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A B S T R A C T

Cerebral arteriovenous malformation (AVM) presents a great health threat due to its high probability of rupture
that can cause severe brain damage. Image segmentation alone is not sufficient to support AVM embolization
procedure. In order to successfully navigate the catheter and perform embolization, the segmented blood vessels
need to be classified into feeding arteries, draining veins and the AVM nidus. For this reason we address here the
AVM localization and vessel decomposition problem. We propose in this paper a novel AVM localization and
vessel delineation method using ordered thinning-based skeletonization. The main focus of vessel delineation is
the delineation of draining veins since it is essential for the embolization procedure. The main contribution is a
graph-based method for exact extraction of draining veins which, in combination with our earlier work on AVM
detection, allows the AVM decomposition into veins, arteries and the nidus (with an emphasis on the draining
veins). We validate the proposed approach on blood vessel phantoms representing the veins and the AVM
structure, as well as on cerebral 3D digital rotational angiography (3DRA) images before and after embolization,
paired with digital subtraction angiography (DSA) images. Results on AVM delineation show high correspondence
to the ground truth structures and indicate potentials for use in surgical planning.
1. Introduction

Brain blood vessel visualization and analysis present crucial steps in
diagnosis and treatment of cerebral aneurysms and arteriovenous mal-
formations (AVM). For surgical planning it is crucial to precisely deter-
mine the positions and directions of vessels going in and out of the
malformation. The AVM is composed of feeding arteries that supply the
AVMwithblood, the drainingveins that drain theblood from theAVMand
the nidus, which is an entangled vessel structure that poses a hemorrhage
risk. One of the AVM treatment options is the embolization as a procedure
of inserting glue into the blood vessels in order to occlude them and avoid
their rupture. One of the main problems in AVM embolization is the ac-
curate delineation of draining veins from other AVM vessels. The goal of
the embolization is to occlude the nidus in such a way that the blood does
not flow directly from arteries into the vein. The vein must remain
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unsealed (clear blood passage) in order for the remaining blood to drain
away as the nidus becomes blocked. On the other hand, an accidental
occlusion of draining veins increases the risk of the nidus rupturing and
causing a stroke. Therefore, it is essential to delineate the draining vein
vessels inside the entangled structure of the AVM.

[11] give anoverviewof software for analysis of a3-Dvasculature,while
[17] focus specifically on methods for AVM image analysis [28]. combine
3D digital rotation angiography (3DRA) and 2D digital subtraction angi-
ography (DSA) for better visualization of AVMs and cerebral aneurysms.
Similarly [21], combine3Dand4Dmagnetic resonanceangiography (MRA)
images to obtain 4D blood flow visualization, while [29] use color-encoded
4D-hybrid MRA to perform classification of cerebral AVMs and intra-nidal
flow. Some of the most popular methods for segmentation and visualiza-
tion of cerebrovascular structures include direction-dependent level sets
with vesselness measures [23] and ridge detection using seed points [12]
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Fig. 1. : A 3DRA image slice of cerebral blood vessels. The AVM vessels (marked with a
square) exhibit an undefined structure compared to the normal vessels. Arteries (striped
arrows) are brighter due to higher density of contrast fluid. The veins (filled arrow) are the
largest blood vessels with high inhomogeneity of voxel gray values.
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[30]. introduced a blood vessel tracing method based on vesselness mea-
sures [24,45]. The Vascular Modeling Toolkit (VMTK) [2,42] is used for
analysis of cerebral aneurysms [39]. proposed factor analysis approach for
extraction of AVMs. The method of [40] uses principal component analysis
(PCA) method on a sequence of dynamic X-ray CT images (obtained with
contrast and opaque media) to identify the AVM area [16]. proposed a
fractal analysis approach to quantify the vascular complexity of the AVMs.
In our earlier work we used pixel profiling approach [9] and centerline
analysis method [8] to detect and segment the AVM region. Albeit several
accuratemethods have beenproposed to automatically analyze AVMs, only
few of these methods address the internal AVM structure decomposition
[12]. proposed a method for manual delineation of the AVM nidus with an
interactive selectionof feedingarteries anddraining veins. Theworkof [22]
delineates the AVM nidus, feeding arteries and draining veins, while
assuming that the nidus exhibits a spherical structure and relyingon specific
values of vessel radii. The AVM segmentation on 3DRA using the informa-
tion on the density of vessels and their variance combined with proximal
manual tagging (starting from the nidus and followedby arteries and veins)
was described in Ref. [14].

