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Abstract. We present an analysis of weakly convex discontinuity adaptive (WCDA)

models for regularizing three-dimensional (3D) quantitative microwave imaging.

In particular, we are concerned with complex permittivity reconstructions from

sparse measurements such that the reconstruction process is significantly accelerated.

When dealing with such highly underdetermined problem, it is crucial to employ

regularization, relying in this case on prior knowledge about the structural properties

of the underlying permittivity profile: we consider piecewise homogeneous objects. We

present a numerical study on the choice of the potential function parameter for the

Huber function and for two selected WCDA functions, one of which (Leclerc - Cauchy-

Lorentzian) is designed to be more edge-preserving than the other (Leclerc - Huber).

We evaluate the effect of reducing the number of (simulated) scattered field data

on the reconstruction quality. Furthermore, reconstructions from sub-sampled single-

frequency experimental data from the 3D Fresnel database illustrate the effectiveness

of WCDA regularization.

1. Introduction

Microwave Imaging computes internal sections of objects using microwaves [1]. The

images are obtained by processing the data collected by illuminating the object with

known incident fields and by measuring the scattered fields. Quantitative Microwave

Imaging (QMI) aims at estimating the exact complex permittivity profile of the object.

Due to its non-invasive nature, this imaging modality is of interest in biomedical imaging

[2], subsurface imaging [3] and for civil and industrial applications [4].

The problem of QMI is challenging because the measured data samples of the

scattered fields are related to the unknowns (the tomographic image samples) through

a non-linear mapping [5]. Employing appropriate optimization techniques, such as

Newton-type methods [6–10], may address the non-linearity of the problem. The
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problem is also ill-posed [11] and regularization is required to improve the convergence

and stability by reducing the solution space.

A number of regularization methods have been analyzed in the setting of QMI,

e.g. [12–18]. Total variation (TV) and weighted L2-norm TV are applied as a

multiplicative constraint in [12] and [13], respectively. Edge preserving regularization

was imposed on the real and imaginary parts of the complex permittivity separately

in [14]. Multiplicative Smoothing (MS) [10, 15] applies quadratic regularization in

a multiplicative fashion. Value Picking (VP) was proposed in [16] as a non-spatial

technique that favors solutions consisting of piecewise constant permittivities while

Piecewise Smoothed Value Picking [17] includes an additional smoothing regularizer.

A Markov Random Field (MRF) regularization with Line Process (LP) model was

employed in [18] and with weak membrane model in [19]. Some of the authors of

this paper analyzed the use of robust Huber regularization [20] and recently proposed

a class of Weakly Convex Discontinuity Adaptive (WCDA) regularizing functions for

2D QMI [21]. These functions conform to the definition of discontinuity adaptive (DA)

MRF’s while having a highly sensitive adaptive interaction function (AIF) [22] and are

designed to allow convex optimization in the framework of a (modified) Gauss-Newton

algorithm.

The work presented in this paper builds further on the ideas of WCDA

regularization presented in [21], but reconstruction in 3D that we address here is more

challenging. Our focus is on piecewise constant 3D objects and we employ dimensions

of the order of a (few) wavelength(s). The main contributions are the following: Firstly,

we analyze the properties of different WCDA functions, including the Huber regularizer

employed in [20], and we discuss their incorporation into the Gauss-Newton algorithm.

We investigate by means of simulations the influence of the function parameter on the

reconstruction quality for some 3D test objects, applying various antenna configurations

and noise levels. Secondly, we apply these methods to experimental data from the

3D Fresnel database [23] and compare their behavior to other related regularization

methods in this context [24]. Thirdly, we consider sparse reconstructions, meaning

that the number of scattered field data is small compared to the number of unknown

permittivity cells, employing different data subsampling strategies (uniformly versus

non uniformly distributed transmitters) and analyzing the effect of this subsampling

on the reconstruction results. We use single-frequency data and far less transmitters

and receivers than available in the Fresnel database, since we are interested to explore

potentials of WCDA regularization for compensating for the underdetermined problem

while speeding up the reconstruction process.

The paper is organized as follows. In Section 2, the electromagnetic inverse

scattering problem and optimization process are described. The basic theory of MRF

and Discontinuity Adaptive models is reviewed briefly in Section 3 and the WCDA

class of models is discussed in Section 4. Sections 5 and 6 are devoted to validation on

simulated and experimental data, respectively, and Section 7 concludes the paper.
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2. The Electromagnetic Inverse Scattering Problem

Assume an unknown 3D object surrounded with a known homogeneous medium and

contained in a reconstruction domain D, that is a rectangular cuboid centered in

the origin of the coordinate system. Our goal is to reconstruct the relative complex

permittivity ε(rrr) = ε′(rrr) + jε′′(rrr) in every point rrr in D. We shall consider multi-view

microwave illuminations at a single frequency f . The time dependency ejωt of the fields

will be omitted.

2.1. Forward Problem

In the forward model, the complex permittivity profile is specified in D and the incident

electrical field EEEinc
i (the index i labels the transmitter position and polarization) is

modeled as an elementary dipole field

EEEinc
i (rrr) = −jωµ0GGGb(rrr − rrri) · ûuui (1)

where µ0 is the permeability of vacuum and where rrri and the unit vector ûuui denote the

position and the orientation of the i-th elementary dipole, respectively. GGGb is the Green

dyadic of homogeneous space with relative permittivity εb, i.e.

GGGb(rrr, rrr
′) =

[
I +
∇∇
k2b

]
Gb(rrr − rrr′) (2)

where kb = ω
√
εbε0µ0 is the propagation constant of the background medium, ε0 is the

permittivity of vacuum, I is the 3× 3 identity matrix and

Gb(rrr − rrr′) =
e−jkb‖rrr−rrr

′‖

4π‖rrr − rrr′‖
(3)

is the scalar Green’s function. For each incident field, the unknown scattered field is

computed at the detector positions rrrl, which are located outside D, as

EEEscat
i (rrrl) = EEEi(rrrl)−EEEinc

i (rrrl) (4)

with EEEi(rrrl) the total field. Since all examples in Sections 4 - 6 concern objects in free

space, we put εb = 1, i.e. the relative permittivity of vacuum.

Our forward solver [10, 25] relies on a Method of Moments discretization of a

mixed potential volume integral equation for the electric flux density in D and solves

the resulting linear system iteratively with the stabilized bi-conjugate gradient Fast

Fourier transform technique (BICGSTAB-FFT) [26]. This involves a discretization of

the permittivity on a uniform (forward) grid that covers D.

