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A B S T R A C T

Background: Percutaneous left atrial appendage (LAA) closure (placement of an occluder to close the appendage)
is a novel procedure for stroke prevention in patients suffering from atrial fibrillation. The closure procedure
planning requires accurate LAA measurements which can be obtained from computed tomography (CT) images.
Method: We propose a novel semi-automatic LAA segmentation method from 3D coronary CT angiography
(CCTA) images. The method segments the LAA, proposes the location for the occluder placement (a delineation
plane between the left atrium and LAA) and calculates measurements needed for closure procedure planning.
The method requires only two inputs from the user: a threshold value and a single seed point inside the LAA.
Proposed location of the delineation plane can be intuitively corrected if necessary. Measurements are calculated
from the segmented LAA according to the final delineation plane.
Results: Performance of the proposed method is validated on 17 CCTA images, manually segmented by two
medical doctors. We achieve the average dice coefficient overlap of 92.52% and 91.63% against the ground truth
segmentations. The average dice coefficient overlap between the two ground truth segmentations is 92.66%. Our
proposed LAA orifice localization is evaluated against the desired location of the LAA orifice determined by the
expert. The average distance between our proposed location and the desired location is 2.51 mm.
Conclusion: Segmentation results show high correspondence to the ground truth segmentations. The occluder
placement method shows high accuracy which indicates potential in clinical procedure planning.

1. Introduction

Survey performed by World Health Organization [1] has identified
stroke as the second leading global cause of death with over 6 million
deaths in 2015. The risk of stroke drastically increases in patients suf-
fering from atrial fibrillation (AF) [2]. With atrial fibrillation, the
normal regular rhythm of the heart becomes irregular, due to dis-
organized electrical signals in the upper heart chambers, called the
atria. This chaotic electrical activity causes asynchronous contractions
of the atria, which do not allow the heart chambers to fill and empty
properly. Without effective blood pumping, the blood can sometimes
pool in the heart and form a blood clot, i.e. thrombus, and it is this

clotting that increases the risk of a stroke. Pieces can break off from a
clot, forming thromboemboli, which can be passed from one chamber
to the next and then end up in the brain arteries causing a stroke. Atrial
fibrillation is a cardiac disease shown to be responsible for almost 20%
of all strokes [3] and the majority of cardioembolic strokes [2]. The vast
majority of cardioembolic strokes are the result of cardiac throm-
boemboli formed in the LAA [4,5]. Estimates show that over 33 million
people worldwide suffer from atrial fibrillation [6].

Left atrial appendage closure is a stroke prevention method for
patients with AF [7]. The closure procedure demonstrated non-in-
feriority to anticoagulation therapy for stroke prevention [8,9] while
avoiding most of the contraindications associated with the antic-
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oagulation therapy. The procedure is performed by percutaneously
deploying the occluder device to the neck of the LAA and stopping the
blood flow between left atrium (LA) and LAA, thus preventing the
formed trombii from leaving the LAA and causing stroke. Closure de-
vices are available in several predefined sizes and for each patient an
appropriately sized device has to be selected. Selection of the correct
size of the occluder requires accurate measurements of the LAA. Cor-
onary CT angiography images (CCTA) have shown to be superior to
other imaging modalities [10–13]. The work of [13] presents the
complete list of anatomic and imaging landmarks that determine the
feasibility of closure procedure. The most important measurements for
correct occluder placement are: diameter (circumference) of the orifice,
shape of the orifice, LAA volume and type of the LAA morphology.
These measurements can be accurately performed using CCTA image
segmentation, analysis and visualization.

Vast majority of LAA segmentation and analysis studies determine
the required anatomical measurements manually. Two most often used
approaches are: manual measurements directly from original images
[10] and measurements from manually segmented 3D volume [14,15].
Manual 3D segmentation is a time-consuming and error prone process,
where segmentation is performed slice-by-slice with a paintbrush tool
[15]. Additionally, 3D segmentation can be performed using interactive
guided segmentation methods. Such methods improve the segmentation
speed but still require time for manual corrections of segmentation
leaks [14]. The standard region growing methods for guided interactive
segmentation all suffer from segmentation leaks due to the in-
homogeneous distribution of contrast agent in the appendage and
proximity of highly-contrasted surrounding vessels. In other words, a
threshold value that will accurately isolate the LAA region (so that no
surrounding structures are included) will consequently result in an
under-segmented LAA. On the other hand, a threshold value that will
allow for the whole LAA region to be segmented, will also produce an
over-segmentation due to leaks to surrounding structures. Most of the
user-guided methods use some kind of thresholding to guide region
growing. Geodesic active contours [16], implemented in ITK-SNAP
[17], use the speed image (often created using thresholding) for guiding
the contour evolution process. Even with methods that can generally
avoid segmentation leaks by using multi-scale voxel properties (such as
generalized pixel profiling [18] and line-shaped profiling [19]), the
delineation between the appendage and the atrium remains to be de-
termined from anatomical properties.