Centerline extraction is essential for examining tubular structures by
allowing distance and radii calculations, best path determination and
bifurcation detection. Vessel tracking methods perform region growing
from seed points and track the propagation of the grown surface. The
most common techniques are based on wave front propagation for or-
dered region growing [33], connected components evolution [13],
generalized cylinder model [49], variational energy optimization [38]
and the application of Dijkstra's shortest path algorithm [19] with the
link costs derived from absolute difference of voxel gray values [32].
Skeletonization algorithms produce centerlines from binary or gray-scale
images by extracting medial axis or ridges. The medial axis transform
extracts centerlines by finding voxels equidistant to at least two object
boundaries [10]. In Ref. [15], hierarchical curve-skeletons are extracted
using repulsive force fields [1]. Other common techniques are based on
radial basis functions and the gradient vector field [36], gradient vector
flow [27] and visible repulsive force [48]. The most common gray-scale
skeletonization approaches are based on anisotropic vector diffusion
[49], conditional morphological erosion [37], thresholding prior to
morphological erosion [20], pseudo-distance maps [31], the watershed
algorithm [47] and planar images at angular rotations with unfiltered
back-projection [26].

In our earlier work [6,7] we addressed the problem of detailed and ac-
curate blood vessel and AVM segmentation using multi-scale and
line-shaped operators. In this paper we build on our existing centerline
analysis [8] and use the results of existing segmentation methods to delin-
eate AVM structures. After the segmentation of the blood vessel tree is
completed, we need to determine the location of an AVM (preferably in an
automated way to omit user interaction). Together with the AVM localiza-
tion, the AVM region needs to be extracted from the segmented images to
performvessel delineation into feedingarteries, drainingveinsand theAVM
nidus.Thevessel delineation shouldbeperformed semi-automaticallyusing
prior knowledge on vessel properties in 3DRA images.

We propose in this paper a novel method for AVM localization and
decomposition using skeleton and graph analysis methods. The skeleto-
nization will be performed using vessel radii and original gray voxel
values as labels for ordered thinning. Similarly to [3], in order to effi-
ciently analyze vessel structures, we introduce graph-type skeleton cre-
ation and analysis methods and use them to perform AVM localization
and extraction. We design a novel vein extraction method based on
skeleton analysis, which is robust to segmentation errors (segmentation
“leaks”). Finally, we combine the listed methods into a complete AVM
vessel delineation algorithm.

2. Materials and methods

In this paper we propose a novel method for AVM localization and
extraction of the draining veins, which we further use for AVM
94
decomposition into the nidus, the draining veins and feeding arteries. We
use ordered skeletonization to compute graph-type skeletons and
perform vessel delineation. The following steps summarize our proposed
method and give insight to our initial considerations about AVM vessel
structure (see Fig. 1):

� Segmentation is the first step in blood vessel analysis, but it is not the
focus of this work. In this work we use our segmentation method from
Ref. [7], although other segmentation algorithms can also be used,
providing they generate results of sufficient quality.

� Ordered skeletonization is performed on the distance transformed
segmented image (distance values are input labels for ordered thin-
ning). Alternatively, we will also use original voxel gray values to
perform skeletonization. The skeletonized image is first transformed
into a graph, and subsequently into a graph-type skeleton.

� Automatic localization and extraction of an AVM region. The AVM is
an entangled blood vessel structure. The nidus of the AVM consists of
high density of small intertwined vessels, represented by highly
inhomogeneous voxel gray values in 3DRA images. This property will
allow us to easily extract the AVM from the skeleton, since its region
will be represented by nodes in which multiple links merge.

� Extraction of draining veins. The veins often (but not necessarily)
constitute the largest blood vessels proximal to the AVM (they are
dilated due to the missing capillaries that cause higher venous pres-
sure). Therefore, the veins can be extracted by tracking large vessels
and we perform this using a novel approach for merging highest cost
links in the skeleton.

� Extraction of feeding arteries. Arteries contain higher concentration
of contrast agent compared to veins, and smaller vessel radii
compared to venous vessels. This yields higher voxel gray values
along the centerline of the arterial vessels and lower gray values at
vessel edges (this is due to the partial volume effect). Hence, original
voxel gray values may be used as labels for the ordered thinning and
the feeding arteries can be extracted as highest cost paths in the
skeleton with original voxel gray values as link costs.