2.2. Inverse Problem

In the inversion the incident field (1) and measurements (experimental or simulated)

of the scattered field (4) are provided. Note that in an experiment two separate

measurement series are performed, one without the scatterer, yielding EEEinc
i (rrrl) and

one with the scatterer in place, yielding EEEi(rrrl). The unknown permittivity εεε(rrr) is
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assumed to be constant in each cubic cell of a uniform (inverse) grid that covers D,

resulting in Nεεε reconstruction variables. These are arranged in the relative complex

permittivity vector εεε = [ε1, · · · , εν , · · · , εNε ], which is updated in an iterative way,

alternating between the forward and the update problem. The inverse problem is solved

by iterative minimization of a cost function

F (εεε) = FLS(εεε) + µFD(εεε) (5)

where FD(εεε) denotes the regularization function, µ is a positive regularization parameter

and FLS(εεε) is the normalized least squares error between the simulated and the measured

scattered fields

FLS(εεε) = 1
‖eeemeas‖2‖eee

meas − eeescat(εεε)‖2 (6)

where eeescat(εεε) and eeemeas are two Nd-dimensional vectors, which contain the components

of, respectively, the scattered field vectors EEEscat
i (rrrl) computed for the current

permittivity vector εεε at the detector positions rrrl for every illumination i and of

the corresponding measured data EEEmeas
i (rrrl). In this paper a spherical measurement

geometry is adopted and transmitting antennas are modelled as elementary dipoles (1)

[10]. Suppose there are NT transmitting positions rrrt (t = 1, · · · , NT ) located on a

sphere with in each position two tangential transmitting polarizations: ûuut,θ (polar) and

ûuut,φ (azimuthal). Every transmitting position is linked to a set of NR
t receiver locations

(on the same sphere as the transmitters in Sections 4 and 5; on a circle with a smaller

radius in Section 6), denoted as rrrl (l = 1, · · · , NR
t ), and in each receiver location the

scattered field can be measured along ûuul,θ and ûuul,φ. This results in a total number of

maximum Nd = 2
NT∑
t=1

2NR
t (complex) scalar field components; in Section 6, only the ûuul,θ

component is available, hence Nd = 2
NT∑
t=1

NR
t .

In choosing the sparse antenna configurations in Sections 4-6 we start from a setup

similar to [16] for the numerical study and from the 3D Fresnel configuration [23] for

the experimental study, which we both subsample in a variety of ways. It is not our aim

to subsample according to the number of degrees of freedom (NDF) criterion in [27].

Some of our antenna configurations are (partially) uniform, some are aspect-limited;

they provide in some cases less, in other cases more data than the corresponding NDF

estimate, but the amount of unknown permittivity cells is always considerably larger

than NDF.

We define the regularization function FD(εεε) as

FD(εεε) = 1
2

∑
ν

∑
ν′∈Nν

gγ(εν − εν′) (7)

where gγ is a real function with parameter γ. The index ν ′ denotes a spatial position

(a discretization cell of the inverse grid) neighboring ν in the neighborhood Nν . We

use 26 neighbors in 3D as a compromise between reconstruction quality and complexity.

The normalization factor 1
2

accounts for the duality of neighbors, which follows from the

symmetry of Nν and from the even property of g, i.e. g(εν′ − εν) = g(εν − εν′).
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Algorithm 1 The algorithm for reconstructing εεε

Require: εεεinit, µ, γ, eeemeas

k = 0

εεεk ← εεεinit
Compute λ2 = µ‖eeemeas‖2
repeat

Compute eeescat(εεεk)

if ‖eee
scat(εεεk)−eeemeas‖2
‖eeemeas‖2 < 10−3 then

return εεεk
else

Compute Jk, JHk , ΩΩΩD∗
k and ΣΣΣD

k

Compute ∆∆∆εεεk using (8)

Compute βk with line search

εεεk+1 = εεεk + βk∆∆∆εεεk
k = k + 1

end if

until k = The maximum number of iterations

print εεεk

2.3. Optimization Algorithm

For the minimization of (5) we apply a Newton-type method, where we employ the

(independent) variables εν and ε∗ν (similar to [28]), where (.)∗ denotes the complex

conjugate. The complex permittivity in iteration k is updated as εεεk+1 = εεεk + βk∆∆∆εεεk,

where ∆∆∆εεεk is a (modified) Gauss-Newton step, which is used as a search direction

along which βk approximately minimizes the cost function F (εεε) [16]. By applying the

Newton update formula to (5) and neglecting certain second-order derivations ( ∂2

∂εν∂εν′

and ∂2

∂ε∗ν∂ε
∗
ν′

) in the complex Hessian matrix H = HLS + µHD, the update direction is

obtained from

(JHk Jk + λ2ΣD
k )∆∆∆εεεk = −(JHk [eeescat(εεεk)− eeemeas] + λ2ΩD∗

k ) (8)

where (.)H stands for Hermitian transpose and the trade-off parameter λ is given by

λ2 = µ‖eeemeas‖2. The subscript k is omitted in the following. J is the Nd×N ε Jacobian

matrix, which contains the derivatives of the scattered field components with respect to

the optimization variables: Jdν = ∂escatd /∂εν . For FD(εεε) the complex gradient is given

by

gD =

[
∂FD

∂εν
∂FD

∂ε∗ν

]
=

[
ΩD

ΩD∗

]
(9)

where ΩD∗ is a N ε-dimensional vector of the first order derivatives of FD(εεε) with

respect to the complex conjugate reconstruction variables ε∗ν . The WCDA regularization
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functions proposed further in Section 4 are of the form gγ(εν − εν′) = fγ(|εν − εν′ |). It

follows that the complex Hessian matrix of FD is given by

HD =


∂2FD

∂εν′∂εν
∂2FD

∂εν′∂ε
∗
ν

∂2FD

∂ε∗
ν′∂εν

∂2FD

∂ε∗
ν′∂ε

∗
ν

 =

 BBBD ΣD

ΣD BBBD∗

 (10)

where the N ε×N ε submatrices ΣD andBBBD are real symmetric and complex symmetric,

respectively. With VP regularization [16], the matrix BBBP is identically zero; with MS

regularization [10], the matrix BBBS is negligible for small contrasts (near the beginning

of the iterations) and for small datafits (near convergence); with the WCDA functions

proposed in Section 4, BBBD is negligible for small contrasts and will be neglected in (10),

thus leading to the (modified) Gauss-Newton equation (8). Whatever approximations

have led to (8), it is important that the line search direction ∆∆∆εεε is a descent direction for

F (εεε) to ensure convergence of the method, which requires that the matrix JHJ + λ2ΣD

in (8) is positive definite. The diagonal elements of ΣD are

ΣD
ν,ν =

∂2FD

∂εν∂ε∗ν
=

∂2FD

∂εj,k,l∂ε∗j,k,l
(11)

where j, k, l label the discretization cells in the x, y, z-directions, respectively, and the

non-diagonal elements are

ΣD
ν,ν′ =

∂2FD

∂εν′∂ε∗ν
=

∂2FD

∂εj′,k′,l′∂ε∗j,k,l
(12)

which are zero except if ν ′ ∈ Nν . A pseudo-code of the reconstruction algorithm is given

under Algorithm 1. For all examples in Sections 4 - 6, the initial permittivity estimate

εinit is equal to the background permittivity εεεinit = [1, · · · , 1].

3. Discontinuity Adaptive Models in a MRF Approach

The regularization functions that we study in this paper belong to the so-called

discontinuity-adaptive Markov random field (MRF) models [29]. It is well known that

MRF provides a convenient and consistent way of modeling global context in terms of

local interactions between image entities (pixels, voxels, segments, etc). According to the

Hammersley-Clifford theorem [22], the joint probability of a MRF is a Gibbs distribution

where energy is decomposed as a sum of clique potentials. Cliques are sets of sites

(pixels, voxels) that are neighbors of each other for a particular neighborhood system.

In practice, only pairwise cliques are commonly used even with larger neighborhoods.