To the best of our knowledge, there are only few automatic and
semi-automatic LAA analysis and segmentation methods. The method
proposed in Ref. [20] uses a multi-part based approach to automatically
segment the left atrium, including the LAA and the pulmonary veins
(PV). Individual models are fitted using marginal space learning and
later merged into a consolidated mesh. Their second algorithm [21] is
also based on multi-part based approach using marginal space learning,
but in this approach the segmentation refinement is performed using
region growing based on adaptive thresholds, followed by removal of
the leakage using graph cuts.

The method proposed in Ref. [22] is an improvement of the method
from Ref. [23] and requires manual selection of four seed points to
obtain LAA bounding box representing the ROI. The method segments
the LAA from each 2D slice in the ROI using fully convolutional neural
networks. Afterwards, all 2D segmentations are refined and merged into
a 3D model using modified 3D convolutional random fields. The same
group proposed the method for the LAA neck modeling in CCTA images
[24] based on LAA segmentation obtained by method in Ref. [23]. The
method of [25] performs segmentation of 4D CT LAA images for di-
agnosis of atrial fibrillation using parametric max-flow method and
graph-cut approach to build 3-D model of each time instance of the
sequence. Methods [26,27] adapt the input to a predefined model of the

heart to locate the LAA, which is used as an input for deformable
models (guided by minimizing external and internal energy) to fit the
exact shape of the appendage. The model-based approach was used also
in Refs. [28,29], but with an aim of whole heart segmentation, where
segmented LAA was only a side result. The main challenge with the
machine learning based methods (such as the methods described above)
is the reproducibility of the results without access to the training da-
tasets. Our earlier work on semi-automatic segmentation of left atrial
appendage [30] required selection of a threshold value and two seed
points (one inside the LAA and another inside LA), while the orifice was
manually determined by selecting three points forming the delineation
plane.

We propose in this paper a semi-automatic LAA segmentation
method that requires only one input threshold value and selection of a
seed point (the LA is localized automatically). The method is robust to
threshold value selection and segmentation leaks. The resulting binary
image is used for all subsequent steps. Our method performs the de-
tection of centerline connecting the seed point and the center of the left
atrium. Segmentation of LAA and LA is accomplished using the detected
centerline. The occluder placement localization is performed by de-
tecting the plane separating the LAA from the LA at local diameter
minima and presenting it to the user. User can accept or modify the
proposed delineation plane between LAA and LA. The final segmenta-
tion refinement is performed with respect to the selected delineation
plane. Our method calculates the orifice diameter and circumference
together with LAA volume according to the final delineation plane. The
orifice shape and LAA morphology type are easily determined from the
visualized segmentation.

The main advantage of the proposed method is the invariance to the
type and dimensions of the binary image used for subsequent seg-
mentation steps. Any type of binary image can be used as an input to
the method (e.g. binary images created with active contours, or images
from MRI), as long as the input binary image contains the LAA and most
of the left atrium.

2. Proposed method

In this paper we propose a novel method for segmentation and
analysis of left atrial appendage from CCTA images. The segmentation
is performed using only two inputs: an initial threshold value and a seed
point placed inside the LAA. The method proposes the occluder place-
ment location based on the local diameter minima of the orifice and
calculates the parameters needed for planning of the closure procedure.
The proposed method consists of the following steps (see Fig. 1):

1. Thresholding is used to produce a mask image which contains leaks
(due to over-segmentation) and which will be refined in the sub-
sequent steps. The mask image is also used for computation speed-
up.

2. Euclidean distance transform (EDT) is used to produce EDT image
from the thresholded (mask) image. The EDT image will be used to
determine the LAA centerline and to refine the segmentation while
avoiding the leaks contained in the mask image.

3. Centerline is calculated by tracking the largest radii values in the
EDT image starting from the seed point in the LAA to the center of
the LA (which is automatically detected). The initial segmentation is
obtained by reconstructing the LAA volume from the obtained
centerline and the mask image (fitting the maximum radii spheres at
each centerline position). The initial segmentation is further refined
by adding border regions with decreasing radii values in the EDT
image (increase in values indicates presence of leaks, in which case
the adding is stopped).

4. Localization of the LAA neck and orifice is performed by searching
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the local segmented LAA diameter minima while taking into account
the increase in diameter values (as a way of detecting the atrium).

5. The final segmentation refinement is based on the determined or-
ifice location. Isolated connected components adjacent to the seg-
mented LAA, which are of smaller volume than the existing seg-
mentation, are added to the final result.

2.1. Threshold selection

In this subsection we explain the effects of threshold selection on the
overall method. The user selects the threshold value by visual inspec-
tion of the LAA in CCTA image slices. The selected threshold value will
result in a mask image with approximate over-segmentation of the
contrasted blood in the input CCTA images. Care should be taken to
select the threshold value in such a manner that will enable the seg-
mentation of the contrasted blood inside the heart, while preventing the
segmentation of the heart muscle. Because of vast differences in shape,
size and location of LAA in the heart it is possible that after thresholding
the appendage appears connected to other anatomical structures, most
often one of pulmonary veins. If the threshold value is too high, re-
sulting segmentation will be under-segmented (compared to the ground
truth). If the threshold is too low, over-segmentation occurs and leaks
become a significant problem for most segmentation algorithms. We
emphasize at this point that threshold value is used only to produce a
mask as a further input for our method. The subsequent steps of our
method are robust to over-segmented mask image and are designed to
deal with segmentation leaks.

