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ABSTRACT

Reconstructing complex permittivity profiles of dielectric objects from measurements of the microwave scattered
field is a non-linear ill posed inverse problem. We analyze the performance of the Huber regularizer in the
application, studying the influence of the parameters under different noise levels. Moreover, we evaluate the
whole approach on real 3D electromagnetic measurements. Our focus is on reconstructions from relatively few
measurements (sparse measurements) to speed up the reconstruction process.
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1. INTRODUCTION

Quantitative microwave imaging aims at reconstructing the exact permittivity profile of an unknown scattering
object by illuminating the object with microwaves and by measuring the scattered field. Different regularization
approaches have been proposed for solving this nonlinear ill-posed inverse problem.!™® Multiplicative smoothing
(MS)! applies Tikhonov regularization in a multiplicative fashion and hence it tends to oversmooth the results,
while Value Picking (VP)? produces sharp results but is applicable only to piece-wise constant profiles with few
distinct permittivities values. An edge preserving regularization® was imposed on the real and imaginary part
of the complex permittivity separately. Total variation (TV) was used as a multiplicative constraint* and a Line
Process model was employed by Caorsi et al.’

We introduced previously a new regularization approach based on the Huber function,® which is suitable
not only for piecewise constant profiles, but also for more general permittivity profiles (that are of interest e.g.
in biomedical imaging).” We demonstrated already very encouraging first results on simulated data.® In this
paper, we perform an analysis of this regularizer, studying the influence of the parameters under different levels of
noise. Moreover, we evaluate the whole approach not only on simulated data but also on real 3D electromagnetic
measurements. Our focus is on reconstructions from relatively few measurements (sparse measurements), which
are of interest to speed up the reconstruction process.

We consider in this paper scattering measurements of 3D targets from the Institute Fresnel, that are available
in the so-called Fresnel database, and that are commonly used to test new algorithms in the inverse scattering
community. A special issue of Inverse Problems® was devoted to reconstructions on these benchmark experi-
mental data in order to enable fair comparison of the current and future methods using the same measurements.
Moreover, validating inversion algorithms on experimental data is much more reliable than using simulations
only, which are prone to inverse crime.’ Reconstructions from the experimental data are quite challenging due
to measurement noise and discretization noise as well as mismatch between the actual incident fields and their
simulation in the forward solvers. Furthermore, it is interesting to explore potentials for speeding up the recon-
struction process. In quantitative microwave imaging, using a smaller number of data points (i.e. performing a
sparse reconstruction), is especially of interest because long computation times are currently limiting practical
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use of this imaging modality. We show that using our approach reconstruction times for 3D objects can be dras-
tically reduced (e.g., from several hours to several minutes on the same computer architecure, without affecting
significantly the quality of the reconstructed results).

Our results on experimental data from the 3D Fresnel database motivate strongly the use of Huber regular-
ization. The advantages over related regularization methods, like MS and VP that were demonstrated previously
on simulated data are now confirmed with real experimental data. Moreover, analysis of the influence of different
parameters presented in this paper gives new insights in the behavior of the Huber regularizer in quantitative
microwave imaging and provides useful guidelines for its practical use in different scenarios (e.g. different levels
of measurement noise). This paper is organized as follows. In Section 2 the electromagnetic inverse scattering
problem and Gauss-Newton method are revisited. The Huber function is discussed in Section 3 and experimental
validations are presented in Section 4. Section 5 concludes the paper.

2. PROBLEM FORMULATION

We start from a classical problem formulation in quantitative microwave tomography.»2 As in our earlier
work,® the unknown permittivity of a reconstruction domain D is discretized in N¢ reconstruction variables
€=le1, -+ ,€u, - ,enc]. In order to reconstruct the permittivity profile €, an iterative method is used on a grid
with these N¢ cube cells, alternating between the forward and the inverse problem. In each step of the iterative
method, simulated scattered fields e*“*!(¢) are compared with the measured fields €™¢** and the permittivity
profile is updated based on this difference. This inverse problem is solved by minimizing a cost function
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where FE(g) is a regularization function, p > 0 is a regularization parameter and F°(g) is the least squares

data fit:
”emeas _ escat(&.)”2

2
||emeasH2 ( )

FL9(e) =

e™e and e**?(g) are N9-dimensional vectors that represent the measured and the simulated scattered fields,
respectively. We define the regularization function FF(g) as
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where g, is a potential function with parameter v and v’ denotes a spatial position neighboring v in the neigh-
borhood system N,. We use 8 neighbors in 2D and 26 neighbors in 3D as a compromise between reconstruction
quality and complexity.