In our setting, cliques are sets of two neighboring (inverse) grid cells < ν, ν ′ > for the 3D

neighborhood in Fig. 1 and the clique potential function g(εν− εν′) is the regularization

function from (7). Actually, the cost function in (5)-(7) can be interpreted as a Bayesian

Maximum a Posteriori (MAP) estimator [19] with a MRF prior on εν as follows:
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ε̂εε = arg max
εεε
P (εεε|eeemeas) = arg max

εεε
P (eeemeas|εεε)P (εεε)

= arg max
εεε
P (eeemeas|eeescat(εεε))P (εεε) (13)

If the difference between the computed and measured scattered fields for each detector

l and excitation i can be modeled as an independent, identically distributed Gaussian

noise process N(0, τ 2), we can write:

P (eeemeas|eeescat(εεε)) =
∏
i,l

P (EEEmeas
i,l |EEEscat

i,l (εεε))

=
∏
i,l

1
τ
√
2π
e−
‖EEEmeasi,l −EEEscati,l (εεε)‖2

2τ2

= Ce
−

∑
i,l

‖EEEmeasi,l −EEEscati,l (εεε)‖2

2τ2
(14)

where C is a normalizing constant. When a MRF prior with pairwise cliques < ν, ν ′ >

and clique potential function gγ is imposed on εεε, the prior probability is

P (εεε) = 1
Z
e
−

∑
<ν,ν′>

gγ(εν−εν′ )
(15)

where Z is a normalization constant. By substituting (14) and (15) into (13) and taking

the logarithm, we obtain

ε̂εε = arg min
εεε

(
∑
i,l

‖EEEmeas
i,l −EEEscat

i,l (εεε)‖2 + λ
∑
ν

∑
ν′∈Nν

gγ(εν − εν′)) (16)

where λ is some positive constant. The above expression for ε̂εε is equivalent to minimizing

the cost function specified in (5)-(7).

We are concerned now with the choice of the potential function gγ. Let us first

remind some well-known potential functions in one real variable r. A Tikhonov potential

function g(r) = r2 penalizes small differences between neighboring values, but also

smooths out true discontinuities. To overcome this, a Line Process (LP) model [30, 31]

switches off the smoothing when the difference between the values in the clique exceeds

a certain threshold: gα(r) = min{r2, α}, where α > 0 is a threshold parameter. More

general, Discontinuity Adaptive (DA) models [22] exist that turn off smoothing less

abruptly. Formally, DA models need to satisfy

lim
r→∞
|g′(r)| = lim

r→∞
|2rh(r)| = C (17)

where C ∈ [0,∞) is a constant. The condition above with C = 0 entirely prohibits

smoothing at discontinuities where r →∞, while it allows limited (bounded) smoothing

when C > 0. h(r) = g′(r)/(2r) is called the adaptive interaction function (AIF). As a

general rule, h(r) should approach 0 as |r| goes to infinity. Fig. 2 illustrates the AIF
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Figure 1. Neighborhood system on a lattice of regular sites

Figure 2. The qualitative shapes of Tikhonov function (a); LP model (b); Huber (c);

Le Clerc (d) and Cauchy-Lorentzian function (e). The models (c) - (e) are examples

of DA functions.

together with g ang g′ for the Tikhonov function, LP function, Huber function [22] and

two well-known more general DA models: Le Clerc [32]

gl(r) = −γ(e
− r

2

γ − 1) (18)

and Cauchy-Lorentzian [32]

gc(r) = γln(1 + r2

γ
) (19)

Like most other traditional DA models, (18) and (19) are convex only in an interval,

where |g′(r)| increases monotonically with |r| to smooth out the noise. Outside this

interval, |g′(r)| decreases with |r|, approaching zero for large |r| and the function is

non-convex. Due to this problem, most of the traditional discontinuity adaptive models

cannot be used in convex optimization [22].

4. Weakly Convex Discontinuity Adaptive Class of models

4.1. Formulation

Let η = α + jβ denote a complex number, being a difference between two neighboring

complex permittivities: η = εν−εν′ . We will define here a class of discontinuity adaptive
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potential functions of the form g(η) = f(|η|), which thus are rotationally symmetric in

the complex η-plane (or in the α, β-plane). One such function is the Huber function

gh(η) =

{
|η|2 |η| ≤ γ

2γ|η| − γ2 otherwise
(20)

which can be considered as a 2D extension of the 1D Huber model. In [20] we

demonstrated the potential of Huber regularization (20) in quantitative microwave

imaging, but on simulated data only and without studying its behavior thoroughly.

The Huber function yields bounded smoothing (with C > 0 in (17)). It is of interest

to study constructions of similar models, which can potentially yield sharper edges (e.g.

with C = 0 in (17)) or in which the AIF is made more sensitive than in the Huber

function, or both. We analyze here a class of regularization functions called Weakly

Convex Discontinuity Adaptive (WCDA) models that satisfy following properties [21]:

(a) Discontinuity-adaptive, i.e. condition (17) with r replaced by |η| holds:

lim
|η|→∞

| dg
d|η| | = lim

|η|→∞
|2ηh(η)| = C (21)

(b) Matrix ΣD is (semi) positive definite.

(c) Steep slope of the AIF around the origin, to make the function sensitive to

subtle changes in the permittivity profile.

In particular, we can construct such WCDA models by combining two well-chosen

functions (one in the origin and another one for larger values of |η|) like it is done

in (20). In practice, it is convenient to start from an existing 1D DA model that is

convex around the origin with a steep AIF as required in (c) and replace the tails with

a function conforming to (a) - (b). We demonstrated in [21] that such construction (in

this case a combination of a quadratic and a Cauchy-Lorentzian function, gq−c) can be

more advantageous than the Huber regularization, but there are infinitely many possible

choices in this respect.

In this paper we will study constructions involving the DA functions (18) and (19),

introduced in Section 3. The Le Clerc function (18) has a steep AIF so it is interesting to

investigate its use in building WCDA models. Cauchy-Lorentzian (19) has the potential

to better preserve sharpness of the strong edges than the Huber function, since C = 0

in (21), which entirely prohibits smoothing at discontinuities when η → ∞. This also

can be observed visually by comparing Figs. 2 (c) and (e). We thus construct two new

functions:

gl−h(η) =

−γ(e
−
|η|2
γ − 1) |η| ≤

√
γ
2

2γ|η| − γ2 otherwise
(22)

which is a combination of Le Clerc and Huber, and

gl−c(η) =

−γ(e
−
|η|2
γ − 1) |η| ≤

√
γ
2

γln(1 + |η|2
γ

) otherwise
(23)



WCDA Regularization for 3D Quantitative Microwave Tomography 10

Figure 3. Qualitative 2D shapes (top) and their 1D cross sections through (0,0)

(bottom) of the Tikhonov function (a), LP model (b) and WCDA functions gh, gl−h
and gl−c (c-e) and of their first and second order derivatives.

which combines Le Clerc with Cauchy-Lorentzian. Note that the WCDA models and/or

their first derivatives can have discontinuity points, but they conform with (b) and we

show that these models perform well in our optimization.