Fig. 2. Skeleton creation method. (a) Each voxel in the skeletonized image is labeled with its number of foreground neighbors. (b) A graph is created from the skeletonization image by
turning each voxel into a graph vertex. (c) Classification of vertices and edges. (d) Link subgraphs GL are formed from connected L-edges and will form links of the skeleton. (e) Node
subgraphs GN are formed from connected N-vertices and will form nodes of the skeleton. (f) The resulting skeleton shows that the bifurcation is defined by a single skeleton node and each
branch with a single skeleton link.
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2.1. Ordered skeletonization

The ordered skeletonization is an iterative thinning process of a
segmented image, where voxels are removed in a predefined order. The
goal is to obtain one voxel wide centerlines. The skeletonization consists
of the following steps:

� Compute the squared Euclidean distance transform for each voxel in
the segmented image (assign each foreground voxel a value of
squared Euclidean distance to its nearest background voxel).

� Sort voxels into an ascending distance-value-ordered list.
� Iterating through the list remove redundant voxels from the
segmented image using the voxel redundancy rule [5]: a voxel p is
considered redundant if all foreground (non-zero gray value) voxels in
its 26-neighborhood constitute a single connected component.

The skeletonization changes a voxel label to background (zero gray
value) if the voxel is redundant:

sðpÞ ¼
�

0; p is redundant
gðpÞ; otherwise

; (1)

where gðpÞ indicates the voxel gray value. The redundancy rule de-
termines if a voxel can be removed from the segmented image while
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preserving connectivity of all other voxels. However, the given voxel
redundancy rule does not entirely preserve the topology of irregular
shapes (such as AVMs) and creates holes in the skeletonization image. We
emphasize here that we will use this property to our advantage, because
it will enable us to automatically identify the AVM region.
2.2. Skeleton creation

In order to analyze the vessel structure, we need to convert the
skeletonized image into a graph-type skeleton composed of nodes (to
represent bifurcations and vessel ends) and links (to represent vessel
branches). The skeleton creation is performed in following steps:

� Create a simple graph G ¼ ðV ;EÞ, where V is a set of vertices and E is a
set of edges, by considering every foreground voxel in skeletonized
image as a graph vertex. The created graph is a simple graph, which
means that it will not have any loop edges or multiple edges between
adjacent vertices.

� Skeleton S ¼ ðN; L;m; kÞ is created by partitioning the graph G into
subgraphs that form skeleton nodes (N being the set of all nodes) and
skeleton links (L is the set of all links) and maintaining the mapping
functionsm and k that map the nodes and links to their corresponding
subgraphs. Ideally, each skeleton link should represent a vessel
branch and each skeleton node should represent a bifurcation (or a



Fig. 3. The advantage of skeletons over graphs for malformation localization. (a) The skeletonized image of a malformation often contains “cavities” (caused by small intertwined vessels
and inhomogeneities in voxel gray values). (b) Graph representation does not give an obvious indication of presence of a malformation. (c) Skeleton creation principle merges the region of
“cavities” into a single skeleton node. The node is easily distinguishable since it contains numerous adjacent links.

Fig. 4. Skeletonization and skeleton creation. Top row: the segmentation of the 3DRA cerebral blood vessels and the skeleton structure of the radii-based ordered skeletonization. Bottom
row: skeleton structure of the gray value-based ordered skeletonization and the AVM region shown with the segmented vessels.
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branch ending). For clarity we will use expressions “node” and “link”
strictly for the skeleton structure and “vertex” and “edge” strictly for
the graph structure.

A skeletonized image in Fig. 2a represents three blood vessel branches
96
with a single bifurcation, in which each foreground voxel is shown with a
number of its neighboring foreground voxels. It should be observed that
the bifurcation consists of voxels with 3 neighbors, while the branches
consist of voxels with 2 neighbors and end with voxels that have only 1
neighbor. We convert the skeletonized image to undirected simple graph
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G ¼ ðV ;EÞ by creating a vertex v 2 V from each foreground voxel and an
edge e ¼ fvi; vjg 2 E from each pair of adjacent vertices (26-connected
voxels), as illustrated in Fig. 2b and c. Similarly as for voxels, each vertex
is represented by its vertex degree degðvÞ, indicating the number of
incident edges (equal to the number of neighboring voxels for corre-
sponding voxel in the skeletonized image). We denote the vertices of
degree 2 as L-vertices and vertices with any other non-zero degree value
as N-vertices vN . Vertices with degree value 0 are isolated vertices (that
correspond to voxels without any foreground neighbors) and are not
taken into account in skeleton construction. Similarly, we denote edges
incident to at least one L-vertex as L-edges eL and edges incident only to N-
vertices as N-edges eN (illustrated in Fig. 2b and c).

