.  

While digital signatures are in the first place interesting for distinguishing between 

different painters, they might also find other interesting applications. Think for example of  the 

possibility to modify the digitized scan such that the painting or objects in it become more 

similar to the style of another painter. We might try to in a way “Van Eyckify” the pearls in the 

Just Judges copy of Van der Veken, so that they appear as if they were painted by Van Eyck. 

This idea is illustrated in Fig. 21. Imagine that we perturb the pixels in the pearl painted by one 

painter, and keep perturbing them, until the resulting digital signature becomes similar to that 

of another painter. The idea obviously can be applied to different objects and different painter 

styles and give rise to a number of nice applications as well. 
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FIGURE 19  ABOUT HERE 

 

 

 

 

 

 

 

 

 

 

Fig. 19 Examples extracted from Fig. 18 showing two groups of mutually similar pearls with 
their digital signatures. The example illustrates that the spatiogram-based digital signatures 

are very similar for pearls with similar lighting. 
 

 

 

 

 

 

 

 

 

 

FIGURE 20 ABOUT HERE 

 

 

 

 

 

 

 

Fig. 20 A comparison of the spatiograms and the M1-M4 metrics derived from pearls of Van 
Eyck (broach on the panel God the Father, left) and the pearls of Van der Veken (detail of the 
panel Just Judges, right). The bar chart with M1 – M4 metrics corresponds to Table 2, where 

the M2 values were scaled by a factor of 10 for better visualization. 



25 
 

Conclusion 

This Chapter showed some novel applications of digital image processing techniques 

for the virtual restoration and the mathematical analysis of the Ghent Altarpiece. All the 

discussed techniques are applicable to other paintings by old masters as well. The presented 

results indicate that digital image processing can indeed provide useful support in the 

conservation/restoration treatments by offering automatic detection of crack patterns and paint 

loss areas, as well as virtual restoration. A great potential of emerging deep learning tools has 

been demonstrated, as well as that of sparse coding and patch-based processing. We reported 

for the first time here digital inpainting of the complete book from the Annunciation to Mary 

panel. After inpainting the inscriptions appear enhanced, which should facilitate further analysis 

and deciphering of this text. The potentials of mathematical analysis for distinguishing the 

painter styles were shown and discussed based on a case study with pearls. In this study, 

spatiogram-based digital signatures enable clear differentiation between different painters. 

Some other interesting applications of digital image processing and digital signatures are 

mentioned, such as bringing the painted object closer to the style of another painter. Still, the 

main interest in extracting digital signatures of painters lies in authentication. In the case of the 

Ghent Altarpiece the development of such techniques may contribute in the future to gaining 

more insights into the division of hands between Jan and Huber Van Eyck and their respective 

workshops 

 

 

 

 

 

 

 

FIGURE 21 ABOUT HERE  

 

 

 

 

Fig. 21 Another possible use of spatiogram-based digital signatures. Imagine that we perturb 
the pearl image (e.g., by randomly switching pixels) until the resulting spatiogram becomes 

similar to the spatiogram of a Van Eyck pearl or to one of another painter such that the object 
appears as if this other painter painted it. 
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