To compute ∆∆∆εεεk in (8), the gradient and (modified) Hessian matrix of FD(εεε) need

to be determined. Taking into account that |η|2 = (εν − εν′)(ε∗ν − ε∗ν′), we can express

ΩD∗ from (9) and ΣΣΣD from (11),(12) as follows:

ΩD∗
ν =

∑
ν′∈Nν

ων′ (24)

where ων′ = ∂g(η)
∂ε∗ν

,

ΣD
ν,ν =

∑
ν′∈Nν

σν′ (25)

where σν′ = ∂2g(η)
∂εν∂ε∗ν

and
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ΣD
ν,ν′ = −σν′ (26)

for ν ′ ∈ Nν . The expressions of ων′ , σν′ and ΣD
ν,ν′ are given in Table 1 for the Huber

function (20) and for the models (22), (23). It can be seen in Table 1 that σν′ is

always positive. From (25),(26) it then follows that ΣΣΣD is diagonally dominant, since

|ΣD
ν,ν | ≥

∑
ν′
|ΣD

ν,ν′ | for every row ν‡. Furthermore, all diagonal entries (25) are positive.

It follows that the real symmetric regularization matrix ΣΣΣD is semi-positive definite

[33]. Since the (semi-positive definite) matrix JJJHk JJJk in (8) can be very ill-conditioned,

a strictly positive definite regularization matrix is needed to enhance convergence. For

permittivity vectors εεε with |η| ≤ Thr for all cells, it follows from Table 1 that FD(εεε) is

composed of quadratic or Le Clerc functions only and hence has one single minimum

(i.e. FD(εεε) = 0 when εν = εb for all ν), such that ΣΣΣD cannot be singular in that part of

the domain. Also outside this region strictly positive definiteness can be guaranteed by

augmenting the RHS of (25) with a (small) positive number δ

ΣD
ν,ν =

∑
ν′∈Nν

σν′ + δ (27)

For the objects considered further in this paper, we did not encounter singularity

with WCDA regularization when putting δ = 0. Reconstructions with δ ranging from

10−6 to 10−2 also gave good results. Note that it follows from Table 1 and the 26

neighborhood system that 26 is the maximum possible value for (25).

Fig. 3 illustrates the quadratic function, LP model, gh, gl−h and gl−c in the complex

domain η = α+ jβ, together with the corresponding |ω| and σ functions. Note that |ω|,
which is an indication of the smoothing strength, increases monotonically with |η| within

the ‘smoothing’ interval (up to a threshold). Outside this interval, |ωl−c| decreases with

increasing |η| and becomes zero as |η| → ∞. In other words, condition (a) with C = 0

entirely prohibits smoothing at discontinuities where |η| → ∞, producing sharp edges.

gh and gl−h, with C > 0 allow limited (bounded) smoothing—observe that |ωh| and

|ωl−h| do not become zero when |η| → ∞. However, σl−h has a steeper slope around

zero than σh does. The function σ, which is positive around the origin, small for large

|η| and approaching 0 as |η| goes to ∞, performs the role of interaction between two

neighbours εν and εν′ .

4.2. Numerical analysis

We evaluate the behavior of different WCDA functions in extremely underdetermined

situations, which means using far less (simulated) measurements to reconstruct profiles

‡ Note that the strict inequality holds when the cell ν is located next to the boundary of the

reconstruction domain D. Expression (25) then also includes terms in εν − εν′ for background cells ν′

just outside D, but these cells are not included in (26).
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|εν − εν′ | ≤ Thr otherwise

gh(η) ων′ (εν − εν′) γ(εν−εν′ )
|εν−εν′ |

Thr=γ σν′ 1 γ
2|εν−εν′ |

ΣD
ν,ν′ −1 − γ

2|εν−εν′ |

gl−h(η) ων′ (εν − εν′)e
−
|εν−εν′ |2

γ γ
(εν−εν′ )
|εν−εν′ |

Thr=
√

γ
2

σν′ (1− |εν−εν′ |
2

γ
)e
−
|εν−εν′ |2

γ γ
2|εν−εν′ |

ΣD
ν,ν′ −(1− |εν−εν′ |

2

γ
)e
−
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Table 1. ων′ , σν′ and ΣDν,ν′ for the three proposed WCDA functions.

(a) Configuration C1 (b) Configuration C2 (c) Object A (d) Object B

Figure 4. Antenna configurations and objects used in the numerical analysis. Only

real parts of the complex permittivity are shown in (c) and (d).

with a large number of permittivity unknowns. More particularly, we will observe the

influence of the parameter γ in the models gh, gl−c and gl−h on the reconstructions,

which will help us to select a suitable value for this parameter, when dealing with

• Objects of different complexity: We consider piecewise homogeneous objects with

dimensions of the order of a (few) wavelength(s) (at 8 GHz, λ0 = 3.75 cm). Object
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(a) Object A with Configuration C1 (b) object B with Configuration C1

(c) Object A with configuration C2 (d) object B with configuration C2

Figure 5. Reconstruction error as a function of γ for the WCDA models gh, gl−c and

gl−h (µ = 8×10−7). Simulations are shown for the objects and antenna configurations

from Fig.4 at SNR = 30 dB.

A (Fig. 4 (c)) is a homogeneous sphere with radius 3 cm (diameter = 1.6λ0) and

permittivity 2; object B (Fig. 4 (d)) is a small sphere with radius 1.5 cm and

permittivity 2.5 − j in a big sphere with radius 3 cm and permittivity 1.8; the

side of the reconstruction domain D is 10 cm (2.7λ0) and the number of unknown

permittivity cells is 8000.

• Different sparse antenna configurations: Configuration C1 (Fig. 4 (a)) consists of

24 antenna positions (4 meridians with 6 evenly spaced positions each) with 48

transmitting dipoles (2 polarizations per position) and 48 receiving dipoles (same

locations and polarizations), resulting in 2304 complex data. Configuration C2

(Fig. 4 (b)) consists of 36 antenna positions (6 meridians with 6 positions each)

with less (24) transmitting dipoles (only the 12 positions on the 2 parallels closest

to z = 0 are used, again with both polarizations) and more (72) receiving dipoles,

yielding 1728 complex data. The actual numbers of non-redundant data are even
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(a) Object A with Configuration C1 (b) object B with Configuration C1

(c) Object A with configuration C2 (d) object B with configuration C2

Figure 6. Reconstruction error as a function of γ for the WCDA models gh, gl−c and

gl−h (µ = 8×10−6). Simulations are shown for the objects and antenna configurations

from Fig.4 at SNR = 25 dB.

lower due to reciprocity.

• Different levels of noise: We experiment with different levels of additive white

Gaussian noise resulting in signal-to-noise ratios (SNR) from 20 dB to 30 dB (i.e.

typical SNRs in a microwave imaging experiment).

We refer to Section 5 for the definition of several other reconstruction parameters.