By classifying graph vertices and edges, we introduce a graph
decomposition into subgraphs that represent vessel branches and bi-
furcations. If we denote a set of connected N-vertices vN with VN , we can
define the node subgraph GN as a graph induced by the vertex set VN :

GN ¼ G½VN �: (2)

Fig. 2e shows that node subgraph GN2 corresponds to vessel bifurca-
tion and will constitute node of the skeleton. Other nodes of the skeleton
will be the graph vertices with vertex degree 1. The skeleton node created
from node subgraph GN will be represented by the geometric median of
vertices the subgraph VðGNÞ:

n ¼ medgðVðGNÞÞ: (3)

where medgðDÞ denotes the geometric median of a set of positions D as
the position from the set with the minimum sum of distances to all other
positions in the set:

medgðDÞ ¼ arg minp2D

 X
q2D

dðp;qÞ
!
; (4)

where dðp; qÞ denotes the Euclidean distance between the two positions.
In order to maintain a mapping from the skeleton node to its subgraph,
we define the node mapping function m:

mðnÞ ¼ GN : (5)

If we denote a set of connected L-edges eL with EL, we can define the
link subgraph GL as a graph induced by the edge set EL:

GL ¼ G½EL�: (6)

Fig. 2d shows that link subgraphs GL correspond to vessel branches
and will constitute links of the skeleton. A skeleton link l connects two
skeleton nodes:

l ¼ �ni; nj�: (7)

In order to maintain a mapping from the skeleton link to its subgraph,
we define the link mapping function k:

kðlÞ ¼ GL: (8)

As with the node mapping function, with the link mapping functionm
we maintain the information from all the skeletonization voxels to allow
reconstruction of the segmented vessels from the skeleton. The graph-
type skeleton S ¼ ðN; L;m; kÞ of the skeletonized image in Fig. 2a is
illustrated in Fig. 2f. The mapping between the skeleton links (or nodes)
and their corresponding subgraphs is important for the purpose of
reconstructing vessels in the segmented image.

The most important advantage of skeleton representation over the
simple graph representation is that blood vessel malformations can be
easily detected. This is illustrated in Fig. 3, where the skeleton repre-
sentation shows that multiple links merge in a single node (which is
connected to numerous links). In case of the simple graph representation,
this is not evident. Hence, it is reasonable to use skeletons for automatic
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localization and extraction of malformations.

2.3. Localization and extraction of an AVM

In this subsection we propose a method for automatic localization and
extraction of an AVM. As we illustrated in Fig. 3, the main advantage of
skeletons over a simple graph representation of blood vessels is the
possibility of easily detecting “porous” structures in skeletonized images
that often correspond to blood vessel malformations. The skeleton in the
top row of Fig. 4 is a result of the ordered skeletonization using vessel
radii to define the thinning order. Color coding of links represents link
costs derived from vessel radii values (inherited from skeletonization
voxels) and range from red (for low values) to blue (for high values). It
should be observed that “cavities” found in the skeletonization image are
represented in the skeleton with nodes containing numerous links. The
density of such nodes is the highest in the AVM. In other words, the AVM
can be localized and extracted based on the location and density of nodes
with high number of links. The skeleton in the bottom row of Fig. 4 is a
result of the ordered skeletonization using original voxel gray values in
the 3DRA image. Color coding of links represents link costs derived from
original voxel gray values (inherited from skeletonization voxels) and
range from red (for low values) to blue (for high values). It should be
observed that density of nodes with high number of links is even more
pronounced than in the case of the skeleton obtained using radii-ordered
skeletonization. The reason is that the AVM nidus contains a lot of
original voxel gray value inhomogeneities, besides the “cavities” con-
tained in the skeletonization. Our most important observation is that the
node with the highest number of links is positioned in the AVM, which
allows us to automatically locate it:

nAVM ¼ arg max
n2N

ðdegðnÞÞ; (9)

where degðnÞ is a node degree representing the number of incident links of
the node.

The whole AVM region can be represented with only a few nodes in
which numerous links merge. We define the AVM region as the region of
nodes connected to nAVM that have more than 4 links (to avoid adding
simple segmentation errors, which are often represented by nodes with 4
links):

NAVM ¼ fn j n 2 AðnAVMÞ; degðnÞ > 4g [ fnAVMg; (10)

where AðnAVMÞ is a set of adjacent nodes of the node nAVM . The sub-
skeleton of the AVM is induced by the AVM node set:

SAVM ¼ S½NAVM �: (11)

The proposed AVM extraction principle is illustrated in the bottom
row of Fig. 4, where the resulting segmented AVM region is shown as a
part of the whole blood vessel tree. The AVM region is slightly over-
estimated (it contains a part of the veins), which is a desired property for
the draining veins extraction, as this serves only as an intermediate result
in the delineation of veins, arteries and the nidus.