As in our earlier work,® we consider minimization by an approximate line search along a modified Gauss-
Newton descent direction, which requires a positive definite Gauss-Newton Hessian matrix. The complex per-
mittivity in iteration k is updated as e,y1 = € + BrAer. Bk is calculated from the line search? and Agy is
obtained from

T T+ X2 Aey, = — (I [e°“ (er) — ™) + N Q) (4)

where (.)7 stands for Hermitian transpose and (.)* denotes the complex conjugate. In the following, the subscript
k is omitted for compactness. The factor J Hy 4 \23R is known as a Gauss-Newton Hessian matrix. The trade-off
parameter \ is given by A% = pul|e™°?%||2.2 J is the N¢ x N¢ Jacobian matrix, which contains the derivatives
of the scattered field components with respect to the optimization variables: Jg, = 9e5®/0e,; QF* is an
N¢—dimensional vector that contains the derivatives of the regularizing function, QF* = 9FF/9er; £ is a
N x N¢ matrix Eﬁy, = 0?F1/0e,,0¢%. We addressed this problem in a previous work,% by deriving Q% and

SF for the Huber function. In this paper, we will validate this framework on real data.



Figure 1. The qualitative shape of the Huber (right) and Tikhonov (left) functions in the complex domain.

3. HUBER REGULARIZATION

Let n = a + jB denote a complex number, being a difference between two neighboring complex permittivities:
n = €, — &,. In this paper, we will illustrate the performance of the Huber function acting as the potential
function g, in the regularization term of (3). The model
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can be considered as a 2D extension of the 1D Huber model g;,(7).1° In our earlier work,% we demonstrated the
potential of the Huber regularization (5) in quantitative microwave imaging, but on simulated data only and
without studying the behavior of the parameter v of this model.

For the chosen regularization function g, in (3), we derive Q7 and £ in (4). Taking into account that
|n|? = nm*, it can be shown that for the Huber function from (5)
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Figure 2. Optimal values of gamma (yielding the smallest reconstruction errors) as a function of the SNR for gs,.

We obtain the diagonal elements of £ as
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Fig. 1 illustrates the Huber function gp(n) and the Tikhonov function gr(n) in the complex domain (n =
a + jB), together with the corresponding magnitude |w(n)| and o(n) functions. Note that |w|, which is an
indication of the smoothing strength, increases monotonically with |7| in the whole domain of |wp|, whereas |wp|
only does so in the smoothing interval || < v and remains a constant, allowing limited (bounded) smoothing,
outside this interval. The interaction o, which determines the interaction between neighboring pixels also behaves
differently for the two regularizations: o}, is smaller for large |n| and approaches 0 as || goes to oo, while o
holds the same interaction power in the whole domain. This way, the Huber function preserves edges and reduces
the effect of outliers. A pseudo-code of the reconstruction algorithm is given in our earlier work.%

To analyze the behavior of the Huber function in quantitative microwave imaging when minimizing (4) with
the Gauss-Newton method and to optimize its parameter «y for the reconstruction of piece-wise constant objects
at different noise levels, we experiment with different levels of additive white Gaussian noise resulting in signal-to-
noise (SNR) from 20dB to 30dB. To evaluate the quality of the permittivity reconstructions, the reconstruction
error R is defined as
H eree — eref ||2
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which expresses the normalized squared difference between the reference "¢/ and reconstructed £7¢ permittivity
values on the grid.
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Figure 3. Real part of the complex permittivity and a 3D view (cut value = 2.2) of the surface for the Two Spheres target.
Reconstructions (using 243 data) from the sparsest antenna configuration at 4GHz with: (a) MS, (b) gx.