To evaluate the quality of the permittivity reconstructions, the reconstruction error R

is defined as

R = 1
‖εεεref‖ ‖ εεε

rec − εεεref ‖ (28)

which expresses the normalized difference between the reference εεεref and reconstructed

εεεrec permittivity values on the grid. We set the initial guess εεεinit = [1, · · · , 1]. We verified

that other (reasonable) choices of this initial estimate did not influence much the final

reconstruction error.
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Figs. 5 and 6 show the reconstruction error for the three WCDA models applied to

the objects and antenna configurations from Fig.4, as a function of the parameter γ at

SNR = 30 dB (µ = 8 × 10−7) and SNR = 25 dB (µ = 8 × 10−6), respectively. We ran

each experiment (situation) 10 times and plot the average values of the reconstruction

errors at distinct values of γ of each model in each subfigure of Fig. 5 and 6. Error bars

indicate the absolute deviation of reconstruction errors. The following observations can

be made: (i) From the reconstruction error point of view, it is difficult to say which

model is the best. gl−h yields the smallest error with Object A in Configuration C1

while gl−c yields the smallest error with Object B in Configuration C2; (ii) From the

visual reconstruction quality point of view (smooth surface and sharp edges), gl−c always

produces better uniform values for different materials and sharper edges than gl−h and

gh. Take Object A and Configuration C1 (Fig. 5 (a)) at SNR = 30 dB as an example,

and adopt γ that (approximately) yields the smallest reconstruction error–we define

such γ as “optimal” in the following—with each model (γ = 0.04 for gl−h, γ = 0.06 for

gh and γ = 0.03 for gl−c). Fig. 7 shows the corresponding reconstructions. We can see

from this example that both gl−h and gh produce some artifacts, but not gl−c. Although

gl−c results in a bigger error (0.0301) than the other two models (0.026 and 0.0292),

the reconstruction of gl−c appears better visually (free of artifacts); (iii) From the error

curve trend of view, the Huber function gh is the most stable for different targets and

antenna configurations (only one minimum for a certain level of noise). The functions

gl−h and gh behave similarly for SNR = 30 dB and SNR = 25 dB. The curves of gl−c
seem unstable for the higher noise level. The reason for these large fluctuations is in

the fact that gl−c tends to keep sharp edges, which can erode or dilate the objects. The

optimal value of γ for gl−c is smaller than that for gl−h at the same noise level.

Observe that the reconstruction errors under Configuration C2 most often are

(slightly) smaller than those under Configuration C1, for each of the objects.

Configuration C2 with more receiving positions apparently performs best. We also

notice that gl−h and gh yield mostly a smaller reconstruction error than gl−c under

Configuration C1 but a larger error than gl−c under Configuration C2; With the same

configuration, more complicated objects produce larger errors than simple ones; With

free space background and simulated data, the error curves have similar general trends

for different targets and antenna configurations at a specific noise level.

The analysis above agrees with the properties of the WCDA models illustrated in

Fig. 3. A model with a sharply peaked σ (i.e. highly sensitive AIF) and a |ω| with

C > 0 (bounded smoothing) has the potential to yield smaller reconstruction errors.

That is why the error for gl−h is most of the time smaller than for gl−c in the high SNR

case. Of course when the value of γ is decreased, σh will approach σl−h. Models with

C = 0, as gl−c and gs [21], can produce sharp edges but can also erode or dilate the

surface of original objects. So depending on the application of microwave imaging, one

can choose different models from this WCDA class.

In order to show that a suitable value of γ is not much influenced by variations in

the (electrical) size of the object and of D, we also conducted a few simulations for a
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(a) gl−h, γ = 0.04

(error=0.0260)

(b) gh, γ = 0.06

(error=0.0292)

(c) gl−c, γ = 0.03

(error=0.0301)

Figure 7. Reconstructions with smallest reconstruction error obtained with each

model for object A and antenna configuration C1 at SNR = 30 dB (µ = 8× 10−7).

Figure 8. Reconstruction error R as a function of µ and γ at SNR = 30 dB. Left:

for gl−h, object B and antenna configuration C2; Right: for gh, object A and antenna

configuration C1.

larger homogeneous object C (as object A but with radius 6.0 cm or diameter = 3.2λ0)

in D with side 15 cm (= 4λ0) and for a larger inhomogeneous object D (a small sphere

with radius 1.5 cm (permittivity 2.5) inside a sphere with radius 3 cm (permittivity 1.8)

embedded in a sphere with radius 5 cm and permittivity 1.5) in D with side 10 cm.

The number of transmitting positions was increased to 36 resulting in 5184 data. The

optimal values for γ are 0.06 for object C and 0.04 for object D at a SNR of 30 dB

(µ = 8 × 10−7) and hence in the same range as the optimal values for the objects in

Fig. 5.

The regularization parameter µ in (5) is approximately optimized by means of

numerical simulations, similarly as with the parameter γ, but with averaging over 3

experiments. Fig. 8 shows the reconstruction error in the µ − γ plane for 2 different

configurations at 30 dB, from where we notice that the minimum is around µ = 10−5

and γ = 0.01. It can be seen that moving too far away from these optimal values leads

to a significant increase in the reconstruction error. Note that the lower value of µ
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Figure 9. Optimal values of γ (yielding approximately the smallest reconstruction

errors) as a function of the SNR for gl−h and gh and for object B and antenna

configuration C1. Here µ = 8 × 10−5 for 20 dB < SNR < 25 dB and µ = 10−5

for 25 dB ≤ SNR < 30 dB.

(µ = 8 × 10−7) used in Fig. 5 together with the corresponding optimal values for γ

thus lead to somewhat higher reconstruction errors in Fig. 7. We observed that at 20

dB the minimum is about µ = 8 × 10−5 and γ = 0.01. We conclude that the optimal

regularization parameter µ appears to be sensitive to the SNR, while the optimal γ

remains quasi invariant and equal to approximately 0.01 for all three WCDA functions,

when applying different SNR, see also Fig. 9, or when employing different objects and

antenna configurations that conform with the specifications at the beginning of this

subsection.

5. Numerical data validation

We performed reconstructions from simulated data with three different antenna

configurations, including a configuration similar to [16], shown in Fig. 10 (a) and

two much sparser configurations shown in Fig. 10 (b) and Fig. 10 (c). The sparse

configurations are attractive in terms of computation time but are challenging due

to the highly underdetermined situation. We compare the reconstruction results for

the WCDA models (gh, gl−h and gl−c) with two other regularizations: multiplicative

smoothing (MS) [10] and step-wise relaxed value picking (SRVP) [16].

The frequency is 8 GHz (λ0 = 3.75 cm). The scattering object corresponds to object

B from Section 4 and is positioned in the center of D, which is a cube of edge length 10

cm centered in a reference frame (see Fig. 10). The big and small spheres are centered

at the origin (0,0,0) and at the point (-0.56 cm, -0.56 cm, -0.56 cm), respectively (see

Fig. 11(a)). The reconstruction domain is discretized in 20 × 20 × 20 voxels with edge

size 5 mm (0.13λ0), yielding a total of 8000 permittivity unknowns. We use this grid

for both forward and update problems as well as for generating the simulated scattered

field data. This way the reconstruction is not bothered by discretization noise and it

can be exact in absence of (simulated) measurement noise on the scattered field data.

Our testing of the proposed regularizations thus is affected only by this measurement
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(a) 20736 data (b) 5184 data (c) 2304 data

Figure 10. Three configurations with antenna positions (dots) on a sphere with radius

20 cm. The arrows in two orthogonal directions indicate transmitting dipoles. The

cube in the center indicates the reconstruction domain D.

noise. We set additive white Gaussian noise with a SNR of 30 dB. The tolerance for the

BICGSTAB iterative routine is set to 10−3.