2.2. Euclidean distance transform

We calculate the Euclidean distance transform (EDT) image from
the thresholded (mask) image using the Euclidean distance transform.
The EDT image will be used to extract the centerline of the appendage
and to refine the segmentation while avoiding segmentation leaks. Let B
be the set of all background voxels vB in the mask image. The value of
each voxel Zv 3 in the EDT image will be:

r min d Bv v v v( ) ( ( , )) ;
0 ; otherwise

B=
(1)

where d v v( , )B is the Euclidean distance between voxels v and vB. For a
given voxel v , the intensity value in the EDT image ( r v( ) – the distance
to the nearest background voxel in the mask image) is actually the
radius of the largest sphere (centered in the voxel v) inscribed in the
mask image (such that no voxels in the sphere touch the background).
All subsequent steps in the proposed method are based on finding
spheres of certain radii using the values calculated in this step.
Calculation of EDT image improves performance of the method because
the radius of each needed sphere can be determined by a simple lookup
from EDT image. For performance reasons, our method uses Maurer
Distance Map method [31] generalized to N-dimensional spaces im-
plemented inside SimpleITK framework [32].

2.3. Centerline extraction

In this subsection we propose a method for centerline detection
which is later used for obtaining the initial segmentation and to de-
termine the optimal occluder placement location. The purpose of the
proposed centerline detection method is to find a path along the largest
radii from seed point in the appendage to the center of the atrium. The
centerline detection method consists of the following steps:

1. Tracking the highest radii values in the EDT image from a user
defined seed point to the center of the atrium

2. Extraction of the centerline from the tracked highest radii path.

The final result of the method is an ordered set of voxels from the
seed point to the center of the LA.

2.3.1. Tracking maximum radii voxels
The idea behind tracking the maximum radii voxels is to produce a

centerline (skeleton) that will connect the user-defined seed point with
the center of the atrium along the most likely path (the path with the
highest radii values along the way). Let S v( ) be a set of voxels be-
longing to the maximum inscribed sphere in the mask image centered at
voxel Zv 3:

S Z d rv q v q v( ) { | ( , ) ( )},3= (2)

where r v( ) is a radius of the maximum inscribed sphere contained in
the EDT image, as defined in (1). The tracking is performed by itera-
tively searching for the voxel with the largest radius in a set of voxels P.
In search set P we locate the voxel with the largest value in the EDT
image:

rv varg max ( ),
P

rmax
v

=
(3)

and we add it to the output set of tracked maximum radii voxels T. In
the initial iteration the set T is an empty set. Along with adding vrmax to
T, we also add the set of voxels L v v( , )prev rmax representing the voxels
on the line segment between the maximum radii voxels in the previous
and current iteration. The algorithm is described in Algorithm 1.

Fig. 1. Proposed method flow diagram.
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Algorithm 1. Tracking maximum radii voxels algorithm.

The general idea behind the proposed algorithm is illustrated in
Fig. 2. The gray area in the image illustrates a masked LAA region. Each
colored circle in the figure represents a sphere in 3D space, while white
dots represent the selected voxels vrmax in each iteration (color coding
of iterations is given on the left side of the figure). The initial search set
P in Fig. 2 is illustrated by the circle (representing a sphere in 3D)
generated in the first iteration (color code 1). In the given set, the
maximum radius voxel vrmax is found (in this case on the border of the
initial sphere) and added to the output set T (along with the voxels on
the line connecting the previously added voxel and the newly added
voxel). The search set P is extended by the maximum inscribed sphere
voxel set of the newly added voxel S v( )rmax . This means that the search
set P has grown and includes largest inscribed spheres from the first 2
iterations (color codes 1 and 2). The above principle is repeated until
the tracking reaches the center of the atrium. In fact, the above itera-
tions are repeated in a pre-defined number of steps (calculated from the
image size, image spacing and expected anatomical properties of LAA)
in which we are certain that the output set T will contain voxels from
the central part of the atrium (for further explanation refer to Section
4).

The width of the LAA along the centerline is almost never con-
sistently increasing (as illustrated in Fig. 2). The anatomy of the LAA
along the centerline will interchangeably get wider and narrower until
the centerline reaches the left atrium (see the result of the maximum
radii voxel tracking in Fig. 3b). When the algorithm reaches a widening
in the anatomy it will iteratively add to the output T all the large radius
voxels in the widening until the voxel with the largest radius becomes
the voxel that will continue along the path towards the left atrium, as
illustrated in Fig. 3a. If the LAA has a widening near the tip and the

algorithm starts to move the path towards the tip of the LAA, once it has
added all the largest radii in that widening it will inevitably move back
to the correct direction (towards the atrium). Fig. 3b illustrates the
voxels added to the centerline path from seed point to the maximum
radius point in the LA (which we define as the center of the LA).