2.4. Delineation of draining veins

In this subsection we propose a novel method for extraction of
draining veins of an AVM. The skeleton in the top row of Fig. 4 (obtained
using vessel radii thinning order labels) shows that high cost values are
found predominantly in the veins and to a small extent in the main
feeding arteries. Hence, the veins can be extracted by tracing the paths
with the largest link costs (in this case corresponding to the highest radii
vessels) for known starting seed points. Starting positions of the draining
veins are located within the AVM region, so we can use the location of the
nAVM node as the starting seed position for the draining veins. The end
position for each draining vein will have to be supplied by the user.

In order to extract the path of the highest cost between 2 seed vertices



Fig. 5. Example of the highest cost vertex merging (HCVM) method. In the initialization step each vertex is assigned the highest cost of its incident edges. Afterwards, in each iteration we
merge the highest cost vertex with its highest cost neighbor (through the highest cost edge, in case more edges between the vertices exist). A new vertex is created and assigned a cost equal
to the average cost value of merged vertices. The contracted edge is added to the output graph. Loop edges are discarded. The algorithm stops when all edges are incident to a single vertex.
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(or nodes) in the graph (or skeleton), we propose the approach of itera-
tive highest cost vertex merging (HCVM). In other words, in every iteration
the vertex with the highest cost will be merged with its adjacent highest
cost vertex and their corresponding edge is removed from the processed
graph and is recorded in the output graph. From the merged vertices a
new vertex is created and assigned a cost equal to the average value of
costs of merged vertices. The iterative edge removal is applied until all
edges become incident (at that moment all edges will be connected to the
same vertex). The detailed steps of the HCVM follow:

� Assign to each vertex the cost equal to the highest cost of all of its
incident edges. This is an initial step and is performed only once.

� Find the vertex with the highest cost and its adjacent highest cost
vertex.
Fig. 6. Comparison of Dijkstra shortest path algorithm and HCVM method for blood vessel e
inaccurate (shortened at vessel bending points due to leaks in segmentation). Our HCVM meth
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� Contract their corresponding (highest cost) edge and add it to the
output graph. If multiple edges exist, only the highest cost edge is
added to the output graph.

� Remove all loop edges that were created by contraction in the pre-
vious step.

� Assign a cost to the newly created vertex as the average of costs of
merged vertices.

� Stop iterating if all edges are connected to the same vertex. If not,
repeat the method from the second step onwards.

Applying the HCVM method, the input graph contracts and output
graph grows in size. With each iteration the processed graph G will
become G' ¼ ðV '; E'Þ:
xtraction. The skeleton and extracted vessel using the Dijkstra shortest path method are
od is able to surpass the incorrect segmentation problems.



Fig. 7. Automatic localization of an AVM. In each case the AVM is correctly localized. The AVM region is slightly over-estimated, as required by the vein extraction method.
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V ' ¼ �V \�vi; vj�� [ fv'g
E' ¼ E\

�
ei;j
�
;

(12)

where V ' and E' represent the new vertex and edge sets. Edge ei;j is the
edge with the highest cost incident to vertices vi and vj. Vertex v' is the
vertex obtained by merging of vertices vi and vj. The resulting graph Go ¼
ðVo; EoÞ grows with each iteration:
Fig. 8. The extracted AVM compared to the onyx
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Vo ¼ Vo [
�
vi; vj

�
Eo ¼ Eo [

�
ei;j
�
:

(13)

The resulting graph will contain the paths with the highest costs,
while all irrelevant low cost edges will be removed. An example of the
proposed algorithm is shown in Fig. 5.

We want to point out an important property of the HCVM method.
After the vertex merging, the cost of the new vertex will be the average
cast, visualized with the vessel segmentation.



Table 1
Comparisons of the filled segmented onyx cast with the filled extracted AVM segmentation.

Onyx validation data set 1 2 3

Dice coefficient 0.83 0.77 0.81
Volume relative error (%) 10 18 13
AVM position distance (in voxels) 2.99 0.98 1.73

Table 2
Comparisons of the extracted AVM segmentation with manually segmented AVM region of
an expert.

Data set 1 2 3 4 5 6 7 8

Dice coefficient 0.88 0.9 0.79 0.78 0.92 0.84 0.78 0.8
Volume relative
error (%)

15 8 42 40 12 11 53 22
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value of the costs of the merged vertices. With this approach we are able
to surpass the problems in vessel extraction caused by flawed segmen-
tation, i.e. low cost edges can be extracted if they are incident to high cost
edges. On the other hand, if a vertex with a high cost merges with vertices
with lower costs, the cost of the resulting vertex decreases and the
merging process may be continued at another part of the graph.