The elementary dipoles in Fig. 10 are evenly distributed over a number of meridians

with radius 20 cm. Their positions and orientations are indicated with dots and arrows,

respectively. For every transmitter position, dipole orientations along ûuuθ and ûuuφ are

used and the scattered field is measured in every position along these directions. The

configuration in Fig. 10 (a) consists of 144 dipoles (12 meridians with 6 positions each)

which generate 20736 complex data numbers; the sparser configuration in Fig. 10 (b)

consists of 72 dipoles (6 meridians with 6 positions each), generating 5184 complex

data; the sparsest configuration in Fig. 10 (c) consists of 48 dipoles (4 meridians with

6 positions each) which generate 2304 complex data. So the length of the data vector

emeas ranges from Nd = 2304 to 20736; taking into account reciprocity, the number of

non-redundant data is actually Nd/2. Referring to the estimate M [27] of the NDF

in each component of a (single-view) 3D radiated field, it follows that M = 25 to

M = 32 for object B at 8 GHz; the corresponding information is accessible by uniformly

positioning M receivers over the measurement sphere. Let us indicatively compare the

configurations of Fig. 10—the antenna positioning is not uniform there—to this NDF

estimate: with configuration (a) the number of positions (72) largely exceeds the NDF;

with sparse configuration (b) the number of positions (36) is of the order of the NDF,

while the sparsest configuration (c) counts a lower number of positions (24) than the

NDF §.
The initial estimate of the permittivity in D is chosen equal to the background

permittivity. We set γ = 0.01 for the three WCDA potential functions and the

regularization parameter µ = 10−5. We choose µ = 10−4 for MS [10] and µ = 0.1

for SRVP [16] (µ = 2 for sparsest data from Fig. 10 (c)).

§ Note that the NDF criterion is valid only if the distance between the object and the antennas is at

least a few wavelengths [27], while our reconstruction algorithm is not restricted to such configurations.
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(a) reference (b) MS, R=7.83% (c) SRVP, R=4.49%

(d) gh, R=1.29% (e) gl−h, R=0.66% (f) gl−c, R=1.18%

Figure 11. Real part of the complex permittivity profile for the antenna configuration

from Fig. 10 (b). (a) reference and reconstructions for (b) MS; (c) SRVP; (d) gh; (e)

gl−h; (f) gl−c.

(a) reference (b) MS, R=8.84% (c) SRVP, R=14.60%

(d) gh, R=2.69% (e) gl−h, R=1.85% (f) gl−c, R=3.90%

Figure 12. Real part of the complex permittivity profile for the antenna configuration

from Fig. 10 (c). (a) reference and reconstructions for (b) MS; (c) SRVP; (d) gh; (e)

gl−h; (f) gl−c.
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Reconstruction error MS SRVP gh gl−h gl−c
20736 complex data 6.84% 2.61% 0.66% 0.36% 0.65%

5184 complex data 7.83% 4.49% 1.29% 0.66% 1.18%

2304 complex data 8.84% 14.60% 2.69% 1.85% 3.90%

Table 2. Reconstruction error for the different regularization functions and antenna

configurations from Fig. 10.

The computation time is similar for all three considered regularizations provided

that equal numbers of antennas are employed. The chosen antenna configuration has a

large impact on the reconstruction time: the sparsest configuration Fig. 10 (c) requires

only around 30 minutes while around 2 hours were needed for configuration Fig. 10 (a),

using the same stopping criterion FLS = 10−3 or 20 iterations maximum, on a six-core

Intel i7 980x processor (3.33GHz) with 24GByte memory. Further speed-up would be

possible by applying multi-threading or by parallel processing, e.g. [34].

The reconstruction error (28) is shown in Table 2 for the three antenna

configurations. Reconstructed images are shown in Figs. 11 - 12. Table 2 shows

that the proposed WCDA models yield smaller reconstruction errors for all antenna

configurations: the error reduction is significant with respect to MS in all experiments

and with respect to SRVP in the sparse configurations. Figs. 11 - 12 show that the

reconstructions of MS are over-smoothed as expected. SRVP retains sharp edges but

deteriorates drastically when the data is decreasing. The reconstructions from WCDA

are much closer to the exact profile. These images illustrate the improvement visually

and demonstrate the potential of the proposed method for reconstruction from sparse

measurements.

6. Reconstructions from real measurements

Now we perform reconstructions from real measurements for 3D targets from the

Fresnel database [23]. These carefully measured experimental data have been inverted

with various methods by several authors, see e.g. the special section [24]. This

enables comparing the potential of WCDA regularization against a number of other

regularization strategies that were used for the inversion of the same objects. We

select single frequency data from the available multiple frequency data. As in the

previous section we also extract sparse data subsets and for each data set we compare

reconstructions with MS regularization and WCDA regularization with the three

potential functions gl−h, gl−c and gh. We consider four quasi-lossless dielectric targets:

TwoSpheres, TwoCubes, CubeSpheres and Myster. They are shortly described in the

following subsections, but we refer to [23] for more details.

In the experimental setup the target is placed in the center of a reference frame

and illuminated with plane waves radiated by a parabolic antenna, which is moved on a

sphere with radius R = 1.796 m. The receiving antenna is moved in the horizontal plane
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(a) 81 transmitters (b) 36 receivers

(a1) 45 transmitters (a2) 41 transmitters (b1) 12 receivers (b2) 4 receivers

Figure 13. The dipole configurations in the forward model: 81 transmitting positions

or 162 transmitting dipoles (oriented along the θ and φ directions) are placed on a

sphere with radius 20 m (a) and 36 receiver positions are placed on a circle with radius

1.796 m in the horizontal plane (b). Subsampled configurations: (a1) 45 transmitting

positions (90 dipoles); (a2) 41 transmitting positions (82 dipoles); (b1) 12 receiver

positions; (b2) 4 receiver positions.

on a circle with the same radius. We refer to [23] for further details on the setup and

the measurements. In our forward model transmitting elementary dipoles are positioned

on a sphere with radius R = 20 m — to simulate an incident plane wave at the target

location [15] — and for each position oriented along the polar ûuuθ and azimuthal ûuuφ
directions; the receiving dipoles are equally spaced on a circle with radius R = 1.796

m in the horizontal plane and oriented along the negative z axis. In a full data set

(Fig. 13 (a)), there are 81 transmitting positions (θT , φT ) with φT varying from 20◦ to

340◦ by steps of 40◦ (i.e. 9 meridians) and θT from 30◦ to 150◦ by steps of 15◦ (i.e. 9

parallels), which yields 162 illuminations in total; there are 36 receivers positioned from

0◦ to 350◦ (10◦ spacing), see Fig. 13 (b); due to technical limitations not all source-

receiver combinations can effectively be used, including the receivers that are closer to

the source meridian than 50◦, which results in a data vector with maximum dimension

of Nd = 4374 for a full single frequency data set. Note that all contributions in [24],

which we will use for comparison in this section, used full single or multiple frequency

data sets.