2.3.2. Centerline extraction
Tracking of maximum radii voxels resulted in a set of voxels T

connecting the user-defined seed point and the center of the atrium.
However, the set T does not represent a centerline path, which we need
for further analysis. Therefore, in this subsection we will perform ske-
letonization and longest path extraction from the maximum radii voxels
set T based on our earlier work [33].

Ordered skeletonization [33] is the process of iterative thinning of a
binary image. The thinning is performed by discarding the voxels in a
predefined order. The goal is to obtain a one-voxel wide centerline from
the input image. The ordered skeletonization process consists of the
following steps:

• Calculation of the distance transform from the input image.
• Sorting of voxels into an ascending distance value ordered list.
• Iterating through the list to discard the redundant voxels according

to voxel redundancy criteria proposed in Ref. [33] until it results in
one-voxel wide centerlines.

The result of the ordered skeletonization is a skeleton as a set of
voxels forming a one-voxel wide connected component from seed point
to the LA center. However, the resulting skeleton also contains stubs
and multiple paths which are a byproduct of the skeletonization pro-
cess, as visible in Fig. 4a. Next, we represent the skeleton as a simple
graph, where every foreground voxel in the skeleton is a graph node.
Let v1 be the node with the largest shortest path distance [34] from the
seed point node. Let v2 be the node with the largest shortest path dis-
tance from v1. The centerline C is an ordered set of voxels in the shortest
path from v2 to v1. The first voxel in C is either a seed point or a voxel
very close to the seed point. The last voxel in C represents the center of
the LA. Fig. 4b shows an example of an extracted centerline.

2.4. Initial segmentation

In this subsection we explain how the initial segmentation is created
which is used as a starting LAA segmentation to be refined with the

Fig. 2. Centerline tracking by iterative selection of maximum radii voxels in the
largest inscribed spherical neighborhood.

Fig. 3. Example of a widening in the anatomy during the maximum radii
tracking. (a) Illustration of the order of voxels added to the tracked maximum
voxel radii, where pixel gray value represents the radius value. (b) Example of
tracked maximum radii voxels (red) visualized with its corresponding LAA
mask (blue).
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Decreasing radii segmentation described in section 2.5. Creation of the
initial segmentation is based on the EDT image and the set of tracked
maximum radii voxels T, which represents a set of voxels in the path
from the seed point to the center of LA, as described in 2.3.1. We create
the initial segmentation by adding the spheres of all voxels in T to the
initial segmentation image:

I S v( ).
Tv

= (4)

Left side of Fig. 5 shows the centerline path C and the resulting
initial segmentation along the given centerline.

2.5. Decreasing radii segmentation algorithm

In this subsection we propose a novel method for leak resistant
segmentation based on the initial LAA segmentation. Decreasing radii
segmentation is based on iterative addition of spherical voxel neigh-
borhoods to the existing segmentation. The addition of neighborhoods
is done for the regions where the LAA anatomy is shrinking, which is
indicated by decreasing radii of the spherical neighborhoods. The re-
gions with increasing radii are regions of leaks, and are not added to the
segmentation. Left side of Fig. 5 shows an initial segmentation with the
computed centerline. The right side of Fig. 5 shows the decreasing radii
segmentation of iterative spherical neighborhood addition. Smaller
segments of anatomy are added to the existing segmentation in each
iteration (the initial segmentation is shown in red and each additional
iteration is shown in different color). For visualization purposes the
segmentation in Fig. 5 is limited to 6 iterations. Explanation of the
decreasing radii segmentation method follows.

Let Hi denote a set of all segmented voxels in an iteration i (the
segmentation set in first iteration will contain only the voxels from the
initial segmentation H I1 = ). Let N v( )26 be the 26-neighborhood of

voxel v . We define a set of voxels on the edge (boundary) of the current
segmentation set Hi as:

E H N Hv q v q{ | ( ), }.i i i
26= (5)

Let us denote the set of unsegmented voxels (those that do not be-
long to the set of the segmented voxels Hi) centered at voxel v within
the maximum inscribed sphere S v( ) with:

U S H Hv q q v v q( ) { | ( ), , },i i i= (6)

For every edge voxel Ev i we add to segmentation Hi all un-
segmented voxels inside its sphere U v( )i if the radii of all those voxels in
U v( )i are smaller or equal to the maximum radius value of the given
voxel r v( ):

A U U r rv v q v q v( ) ( ) ; ( ): ( ) ( )
Ø ; otherwise

i
i i

=
(7)

A A v( ).i
E

i
v i

= (8)

Voxels Ai are added to the segmentation for the next iteration:

H H A .i i i1 =+ (9)

The algorithm stops when no new voxels were added to segmenta-
tion in an iteration, i.e. when H Hi i1 =+ .

Fig. 6a shows an example of a voxel on the segmentation boundary
(green) and a sphere to be added. The voxel at the center of the sphere
(green) has the radius value 7, while all the other voxels in the un-
segmented part of the sphere have a radius that is smaller than 7. This
sphere will be added to segmentation. Fig. 6b shows an example of a
sphere which will not be added to segmentation. The voxel at the center
of the sphere (red) has the radius of 7, but in this case there are voxels
in the unsegmented part of the sphere which have a radius value larger
than 7 (shown in red). Fig. 7 illustrates robustness of the method to
segmentation leaks. As long as the width of the anatomical structure
(into which the segmentation is leaking) is wider than the width of the
leak itself, the decreasing radii segmentation will not leak into that
structure, because the radii values of voxels inside that structure will be
larger than the radii of the voxels inside the leak.