In case the costs of edges have been assigned from the vessel radii, the
HCVM will, in fact, extract the vessels with the highest radii (these are
draining veins). The result of the HCVM will be a graph (or skeleton)
containing the path between the seed points and the adjacent highest cost
paths. By applying pruning on hierarchical skeleton we can allow the
user to choose the number of remaining adjacent branches (next to the
main seed point connecting path).

Fig. 6 illustrates the advantage of our HCVM method over Dijkstra's
shortest path algorithm [19] for correct delineation of blood vessels. The
depicted blood vessel has a lot of bending points, which cause segmen-
tation errors (segmentation “leaks” due to the blood vessel “leaning” on
Fig. 9. Validation of arterial and venous best path calculation using DSA images of catheter and
the arterial vessel precisely depicts the catheter position.
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itself). The link costs used in this example for the Dijkstra's shortest path
algorithm are inversely proportional to the vessel radii (lower radius
value implies a higher link cost). The calculated best path skeleton and its
corresponding segmentation are shortened at high bending angles of the
vessel, where the segmentation leaks into the neighboring part of the
vessel. On the other hand, our proposed HCVM method is able to accu-
rately extract the centerline and reconstruct the segmented vessel.

2.5. Extracting the feeding arteries

In this subsection we explain the principle of extracting the feeding
arteries. The skeleton in the bottom row of Fig. 4 is a result of ordered
skeletonization using original voxel gray values in the 3DRA image. It
should be observed that due to the high density of contrast agent in the
feeding arteries, the highest link costs are also found in the feeding ar-
teries. Therefore, we apply our HCVM method for extraction of feeding
arteries by assigning original voxel gray values as edge (or link) costs.
The only required user input are the starting seed points of the arteries.

3. Results and discussion

Clinical images used in our experiments were acquired on Siemens
Axiom Artis scanner. The 3DRA images are sets of approximately 230
slices of dimensions 256 pixels� 256 pixels with spacing
0.48mm� 0.48mm and slice thickness of 0.48mm.

3.1. Validation of the AVM localization and extraction

We validate our proposed method for localization and extraction of
the AVM using 11 3DRA clinical data sets of cerebral AVMs. Correct
localization was obtained for all data sets (one data set required dis-
carding the first candidate and using the next best one as the AVM
location, see Discussion subsection). Fig. 7 shows correct AVM
embolization. The extracted vein accurately shows the path of the injected contrast, while



Fig. 10. Decomposition of the vein and nidus blood vessel phantom. First column: the vein and the AVM phantom are combined into a single region. Second column: the vein phantom.
Third column: extracted vein overlaid on the whole blood vessel phantom. Fourth column: skeleton of the vein phantom and the extracted vein skeleton.

Table 3
Comparison of delineated and ground truth vein models (Dice coefficient) and skeletons
(ratio of their lengths).

Vein & AVM Dice length ratio

Phantom 1 0,87 0.92
Phantom 2 0,84 0.86
Phantom 3 0,84 0.94

Table 4
Analysis of extracted veins and AVM regions for CURVES (C), projections (P) and threshold
(T) based segmentation.

Robustness T&C C&P P&T

Dice whole 0.874 0.829 0.848
Dice vein 0.933 0.899 0.909
Dice AVM 0.942 0.911 0.918
Vol % error whole 6.99 18.06 31.22
Vol % error vein 2.34 5.44 3.33
Vol % error AVM 2.97 14.37 13.41
AVM center distance (pixels) 0.308 0.737 0.338
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localization results with slightly over-estimated AVM regions, as needed
for the method that extracts the draining veins.

Further validation on clinical data is performed on 3 image pairs of
blood vessels and onyx casts. The onyx cast images were acquired after
the embolization procedure (see Fig. 8) and were segmented by thresh-
olding (the threshold was easy to determine since there is a clear dif-
ference in range of pixel gray values in onyx and the surrounding region).
Fig. 11. Comparisons of the draining vein centerline extraction methods. (a) Manually extracte
vessel tracking algorithm [30] using a vesselness measure [45]. (c) Shortest path through the AV
each extracted path, the vein is shorter than expected due to imperfect segmentation. (e) Ou
tion “leaks”).

101
To suppress the influence of the segmentation algorithm on the valida-
tion, we apply a hole filling method to the segmented images of the onyx
cast and the extracted AVM. For quantitative evaluation we use the Dice
set similarity coefficient [18], defined as twice the ratio of the number of
voxels in the intersection of two sets (the set of segmented voxels and the
set of ground truth voxels) and the number of elements contained in both
of them. The obtained results in Table 1 show good correspondence and
low errors in AVM region estimation in terms of Dice coefficients, volume
relative error and the distance between the AVM localization and onyx
positions.