In this section we use downsampled data sets derived from a full data set. Let

us consider two different subsampling strategies for the transmitters: a spread along a

subset of 5 meridians (Fig. 13 (a1)) and a rather uniform spread (Fig. 13 (a2)); and
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Figure 14. Reconstruction error as a function of γ for two subsampling strategies

(a1)(b1) and (a2)(b1). Object A (left) and object B (right) from Fig. 4 at SNR = 30

dB (top) and SNR = 25 dB (bottom).

two subsets for the receivers: 12 receivers with φR = 0◦ to φR = 330◦ (30◦ spacing)

in Fig. 13 (b1) and 4 receivers with φR = 0◦ to φR = 270◦ (90◦ spacing) in Fig. 13

(b2). Due to the aforementioned technical limitations only 9 respectively 3 of these

receivers are effectively employed. Transmitter configuration (a1) has 45 transmitting

positions (θT , φT ) with φT varying from φT = 20◦ to φT = 340◦ by steps of 80◦ and with

θT = 30◦ to θT = 150◦ by steps of 15◦, yielding 90 illuminations and configuration

(a2) has 41 transmitting positions (θT , φT ) resulting from the intersection of θT =

(30◦, 60◦, 90◦, 120◦, 150◦) with φT = (20◦, 100◦, 180◦, 260◦, 340◦) and the intersection of

θT = (45◦, 75◦, 105◦, 135◦) with φT = (60◦, 140◦, 220◦, 300◦) yielding 82 illuminations.

The number of data for these down-sampled sets range from approximately Nd = 243

for the sparsest configuration (a2)(b2) to Nd = 810 for (a1)(b1). Reconstructions with

the sparsest data sets take around 30 minutes while 3 hours are needed with the full

data sets, using the same stopping criterion FLS = 10−3 or 20 iterations maximum, on

a six-core Intel i7 980x processor (3.33GHz) with 24 GByte memory (multi-threading

was not applied here).

To test the difference between the two transmitter downsampling strategies (a1)

and (a2), we first conducted reconstructions from simulated data perturbed with noise
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using the same objects as in Fig. 4 (c) (d) and the antenna configurations (a1) (b1)

(808 data) and (a2) (b1) (736 data) from Fig. 13. The reconstruction error for WCDA

gl−h is shown in Fig. 14 at SNR 30 dB (top) and 25 dB (bottom). We observe that the

configuration (a2) with approximately uniformly spread antennas on the sphere yields

similar reconstruction errors than the meridian-based configuration (a1), even though

more antennas were employed in configuration (a1). Thus we will use the uniform

subsampling (a2) in the following of this section.

As in [15] we choose the highest available frequency f = 8 GHz (λ0 = 3.75 cm) to

reconstruct the TwoCubes, CubeSpheres and Myster targets, which combines a sufficient

resolution and a good convergence of the algorithm. For the larger TwoSpheres target

we adopt f = 4 GHz (λ0 = 7.50 cm), such that all targets have approximately the

same electrical size. A calibration is applied to match amplitude and phase between

measured and simulated fields: for each incidence, the measured scattered field values are

multiplied with a complex factor, which is the ratio of the simulated and the measured

incident fields at the receiver located opposite to the source.

All reconstructions start from the domain filled with air as an initial estimate

of the permittivity. We use the same discretization for both the forward and inverse

grids. Only the real parts of the permittivities are shown, since the imaginary parts

are negligible. Since we assume that SNR = 20 dB for the Fresnel data [15], we set

γ = 0.008 and µ = 10−4 for the WCDA models; we take µ = 10−3 for MS [15].

6.1. TwoSpheres

This target consists of two spheres with diameter 5 cm (= 0.67λ at 4 GHz) and

permittivity 2.6. They are centered at (-2.5 cm, 0, 0) and (2.5 cm, 0, 0). We subsampled

the data according to the antenna configurations (a2) (b2) from Fig. 13, yielding a data

vector with dimension Nd = 243. The reconstruction domain D is a 16 cm × 8 cm × 8

cm box and is discretized in 40×20×20 cells with a cell size of 4 mm (0.053λ0), yielding

a total of 16000 permittivity unknowns. The problem thus is heavily underdetermined.

Fig. 15 shows the reconstructions with the different methods for this object. The

reconstruction with MS in Fig. 15 (a) strongly smoothed the edges, which makes it

difficult to estimate the permittivity and diameter of the spheres. Figs. 15 (b)-(d) with

WCDA instead show much sharper edges and a better homogeneity. Edges are smoother

with gh than with gl−h and gl−c and gh also shows slightly larger permittivity fluctuations

inside the spheres. Furthermore, gl−c yields the sharpest edges of all reconstructions;

a xz cross-sectional view is shown in Fig. 16: the spheres are a bit oversized and their

average permittivity is 2.5, which is close to the expected value.

By comparing visually the results in Figs. 15 and 16 to reconstructions of the same

target by some of the methods in [24], we can conclude that WCDA often yields better

results from significantly fewer measurements. Smoothed edges were reconstructed in

Fig. 3 of [35] from a full single-frequency dataset at the same frequency f = 4 GHz

with Tikhonov regularization. Sharp edges and permittivity values of about 2.6 were
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(a) MS (b) gh (c) gl−h (d) gl−c

Figure 15. Real part of the complex permittivity for the TwoSpheres target.

Reconstructions (using 243 data) from the sparsest antenna configuration (a2) (b2)

of Fig. 13 at 4 GHz with: (a) MS, (b) gh, (c) gl−h and (d) gl−c.

Figure 16. Cross section of gl−c at y = 0 (left) and 3D iso-surface of the permittivity

(right), corresponding to Fig. 15 (d).

reconstructed using all 21 frequencies with weighted L2 norm - TV regularization in

Fig. 3 of [36]. The reconstructions in Fig. 2 (e)-(f) of [15] from a full single-frequency

dataset at 4 GHz with SRVP regularization combined with extra a priori information

also yield an average permittivity of 2.5 but better sized spheres than our results with

gl−c.

6.2. TwoCubes

This target consists of two cubes with edge length 2.5 cm (= 0.67λ at 8 GHz) and

permittivity 2.3. They are centered at (1.25 cm, -1.25cm, 3.75cm) and (-1.25 cm, 1.25

cm, 6.25 cm). We subsampled the data according to the antenna configurations (a2)

(b1) from Fig. 13, yielding a data vector with dimension Nd= 736. The reconstruction

domain D now is a 7 cm × 7 cm × 7 cm box, centered at (0, 0, 5 cm) and discretized

in 25 × 25 × 25 cells with a cell size of 2.8 mm (0.075λ0), yielding a total of 15625

permittivity unknowns.

The reconstructions are shown in Fig. 17. Similar observations hold as with the

TwoSpheres object. The reconstruction with MS in Fig. 17 (a) strongly smoothed

the edges. For the reconstructions with WCDA in Figs. 15 (b)-(d), the cubes are
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(a) MS (b) gh (c) gl−h (d) gl−c

Figure 17. Real part of the complex permittivity for the TwoCubes target.

Reconstructions (using 736 data) from the sparse antenna configuration (a2)(b1) of

Fig. 13 at 8 GHz with: (a) MS, (b) gh, (c) gl−h and (d) gl−c.

Figure 18. Cross section of gl−c at z = 5 cm (left) and 3D iso-surface of the

permittivity (right), corresponding to Fig. 17 (d).

reconstructed in the right locations but the edges are a bit eroded and the edge length

in the z-direction is a bit too small (this length is improved when using more data).