In Fig. 2, we show that the optimal value of + is increasing when the SNR increases. Keep in mind that this
optimal value is only from the reconstruction error point of view, which does not mean it will yield sharpest
edges. The plot in Fig. 2 also shows that « = 0.008 is a good choice for SNR = 20 dB, which can be considered!
as the noise level for the experimental data in Section 4. For the 26 neighborhood system, the reconstruction
results are not very sensitive to -y, so we can use the same parameter for different targets at a certain noise level.

4. 3D EXPERIMENTAL DATA VALIDATION

To test the effectiveness of our inversion algorithms in even more challenging 3D real data, we select 3D targets:
Two Spheres, Two Cubes and Cube of Spheres from the Fresnel database with antenna configuration described by
Geffrin and Sabouroux.!! These carefully measured experimental data have been inverted with various methods
by several authors.!? In our experiments, for each target, Multiplicative Smoothing (MS)? and Huber estimation
are employed in independent reconstructions and the results are compared. In our experiments, BICGSTAB-
FFT (biconjugate gradient stabilized method-Fast Fourier Transform) forward solver is used to accelerate the
calculations.

The reconstructions with each of the analyzed methods were run on a six-core Intel i7 980x processor
(3.33GHz) with 24GByte memory (threads = 8). With full dataset, the reconstruction time is 3 hours. Us-
ing sparse data and the same hardware parameters, the reconstruction takes 30 minutes in 10 iterations or with
a stop criterion FL¥ = 1073,

All reconstructions start from the domain filled with air as an initial estimate of the permittivity. We use the
same discretization for both the forward and inverse grids. Only the real parts of the permittivities are shown,
since the imaginary parts are negligible. We used v = 0.008 for the Huber function and the regularization
parameter was set to u = 104, For MS, we used p = 1073, as was suggested by the authors.
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Figure 4. Real part of the complex permittivity and a 3D view (cut value = 1.6) of the surface for Two Cubes target.
Reconstructions (using 736 data) from the sparse antenna configuration at 8GHz with: (a) MS, (b) gx.

Two Spheres

This target consists of two dielectric spheres 50 mm in diameter with a permittivity of 2.6. One is centered at
the point (-0.025m, 0, 0) the other at (0.025m, 0, 0). We use 41 transmitters and 4 receivers, resulting in a data
vector €¢% of length N¢ = 243. The reconstruction domain in the inverse solver is discretized in 40 x 20 x 20
cube inverse problem cells (16000 permittivity unknowns) with a cell size of 4.0 mm. The reconstructions using
MS and Huber regularization are shown in Fig. 3. The reconstruction with MS Fig. 3 (a) oversmoothed the edges
as expected. With Huber regularization, see Fig. 3 (b), the shape of two spheres is well reconstructed and the
value is very close to the reference value which is 2.6 — j0. We can also notice better reconstructed 3D surface
with Huber regularization compared to MS.

Two Cubes

This target consists of two dielectric cubes with side 25mm and a permittivity of 2.3. One is centered at (0.0125m,
-0.0125m, 0.0375m) and the other at (-0.0125m, 0.0125m, 0.0625m). We subsampled the (8GHz) data by 41
transmitters and 12 receivers, yielding a data vector with dimension N%= 736. The reconstruction domain is
discretized in 25 x 25 x 25 cells with a cell size of 2.80 mm (0.075)¢), yielding a total of 15625 permittivity
unknowns. The reconstructions using MS and Huber regularization are shown in Fig. 4. The results of MS in
Fig. 4 (a) shows oversmoothed edges. With Huber regularization, see the result in Fig. 4 (b), the cubes are
reconstructed in the right locations but some parts of the edges are a bit eroded.