Manual segmentation of AVM regions (by an expert) was done for
images which did not have the corresponding onyx cast image (images of
onyx cast were not acquired after the embolization). The manual delin-
eation was performed using multiple seed points as input for active
contours in ITK-SNAP [50]. The resulting Dice coefficients and volume
relative errors are shown in Table 2. The obtained results show good
correspondence between the ground truth region and the extracted AVM
region in terms of Dice coefficients and volume relative errors (for most
of the data sets). The volume relative error is higher in 3 cases where the
initial segmentation (the first step of the method) fails to provide good
enough separation between the “touching” venous vessels of the AVM.

3.2. Validation of the vein extraction method

We validate our vein extraction method on 2 sets of clinical 3DRA
images paired with DSA images of the catheter (in place for emboliza-
tion) and DSA images of contrast injection (to determine the venous
paths), as shown in Fig. 9. The extracted veins accurately represent the
d AVM region with the vein path indicated by an expert (drawn arrow). (b) Centerlines of
M for skeletonization using TubeTk [4]. (d) Centerlines obtained using VMTK [2,42]. For

r proposed method accurately extracts the venous centerline (despite existing segmenta-



Fig. 12. Delineation result for two cerebral 3DRA data sets. The skeleton and the segmented region of veins are colored in blue, the feeding arteries are red and the nidus is green. The
resulting delineation allows a surgeon to visualize selected vessels to obtain a better insight into the AVM structure. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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path of the injected contrast in the DSA images. The extracted arterial
vessels precisely depict the catheter path.

For further validation of our vein extraction method we created 3-D
phantom data sets consisting of a separate model of an AVM and a venous
blood vessel tree (see Fig. 10). The AVM phantom is simulated by
generating a tube intertwined in a random fashion with randomly
varying radii. The vein phantom is generated as a binary tree with
random number of bifurcations, branch distribution, shape and radii. The
final phantom was obtained by merging the AVM phantom and vein
phantom at the place of venous vessel bifurcation (to be able to test if our
method can correctly delineate the bifurcation in the AVM). The last two
columns of Fig. 10 depict the extracted venous vessels overlaid on the
original phantom and skeletons of original vein phantom and the
extracted vein. It can be observed that the vein bifurcation was correctly
delineated in the first phantom, while the curving of the vein was also
accurately delineated in the second phantom. The quantitative compar-
ison between the phantom vein and the extracted vein segmentation is
given in Table 3. High Dice coefficient values indicate high accuracy of
our decomposition method. The length ratio of delineated vein skeleton
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and ground truth vein skeleton shows sufficient accuracy of centerline
extraction.

One of the advantages of our proposed method using skeleton based
vessel delineation is its robustness to used segmentation method. Table 4
shows comparison of results on AVM localization, AVM extraction and
vein extraction for various segmentation methods: thresholding, Curve
Evolution for Vessel Segmentation (CURVES) [35] and our line-shaped
profiles [7]. We compare Dice coefficients for the segmentation of the
whole blood vessel tree, extracted AVM and extracted veins for each pair
of the listed segmentation methods. In each combination, the lowest Dice
coefficients were obtained when comparing segmentation results of the
whole blood vessel tree, which indicates high precision and robustness of
our AVM and vein extraction methods. Similarly, the volume relative
errors show highest volume differences in case of the whole blood vessel
tree segmentation, and exhibit acceptable values for the vein and AVM
extraction results. Finally, the results of AVM localizations were
compared showing small distances between the calculated AVM centers.

We compared our method for delineation of veins with a centerline
extraction method in Vascular Modeling Toolkit (VMTK) [2,42], shortest



Fig. 13. Comparison of different skeletonization techniques for AVM localization and extraction. (a) Segmented blood vessels. (b) Result of the [25] skeletonization method (from Slicer3D
application [43,44]) with extracted AVM. (c) Result of the [34] skeletonization method (from Fiji application [46]) with extracted AVM. (d) The result of our proposed skeletonization with
the extracted AVM. Our method was able to accurately locate and extract the AVM region.