The function gl−c still yields the sharpest edges among all reconstructions; the average

permittivity of 2.2 in the cubes is close to the expected value; a xy cross-sectional view

and the erosion of the edges are illustrated in Fig. 18.

Edge degradations are observed in all contributions of [24], e.g.: in Fig. 8 of [35]

from a full single-frequency dataset at 8 GHz, where Tikhonov regularization was applied

and which furthermore shows permittivity fluctuations inside the cubes; in Figs. 4-7 of

[37] from a full single-frequency dataset at 5 GHz, where a Bayesian framework was used

to account for the experimental noise and which show blurred edges and in Fig. 9 (b)

of [38] at 8 GHz, obtained with frequency hopping from filtered data sets which shows

quite rounded shapes of the cubes. Figure 6 (c)-(d) in [15] from a full single-frequency

dataset at 8 GHz, obtained with SRVP regularization combined with extra a priori

information, show homogeneous objects with permittivity 2.3 and sharp edges but some

erosions can still be seen in Fig. 9.
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(a) MS (b) gh (c) gl−h (d) gl−c

Figure 19. Real part of the complex permittivity for the CubeSpheres target.

Reconstructions (using 736 data) from the sparse antenna configuration (a2) (b1) of

Fig. 13 at 8 GHz with: (a) MS, (b) gh, (c) gl−h and (d) gl−c.

Figure 20. Cross section of gl−c in (d) at z = 1 cm (left) and 3D iso-surface of the

permittivity (right), corresponding to Fig. 19 (d).

6.3. CubeSpheres

This target is an aggregate of 27 spheres in a 3× 3× 3 cubic stacking with edge length

4.76 cm (= 1.3λ at 8 GHz). Each sphere has a diameter of 1.59 cm (= 0.4λ) and a

permittivity of 2.6. Due to the size of the spheres and their arrangement, this target

has the finest geometrical details. We subsampled the data according to the antenna

configurations (a2) (b1) from Fig. 13, yielding a data vector with dimension Nd = 736.

The reconstruction domain D is a 6 cm× 6 cm× 6.9 cm box, centered at (0, 0, 1.45

cm) and discretized in 20 × 20 × 23 cells with cell size 3 mm, yielding a total of 9200

permittivity unknowns.

Fig. 19 shows the results from the different methods. The 3 by 3 stacking is clearly

visible in the horizontal xy-plane but individual spheres are not resolved along the z-

direction. This is due to the specific antenna configuration of the database with receiving

antennas only in the horizontal plane. With WCDA in Fig. 19 (b)-(d), the edges again

are much better reconstructed than with MS in Fig. 19 (a), in particular with gl−c. An

xy cross-section is given in Fig. 20. It shows permittivity variations from 2.0 to 2.6 for

the spheres; all spheres are undersized, particularly those with the highest permittivities,
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which is compensated with a higher value for the background permittivity in between

the spheres.

In [39], where no additional regularization was applied, the image from a full single-

frequency dataset at 8 GHz in Fig. 6 (f) shows several smoothed spheres as well as

artifacts in the background. In [35], where Tikhonov regularization was used, the spheres

in the xy plane are well distinguished at 8 GHz in Fig. 20, but the edges are not very

clear and the shapes suffer from the coarser grid. Even in reconstructions from multi-

frequency data in [36], it is difficult to distinguish the individual spheres in the contrast

profiles in Fig. 22-23. where the weighted L2 norm TV regularization tends to smooth

out the discontinuities; this is somewhat improved with L2 norm TV regularization

in Fig. 24 but the permittivity (ε ≈ 1.7) is underestimated; the reconstruction shown

in Fig. 13 (a) in [38], obtained with frequency hopping and data filtering, shows the

individual spheres although smoothed and with a maximum permittivity of about 2.1.

With SRVP regularization in [15], Fig. 10 (b) shows rather well sized-spheres with

homogeneous permittivity values of about 2.1.

6.4. Myster

This target was a mystery target until the publication of [24]. It is a group of 12 spheres

with permittivity 2.6 and diameter 23.8 mm (= 0.64λ at 8 GHz), arranged so that their

centers lay along the vertices of an icosahedron [23]. It was positioned in the same way

as the CubeSpheres target, so that the xoy axis crossed the center of the three spheres on

which the mystery target lays. We selected data according to the antenna configurations

in Fig 13 (a2) (b1). The dimension of the data vector is Nd= 736. The reconstruction

domain D is a 10 cm × 10 cm × 10 cm cube, centered at (0, 0, 20 mm) and is discretized

in 25× 25× 25 cells with a cell size 4 mm, which yields 15625 permittivity unknowns.

The reconstruction with MS in Fig. 21 (a) smoothed the spheres. The individual

spheres are better distinguished in Fig. 21 (b)-(d) with WCDA, where we used µ = 10−5.

The permittivity of the spheres is somewhat underestimated with gl−h. With gl−c the

edges are sharpest and the permittivities are close to the actual values apart from some

smoothing that is visible between the spheres; a xz cross-section is shown in Fig. 22.

For comparison, the images from a full single-frequency data set at 8 GHz in Fig. 22

in [35] with Tikhonov regularization show rather well-shaped spheres but there are some

fluctuations in their permittivity values. The contrast profiles from multi-frequency data

in Fig. 27 of [36] with weighted L2 norm - TV regularization produce sharp edges and

homogeneous permittivity values (ε = 2.1), though around the bottom some transitional

values are visible. Sharp edges, with some artefacts, and homogeneous permittivity

values (ε ≈ 2.4) are obtained with SRVP regularization combined with extra a priori

information in Figs. 14-15 in [15] from a full single-frequency dataset.
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(a) MS (b) gh (c) gl−h (d) gl−c

Figure 21. Real part of the complex permittivity for the Myster target.

Reconstructions (using 736 data) from the sparsest antenna configuration (a2) (b1)

of Fig. 13 at 8 GHz with: (a) MS, (b) gh, (c) gl−h and (d) gl−c.

Figure 22. Cross section of gl−c at y = 0 (left) and 3D iso-surface of the permittivity

(right), corresponding to Fig. 21 (d).

7. Conclusion

In this paper, we presented a systematic study of WCDA models for regularizing the

ill-posed nonlinear 3D electromagnetic inverse scattering problem. In particular, the

properties of different models in this class were illustrated, and the choices of the

interval parameter in these models and of the regularization parameter was optimized

numerically for different complexity of objects, signal-to-noise ratios and subsampling

antenna configurations. The focus was on 3D piecewise constant objects, where WCDA

regularization appeared to be effective in reconstructing large numbers of unknowns from

significantly smaller numbers of data, in both the simulated and experimental data cases.

Different subsampling strategies were analyzed, resulting in a further improvement of

computational efficiency.

Based on our analysis, the optimal regularization parameter µ appears to be

sensitive to the SNR, while the optimal interval parameter γ remains quasi invariant

and equal to approximately 0.01 for all three WCDA functions, under the different

complexity of objects, SNR levels and antenna configurations considered in our

study. The experiments confirmed that models that turn off the smoothing at large
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discontinuities (like gl−c having Cauchy-Lorentzian in the tails) rather than allowing

limited smoothing (like the Huber function gh) indeed better preserve sharpness of the

strong edges in the reconstructions. In terms of the reconstruction error, all the analyzed

WCDA functions were similar, without clear dominance of one particular function.
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