2.6. Detection of LAA orifice

In this subsection we propose a novel method for the detection of
the LAA orifice which is considered to be the location for the occluder
placement and as the delineation position between the LAA and LA.
According to [35] the orifice is defined as the narrowest part of the LAA
neck. Therefore, in order to locate the orifice we propose to search for
the narrowest part of the LAA neck along the centerline. The narrowest
part of the appendage neck will be a location with a local minimum in
calculated cross-sectional area. On the other hand, the neck is a part of
the appendage proximal to the highest growth in the cross-sectional
area (the area along the centerline rapidly increases as we pass from the
appendage to the atrium [36]). The method measures cross-sectional

Fig. 4. Steps in centerline extraction method. (a) Result of the ordered skeletonization applied to the set of tracked maximum radii voxels T. (b) The extracted longest
path (without loops) of the skeleton is the final LAA centerline result.

Fig. 5. Illustration of Decreasing radii segmentation algorithm. Left: the initial
segmentation is created from the extracted centerline by morphological re-
construction using maximal inscribed spheres. Right: connected components
colored according to the iteration in which they were added to the segmenta-
tion result in the decreasing radii segmentation method.
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areas along the centerline to find the local minima and the highest
growth in cross-sectional area. Fig. 8 shows the calculated orifice lo-
cation with the cross-sectional plane of the minimum area. Proposed
orifice detection algorithm consists of two steps: (1) calculation of the
areas along the centerline C and (2) search for the smallest area within
calculated areas which occurs right before the LA.

Let ip( ) denote a position on the LAA centerline C with index i. For
each position ip( ) we calculate the normal vector in( ) for the cross-
sectional plane:

i i in p p( ) ( 1) ( 1).= + (10)

Therefore, the cross-sectional plane i( ) is defined by the position
ip( ) along the centerline and the normal in( ). Let us denote the area of

the centerline cross-section at position ip( ) with a i( ). The cross-sec-
tional area a i( ) will be the area of the region defined by the intersection
of the discrete positions of the plane i( ) and the segmentation set H:

a i D i H( ) ( ( )) ,= (11)

where D i( ( )) denotes the set of discretized positions of plane i( ).
In some cases, the cross-sectional plane (defined by the normal in( ))

will not accurately represent the minimum cross-sectional area of the
appendage at the given centerline position. This happens because the
centerline does not necessarily represent the variations in shape of LAA
edges. To surpass this problem, we search for the minimum cross-sec-
tion area plane by testing a number of planes with different normals
(not only the plane perpendicular to the centerline direction). The
planes are created by modifying the normal in( ) up to 40 degrees
(determined experimentally) and the full circle rotation. The final area
a i( ) is the minimum area calculated from the candidate cross-sections.
The plot of minimal areas along the centerline a i( ) is illustrated in
Fig. 9.

As explained earlier, the location of the orifice is defined as the

Fig. 6. Illustration of the decreasing radii segmentation principle. (a) Voxels in
the spherical neighborhood of the current voxel will be added to the segmen-
tation because all of them have the radius value lower than the radius value of
the current voxel. (b) None of the voxels in the spherical neighborhood of the
current voxel will be added to the segmentation because some of them have the
radius value higher than the radius value of the current voxel.

Fig. 7. Segmentation leaks are characterized as regions in which the values of
maximum radii increase. Because of this, the decreasing radii segmentation
method will prevent the leak regions from being added to the segmentation.

Fig. 8. Example of the proposed LAA orifice location and its cross-sectional
plane of minimum area.

Fig. 9. Plot of minimal areas and weighted rising slopes along the centerline.
The maximum of the weighted rising slopes indicates the position (on the
centerline) of the LAA orifice.

Fig. 10. Isolated connected components which are smaller than the segmented
LAA are added to the segmentation result in the segmentation refinement step.
(a) Segmentation result before the refinement (after decreasing radii segmen-
tation and orifice localization). (b) Segmentation result after the refinement
step.
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narrowest position in the neck of the LAA, while the neck represents the
part of the appendage just in front of the atrium. Hence, we need to find
the local minima and the highest growth in the cross-sectional area a i( ).
The highest growth in cross-sectional area also has to be the most
dominant one in its surrounding to account for growth of cross-sec-
tional area due to LAA shape. For this reason we introduce weighted
rising slopes w i( ) representing the rate of change in minimal area a i( )
along the centerline C (depicted in Fig. 9 with orange line). On intervals
where a i( ) is decreasing the function w i( ) is set to zero. Within the
intervals where a i( ) is increasing let m i( ) be the index of the closest
local minimum to index i. We calculate w i( ) in the following way:

w i m i i a m i a i( ) ( ( ) ) ( ( ( )) ( )) .2 2= + (12)