D. Babin et al. Computers in Biology and Medicine 93 (2018) 93–105
path through the AVM for skeletonization using TubeTk [4], and a vessel
tracking tool [30] using vesselness measure [45] in BioImage Suite [41].
Fig. 11a shows the segmented AVM with the most probable path of
draining veins indicated by an expert. Fig. 11b shows the vessel tracking
result (BioImage Suite) obtained by placing multiple seed points in the
veins and feeding arteries. The obtained result does not follow the
indicated venous blood vessels, but instead shortens the centerline due to
faulty segmentation. The TubeTk AVM skeletonization shortest path also
yields a shorter venous path than expected (see Fig. 11c). Similarly,
VMTK centerline extraction also shortens the venous centerline (see
Fig. 11d). Due to the HCVM method our proposed algorithm accurately
follows the venous centerline (see Fig. 11e).
3.3. Discussion

The result of the AVM vessel classification is shown in Fig. 12 for the
whole blood vessel tree and with close-ups on the AVM. The obtained
skeleton results show good correspondence to the real vessel anatomy,
while clearly delineating the main vessels of the AVM. The AVM locali-
zation method is fully automatic, working accurately in over 90% of the
cases for large and middle sized AVMs. Errors in AVM localization can
occur in case large venous structures are visible with high inhomogeneity
of voxel gray values, which in turn, constitute the skeleton node with the
largest number of links (in the skeleton). In this case, the user can discard
the incorrect localization and the skeleton node with next highest num-
ber of links will be selected as the AVM localization result. The vein
extraction method (HCVM) is robust to segmentation errors (e.g. merged
vessels in segmentation where vessels anatomically touch) for the cases
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where the size (radius) of the region in which the vessels merge does not
exceed the size (radius) of each of the merged vessels. Our method de-
pends on the user to accurately place seed points in the veins that are
connected to the AVM. In case a vein is not connected to the AVM nidus
by the vessel segmentation, the vein will not be delineated from the
nidus. To avoid incorrect delineation seed points can be placed close to
the AVM region. Our method is also applicable in case of complex AVM
structures that exhibit multiple draining veins, in which case multiple
seed points for veins and arteries might need to be selected. For that
reason the validation on simpler AVM phantom models as shown in
Fig. 10 is applicable, since each of the multiple veins is treated separately.
The proposed method is designed to tackle vessel delineation of AVMs
with presence of an AVM nidus, but is not suitable for detecting other
direct connections from arteries to veins (Arteriovenous Anastomoses).

The strength of our approach for localization of AVM vessels comes
from the ordered skeletonization and our skeleton creation method. The
used voxel redundancy rule is highly sensitive to inhomogeneities in
voxel gray values, producing high number of cavities in the resulting
skeletonization image. In turn, the cavities are represented in the skel-
eton by nodes with high number of incident links, which allows us to
easily detect AVM vessels. This is not the case in skeletonization methods
with sub-voxel precision, since they produce only few cavities, and
hence, the AVM vessels are not as easily detectable. To illustrate the
strength of our skeletonization method, we use different skeletonization
methods in combination with our AVM delineation step (see Fig. 13). The
result of [25] in Fig. 13b, shows that the localization of the AVM was
accurately performed, but only a smaller part of the AVM is extracted.
Skeletonization method of [34] also under-estimates the AVM region
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(Fig. 13c). Using our proposed ordered skeletonization method we are
able to accurately locate and extract the AVM (Fig. 13d).

The presented method is semi-automatic, with little user interaction
required. Seed point placement is the only user input required to locate
the arteries and veins (hence 2 or more input seeds are required). The
method is highly robust to user input (seed point placement), especially if
selected seed points are proximal to AVM region. The algorithm needs
about 6min to execute on a 2 GHz Intel Core 2 Duo processor with 8 GB
of RAM. The skeletonization and graph-type skeleton creation take about
2min to execute. Each of the remaining steps (localization and extraction
of AVM, extraction of draining veins and feeding arteries) takes about
1min to compute. Most of the computation time is spent on vessel
reconstruction from the processed centerlines and the segmented image,
while the actual skeleton processing in each of the extraction steps is
performed with high efficiency (couple of seconds). It should be noted
that the execution time depends on the image size and the number of
vessels entering and exiting the AVM.

4. Conclusion

We designed a novel AVM decomposition method with an emphasis on
delineation of draining veins. We introduced an approach for creating
graph-type skeletons from skeletonized images. The proposed skeleton
structures enabled us to perform automatic localization and extraction of
AVM region. We designed a novel method for determining the highest cost
path in the skeleton graph to perform extraction of draining veins. The
proposed vein delineationmethod is able to extract the correct vessel paths
even in presence of segmentation errors (“leaks”). The AVM localization
and extraction methods were validated on 3DRA clinical data sets of ce-
rebral vessels with the post-embolization scan of onyx cast. Themethod for
extraction of draining veins was evaluated on 3-D phantom data sets and
clinical 3DRA data sets with DSA images of catheter and embolization
procedure. The robustness of our methods was evaluated using segmen-
tation results of various segmentation methods. The results on accuracy
and robustness of AVM localization and vessel delineation indicate possi-
bility for surgical use. The designed application is semi-automatic
requiring little manual user input to perform delineation.
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