Cube of Spheres

This target is an aggregate of 27 dielectric spheres in a 3 x 3 x 3 cubic stacking with side 47.6 mm. Each sphere
has a diameter of 15.9 mm and a permittivity of 2.6. We subsampled the (8GHz) data by 41 transmitters and 12
receivers, yielding a data vector with dimension N¢ = 736. The reconstruction domain D is a 6cmx 6cmx 6.9
cm box, centered at the point (0, 0, 0.0145 m) and is discretized in 20 x 20 x 23 cells with cell size 3 mm, yielding



Real part of permittivity profile Real part of permittivity profile

2.5

&
S
=
==

0.02 0.02

N 0.01 N 0.01

0.02

-0.02

(a) MS (b) gn
Figure 5. Real part of the complex permittivity and a 3D view (cut value = 2.0) of the surface for Cube of Spheres target.
Reconstructions (using 736 data) from the sparse antenna configuration at 8GHz with: (a) MS, (b) gx.

a total of 9200 permittivity unknowns. Fig. 5 shows the results from the different methods. The reconstruction
with MS in Fig. 5 (a) eroded the objects in z direction. With Huber regularization (Fig. 5 (b)), the edges are
better reconstructed. The three spheres in z direction cannot be distinguished in both cases, and this is because
the receiving antennas were placed only in xy plane.

5. SUMMARY

The results on experimental data from the 3D Fresnel database motivate strongly the use of Huber regularization
in quantitative microwave tomography. The advantages over related regularization methods, that were demon-
strated previously on simulated data are now confirmed with real experimental data. Moreover, the analysis
of the influence of different parameters presented in this paper gives new insights in the behavior of the Huber
regularizer in quantitative microwave imaging and provides useful guidelines for its practical use in different
scenarios (e.g. different levels of measurement noise).

REFERENCES

[1] Zaeytijd, J. D. and Franchois, A., “Three-dimensional quantitative microwave imaging from measured data
with multiplicative smoothing and value picking regularization,” Inverse Probl. 25(2), 024004 (2009).

[2] De Zaeytijd, J., Franchois, A., and Geffrin, J., “A new value picking regularization strategy - application to
the 3-D electromagnetic inverse scattering problem,” IEEE Trans. Antennas Propag. 57, 1133 —1149 (Apr.
2009).

[3] Lobel, P., Pichot, C., Blanc-Feraud, L., and Barlaud, M., “Microwave imaging: Reconstructions from ex-
perimental data using conjugate gradient and enhancement by edge-preserving regularization,” Int. Journal
of Imaging Syst. and Technol. 8(4), 337-342 (1997).

[4] Abubakar, A. and Van Den Berg, P., “Total variation as a multiplicative constraint for solving inverse
problems,” IEEE Trans. Image Process. 10, 1384 —1392 (Sept. 2001).



[5]
[6]

Caorsi, S., Gragnani, G., Medicina, S., Pastorino, M., and Zunino, G., “Microwave imaging based on a
Markov random field model,” IEEE Trans. Antennas Propag. 42, 293-303 (Mar. 1994).

Bai, F., Pizurica, A., Van Loocke, S., Franchois, A., De Zutter, D., and Philips, W., “Quantitative mi-
crowave tomography from sparse measurements using a robust Huber regularizer,” in [IEEE Int. Conf.
Image Processing (ICIP)], 2073-2076 (2012).

Bai, F., Franchois, A., De Zaeytijd, J., and Pizurica, A., “Three-dimensional quantitative microwave imaging
of realistic numerical breast phantoms using Huber regularization,” in [85th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBS)], 5135-5138 (July 2013).

Belkebir, K. and Saillard, M., “Special section on testing inversion algorithms against experimental data:
inhomogeneous targets,” Inverse Problems 21(6), S1-S165 (2005).

Colton, D. and Kress, R., [Inverse Acoustic and Electromagnetic Scattering Theory], Springer (1992).

Li, S. Z., [Markov Random Field Modeling in Image Analysis], Springer (1995).

Geffrin, J. M. and Sabouroux, P., “Continuing with the Fresnel database: experimental setup and improve-
ments in 3D scattering measurements,” Inverse Probl. 25(2), 024001 (2009).

[12] Litman, A. and Crocco, L., “Testing inversion algorithms against experimental data: 3D targets,” Inverse

Probl. 25(2), 020201 (2009).