Peaks of w i( ) represent locations where the a i( ) along the centerline
C had the largest uninterrupted increase. These locations are potentially
inside the LA. The last location where w i( ) 0= before the largest peak
in w i( ) is the location of the last narrowing of the anatomy before the
largest increase in the calculated areas (widening of the anatomy) and
represents the proposed location of the orifice. According to (12) it is
evident that the value of w i( ) increases with the length of uninterrupted
growth in area values along the centerline. Proposed location of the
orifice for the dataset in Figs. 8 and 9 is at the location of i 140= and
shown in Fig. 8 as red plane. However, observing Fig. 9 we can see a
large peak at i 51= . At this point the centerline is still inside the LAA.
We want to penalize the peaks occurring within the LAA to make sure
that the largest peak will be inside the LA. Let the w i( )r be another
discrete function called radius weighted rising slopes, and let the r i( ) be
the radius of the voxel from EDT image at location i. In this case the

w i( )r is as follows:

w i w i r i( ) ( ) ( )r = (13)

Radius values from EDT image will be small inside the LAA and
large inside the LA. Multiplying the weighted rising slope values by
radius value ensures that even if the calculated area inside LAA gets
very large, the resulting weights will still be smaller within the LAA and
larger inside the LA. Fig. 14 shows 3 datasets with calculated r i( )w and
proposed orifice locations.

2.7. Segmentation refinement

The final refinement of the LAA segmentation deducts the obtained
LAA segmentation from the mask segmentation (thresholded image)
and labels all isolated connected components. Some connected com-
ponents will be adjacent to the segmented component and will re-
present small parts of the LAA not previously added to the LAA seg-
mentation. We create the final LAA segmentation by adding to the
segmentation all components directly connected to LAA component
with the volume smaller than the volume of the LAA component.
Fig. 10 shows the segmentation result before and after the refinement
step with four isolated components which were not originally seg-
mented with decreasing radii segmentation, but were added to the
segmentation in the refinement step. The largest component is shown in
blue, while the other three smaller components are emphasized with
black circles.

3. Results

The evaluation dataset contains 17 (3D and 4D) CCTA images of
patients suffering from cardiovascular diseases. All patients have given
their written consent for the use of their images in this research. The
patient population properties are given in Table 1. The images were
acquired using a Siemens Somatom 64-slice scanner for the purpose of
Coronary CT Angiography. To obtain the ground truth segmentation,
each of the 17 datasets was manually segmented by two medical ex-
perts: a radiologist and a cardiovascular surgeon. Doctors manually
determined the threshold, segmented the LAA by guiding the Geodesic
active contours segmentation in ITK-SNAP [17] and corrected the re-
sulting segmentation with a paintbrush tool. Twelve out of 17 datasets
had significant leaks during the guided segmentation part and extensive
corrections using the paintbrush tool were necessary. Average duration
of the segmentation per image was approximately 10 min, with the
shortest segmentation requiring 5 min and the longest 17 min.

Fig. 11. Examples of LAA segmentation results.

Fig. 12. Plot of dice coefficients overlap.

Fig. 13. Execution runtime of proposed method in each dataset. We use dif-
ferent color code for each step.
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Visualizations of several datasets segmented with the proposed
method are presented in Fig. 11. Our segmentation results are evaluated
by dice similarity coefficient overlap with each of the two validation
datasets created by two medical experts. Our method achieves the
average dice coefficient overlap of 92.52% and 91.63% against the
ground truth segmentations. The average dice coefficient overlap be-
tween the two ground truth segmentations is 92.66%. Results of the
orifice localization and minimum area cross-sectional plane placement
are shown in Fig. 8. Our proposed LAA orifice localization is evaluated

Fig. 14. Segmentation results on 3 selected datasets. From left to right: our segmentation result (red), manual segmentation by the first expert (blue), manual
segmentation by the second expert (green), plot of radius weighted rising slopes (on the right) and LAA delineation plane positions (our proposal in red and desired
delineation plane in green).

Table 1
Validation dataset (17 patients).

N %

Patient age
Under 35 3 17.65%
35 - 44 2 11.76%
45 - 54 2 11.76%
55 - 64 6 35.29%
65 and older 4 24.53%
Patient gender
Male 6 35.29%
Female 11 64.71%

Table 2
Dice coefficients overlap (n = 17). Table shows dice overlap between seg-
mentations of our two experts (E1, E2) and the overlap of segmentation results
with our method between each of the experts' segmentations.

Dataset dice (E1, E2) dice (E1, our) dice (E2, our)

D1 88.50% 94.58% 90.51%
D2 98.94% 93.24% 92.43%
D3 82.16% 87.28% 89.32%
D4 96.37% 97.11% 96.29%
D5 94.78% 92.87% 94.29%
D6 99.35% 96.07% 96.03%
D7 84.77% 86.73% 91.03%
D8 93.74% 96.25% 94.72%
D9 87.65% 94.61% 85.91%
D10 90.71% 94.90% 91.66%
D11 92.85% 94.56% 94.60%
D12 92.94% 93.15% 87.42%
D13 91.76% 76.78% 81.41%
D14 97.09% 93.41% 91.96%
D15 95.85% 96.07% 94.15%
D16 90.30% 91.02% 92.98%
D17 97.40% 94.25% 92.94%
Avg: 92.66% 92.52% 91.63%
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against the desired location of the LAA orifice determined by the expert.
The average distance between our proposed location and the desired
location is 2.51 mm.

The average runtime of our proposed segmentation method on our
datasets is two and a half minutes (149 s on Intel i7, 4.3 GHz, 16 GB
RAM). The runtime depends on the size of the input dataset, as well as
the anatomy of the patient in the dataset. The execution runtimes for
each dataset are presented in Fig. 13, where each step in the method is
shown with different color. Our method obtains clinically acceptable
results.

The delineation according to the calculated orifice location is per-
formed for both our segmentation and the ground truth expert seg-
mentations. Table 2 shows the dice coefficient overlaps for each da-
taset. Dice overlaps are also shown in Fig. 12 for easier visualization.
Table 3 presents the distances in mm between our proposed LAA orifice
location and the desired LAA orifice location determined by medical
expert. The results show that in most cases the desired orifice location is
either the location proposed by our method, or a location very close to
our proposed location.

4. Discussion

In this section we will discuss the comparison of the proposed
method to the other published state-of-the-art methods. Additionally,
we will give the practical implementation details of our proposed
method and the reasoning behind certain choices of fixed parameter
values.

4.1. Comparison to the state of the art

In addition to the direct comparison of the proposed method to the
ground truth segmentations, we have compared the proposed method
to two methods by Zheng et al. (SIE-PMB [20] and SIE-MRG [21] from
Siemens Corporate Technology, Princeton, NJ, USA – SIE) on 20 datasets
used in the Left Atrial Segmentation Challenge (LASC) [37]. The re-
sulting segmentations were delineated from the LA by a plane de-
termined by our medical expert. The SIE methods obtain the average
dice overlap of 89.59% between themselves, while our method obtains
the average dice overlap of 86.58% and 86.26% against the SIE-PMB
and SIE-MRG, respectively. Fig. 15 shows the comparison of the seg-
mentation results. Two of the SIE segmentation results in the LASC
dataset had a part of the LAA removed during the result standardization
for LASC challenge (Fig. 15e and f), affecting our dice overlap to their
results negatively. If we remove those two datasets from the evaluation,
the average dice overlap between the SIE methods is 88.93%, while our
method obtains the average dice overlap of 87.29% and 86.95% against
the SIE-PMB and SIE-MRG, respectively.

LASC datasets are focused on the left atrium segmentation and the
provided ground truth segmentations do not contain the LAA.
Consequently, we were unable to compare both our method and the SIE
methods to the ground truth LAA segmentations. However, high
overlap of our method to the SIE methods suggests that our method can
handle images of varying quality levels. The datasets in the LASC
challenge were specifically selected to provide a variety of quality le-
vels: 8 high contrast, 15 moderate contrast, 3 low contrast and 4 high
noise datasets [37]. To the best of our knowledge, the two SIE methods
are the only fully automatic LAA segmentation methods available. The
SIE methods are very fast (SIE-MRG executes within 5 s), but require
very large training samples (SIE-PMB was trained on 457 cardiac CT
datasets). Our proposed method is completely heuristical and does not
require any training.

The work proposed by Jin et al. [22] uses the fully convolutional
neural networks (FCNs) combined with the 3D conditional random
fields to extract the LAA from the manually selected ROI. The method
used 150 datasets for training and evaluation and obtained the mean
dice overlap of 94.76%, while performing the segmentation in less than
40 s. The method is an improvement over the work by Wang et al. [23],
which obtains a slightly higher dice overlap (95.21%), but requires
more than 3.5 min of computation time.

4.2. Method implementation details

Our proposed method is robust to threshold value selection used to
produce the mask image. From the anatomical perspective, the method
will correctly segment the LAA even with a non-optimal threshold.
Fig. 14 shows the effect of the threshold selection. The difference in
segmentation between our two experts is a direct result of the selected
threshold value during the creation of the ground truth images. De-
pending on the selected threshold value, when the input image has high
levels of noise, the resulting mask image can contain holes inside the LA

Table 3
Distance in mm between center points of our pro-
posed location for LAA orifice and the desired lo-
cation determined by medical expert.

Dataset Distance in mm

D1 0.00 mm
D2 1.07 mm
D3 5.84 mm
D4 9.70 mm
D5 0.53 mm
D6 0.18 mm
D7 1.62 mm
D8 0.65 mm
D9 4.04 mm
D10 7.54 mm
D11 0.50 mm
D12 0.67 mm
D13 0.57 mm
D14 1.25 mm
D15 0.00 mm
D16 5.52 mm
D17 3.07 mm
Avg: 2.51 mm

Fig. 15. Segmentation examples from LASC dataset and comparison to SIE-PMB [20] and SIE-MRG [21]. Images show our segmentation result (white), SIE-PMB (red)
and SIE-MRG (green).
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near the LAA orifice. The presence of holes in the mask image can in-
troduce errors in the maximum radius tracking step of the method and
consequently the localization of the center of the LA. Thus, when
working with very noisy images the user should select the threshold
value which will minimize the appearance of holes in the mask image
near the LAA orifice. The trabeculations inside the LAA do not impair
the segmentation results.

The seed point selection is performed with a single click in a desired
location in the image. Optimally, the seed point should be placed deep
in the LAA, near the tip. We have evaluated the robustness to the seed
point selection by segmenting each dataset with a hundred randomly
selected seed points (1700 evaluations). The method achieves an
average dice overlap of 87.74% and 86.96% against the first and the
second expert across all 1700 evaluations. Fig. 16 clearly shows how
the distance of the seed point from the orifice affects the segmentation
results. The dice overlap achieved in this test is relatively high, even
though a large proportion of the randomly chosen seed points are very
close to the orifice. When we ignore the half of the seed points closest to
the orifice (obviously incorrectly placed seed points), the average dice
overlaps with ground truths increase to 90.89% and 90.23%. If the seed
point is chosen too close to the atrium, it could happen that only a
smaller part of the appendage is segmented because the residual part of
the appendage may be too large (in comparison to the initial segmen-
tation) to be added to the final segmentation (see the segmentation
refinement step in Subsection 2.7). However, selecting any seed point in
the deeper part of the appendage will result in the correct segmenta-
tion.

The method for tracking maximum radii voxels (described in
Subsection 2.3.1) performs the search for the highest radius voxel in the
volume of the maximum inscribed spheres of all previously tracked
voxels. Our experiments have shown that using the 26-neighborhood
instead of the full spherical neighborhood improves the performance of
the method. The method is performed in a predefined number of
iterations (estimated from the image size, image spacing and expected
anatomical properties of the LAA) in which we are certain that the
output set T will contain voxels from the central part of the atrium. The
number of iterations in our experiments is set to 4000 (which is larger
than needed). In most of our datasets the method detects the correct
atrium location in well below 1000 iterations, while only two datasets
take up to 1500 iterations. The two examples that need the most
iterations have a large spherical widening in the anatomy. One of them
is presented in Fig. 17, with the output set T in blue. The voxels in T will
cluster in the center of such spherical widening, until the next voxel
with the largest radius is the voxel that will continue the path towards
the left atrium. Red and green dashed circles in the figure show two
largest spherical areas along the path, one in the LAA (red) and the
other in the LA (green). The voxels in the red circle will be discarded
during centerline extraction (see also Fig. 3b). The center of the LA is
extracted from the green cluster by finding the voxel with the largest
radius value and discarding all voxels added to T after that voxel. One
possible limitation of our method is the case when the LAA has a large
spherical part (similar to Fig. 17), but has a narrow neck. There is a
possibility that the tracking method will run out of iterations before the
path T enters the left atrium, thus failing to detect the centerline
properly. In this case we can allow the user to fix the detection by
manually selecting the second seed point inside the atrium, as shown in
our earlier work [30].

The search for the smallest cross-sectional area along the appendage
centerline is not performed along the whole centerline. At the point
where the centerline enters the atrium, the area significantly increases
and varies due to the shape of the atrium and its connected structures
(vessels). In order to avoid the unneeded analysis of the cross-sections
in the atrium (to improve speed and accuracy of the computation), we
define here criteria for choosing the centerline position at which we
stop the search for the minimal area. We observed that the maximum
radius inside the LA is always at least twice as large as the radius
anywhere inside the LAA. Therefore, we stop the search for minimal
areas when the radius along the centerline becomes larger than half of
the maximum radius in the atrium. The right side of Fig. 14 shows the
plot of calculated areas a i( ) and radius weighted rising slopes w i( )r for
the visualized segmentation.

5. Conclusion

We designed an effective semi-automatic method for segmentation
of LAA from 3D coronary CT angiography (CCTA) images and a novel
orifice localization method to aid the occluder placement procedure.
The method requires two inputs from the user: a threshold value and a
seed point inside the LAA. The proposed segmentation method is robust

Fig. 16. Visualization of the robustness of the method to seed point selection. Each dot represents a different seed point. The color of the dot represents ε – the
absolute difference in dice overlap between the segmentation result obtained with that seed point and the ground truth.

Fig. 17. Clusters of voxels in the maximum radius path during maximum radius
tracking. The voxels in the path will cluster at the center of anatomical
widenings before continuing the path towards the center of the left atrium. The
left atrium itself is among the largest spherical areas in the heart. The tracked
path will stay in the LA center until the number of iterations runs out.
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to segmentation leaks. We introduced an approach for extraction of
LAA centerline, which is used in the further segmentation steps. Based
on the extracted centerline, we introduced a new method for localiza-
tion of LAA orifice as the proposed location for placement of the oc-
cluder device. The segmentation results were evaluated on ground truth
images from 17 CCTA datasets created by two medical experts. The
obtained Dice coefficient values indicate high correspondence to
ground truth segmentations. Our results on proposed locations for the
LAA occluder placement (orifice localization) show high correlation to
the preferred placement locations determined by a medical expert. The
proposed methods yield clinically acceptable results which indicate
potential for use in the occluder placement procedure planning. The
designed application performs LAA measurements needed to determine
the appropriate size of the closure device while requiring little manual
intervention to perform the segmentation and analysis.
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