ABSTRACT

We study an image denoising approach the core of which is a locally adaptive estimation of the probability that a given coefficient contains a significant noise-free component, which we call “signal of interest”. We motivate this approach within the minimum mean squared error criterion and develop and analyze different locally adaptive versions of this method for color and for multispectral images in remote sensing. For color images, we study two different approaches: (i) using a joint spatial/spectral activity indicator in the RGB color space and (ii) componentwise spatially adaptive denoising in a luminance-chrominance space. We demonstrate and discuss the advantages of both of these approaches in different scenarios. We also compare the analyzed method to other recent wavelet domain denoisers for multiband data both on color and on multispectral images.

Keywords: Wavelets, Bayesian estimation, color, multispectral images.

1. INTRODUCTION

Current trends in image denoising demonstrate that the limits of achievable image quality are still growing, mainly due to the use of multiresolution discontinuity adaptive representations, such as wavelets [1–8], and their successors, like steerable pyramids [9], contourlets [10], curvelets [11,12], bandelets [13], ... Another interesting research track is development of hardware-friendly denoising methods that achieve high denoising quality, but with a complexity that is suitable for implementations in field programmable gate arrays (FPGA) [14].

Evolution of imaging technology brings an increased use of multivalued or multi-band images in different application areas. Classical examples are color images. In medical applications, multivalued magnetic resonance images (MRI) are often acquired using different imaging parameters (e.g., different proton density or diffusion, different modes: T1 or T2, ...) Other medical imaging examples include different computer tomography (CT) and nuclear medicine modalities. In remote sensing, the use of multispectral and hyperspectral imagery has proved advantageous for processing tasks such as classification, object recognition and content analysis. For such tasks, image denoising is often a crucial preprocessing step. Compared to greyscale image denoising, much less research has been done on multiresolution denoising of multiband images. Several recent representatives include multiband wavelet thresholding methods [15,16] and vector-based least square estimators [17,18].

In this paper we develop a Bayesian wavelet domain image denoising method, which adapts itself to the local spatial and spectral image context. We motivate the proposed estimator by the minimum mean squared error criterion (MMSE) and we take into account uncertainty about the presence of a signal of interest in a noisy observation. This work builds on our recent denoising approach [19], by extending it within the MMSE criterion and by developing it further for multivalued images. In particular, we develop a color image denoising method in the luminance-chrominance space and we show its advantage over the previous RGB-version of the method from [19]. We also give a more elaborate analysis of remote multispectral denoising in remote sensing, where we compare the proposed method with the latest representative multiresolution methods from the literature.
The paper is organized as follows. Section 2 describes so-called ProbShrink estimator of [19], where we first introduce the assumed noise model and notations (Sec. 2.1) and then we present the prior used (Sec. 2.2) and the three versions of the estimator: subband-adaptive (Sec. 2.3), spatially-adaptive (Sec. 2.4) and spatially-spectrally adaptive estimator (Sec. 2.5). In Section 3, we give a theoretical motivation for this estimator in terms of the minimum mean squared error criterion. Section 4 addresses multispectral image denoising in remote sensing, where we analyze the application of the proposed method to Landsat satellite images. Section 5 is devoted to color image denoising, where we analyze two versions of the proposed method: applied in the RGB space (Sec. 5.1) and applied in a luminance-chrominance space (Sec. 5.2). Section 6 concludes the paper.

2. A SHRINKAGE ESTIMATOR BASED ON THE PROBABILITY OF SIGNAL PRESENCE

2.1. Noise model and notation

We assume the input multi-band image is contaminated with additive white Gaussian noise. Let \(b_{l,s}^b \) denote the noise-free value of the coefficient from the image band \(b \), the wavelet subband \(s \) and the spatial position \(l \). The corresponding noisy coefficient value is

\[
y_{l,s}^b = b_{l,s}^b + e_{l,s}^b
\]

where \(e_{l,s}^b \) are normal random variables \(e_{l,s}^b \sim N(0, \sigma^2) \). For the sake of compactness, in the remainder we suppress the indices of the wavelet coefficients unless in cases where they are explicitly needed.

The probability density function of the noise-free wavelet coefficients in each wavelet subband is well modelled by the generalized Laplacian (also called generalized Gaussian) density \([20,21]\)

\[
f(\beta) = \frac{\lambda \nu}{2 \Gamma(\frac{1}{2})} \exp(-\lambda |\beta|^\nu)
\]

where \(\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \) is the Gamma function, \(\lambda > 0 \) is the scale parameter and \(\nu \) is the shape parameter (typically in the range \(\nu \in [0,1] \)). The parameters \(\lambda \) and \(\nu \) are reliably estimated from the noisy coefficient histogram according to the method in [21]. In particular, the variance \(\sigma_y^2 \) and the fourth moment \(m_{4,y} \) of the generalized Laplacian signal corrupted by additive white Gaussian noise with standard deviation \(\sigma \) are [21]

\[
\sigma_y^2 = \sigma^2 + \frac{\Gamma(\frac{3}{\nu})}{\lambda^2 \Gamma(\frac{1}{\nu})}, \quad m_{4,y} = 3\sigma^4 + \frac{6\sigma^2 \Gamma(\frac{3}{\nu})}{\lambda^2 \Gamma(\frac{1}{\nu})} + \frac{\Gamma(\frac{5}{\nu})}{\lambda^4 \Gamma(\frac{1}{\nu})}
\]

From the above equations, we find

\[
k_y = \frac{\Gamma(\frac{1}{\nu}) \Gamma(\frac{3}{\nu})}{\Gamma^2(\frac{1}{\nu})} = \frac{m_{4,y} + 3\sigma^4 - 6\sigma^2 \sigma_y^2}{(\sigma_y^2 - \sigma^2)^2}
\]

and

\[
\lambda = \left((\sigma_y^2 - \sigma^2) \frac{\Gamma(\frac{1}{\nu})}{\Gamma(\frac{3}{\nu})} \right)^{-\frac{1}{\nu}}
\]

The expression \(\Gamma(\frac{1}{\nu}) \Gamma(\frac{3}{\nu})/\Gamma^2(\frac{1}{\nu}) \) in the left hand side of (4) is a monotonic decreasing function of \(\nu \), which simplifies the numerical computation.

A special case of the prior (2) with \(\nu = 1 \) also called Laplacian or double exponential: \(f(\beta) = (\lambda/2) \exp(-\lambda |\beta|) \) is often used for simplicity and because it usually does not incur a significant performance loss in denoising and compression [22]. The scale parameter is in this case simply estimated as \(\lambda = [0.5(\sigma_y^2 - \sigma^2)]^{-1/2} \). We assume the input noise standard deviation \(\sigma \) in each image channel is known; otherwise it is reliably estimated by the median absolute deviation of the coefficients in the highest frequency subband, divided by 0.6745 [23].
2.2. A Bernoulli-Laplacian mixture prior

Our assumed prior on noise-free coefficients belongs to a class of mixture priors that are superpositions of two distributions, where one distribution models the statistics of “significant” (“high energy”) coefficients and the other one models the statistics of “non-significant” coefficients. The mixing parameter is a Bernoulli random variable. Related priors are, e.g., mixtures of two Gaussians [24], a mixture of a Gaussian and point mass at zero [18, 25–27] and mixtures of a Laplacian and point mass at zero [22, 28]. Denoting the hypothesis “signal component appears in the observed coefficient with significant energy” by \(H_1 \) and the opposite hypothesis by \(H_0 \), unifies this class of mixture priors as

\[
f(\beta) = P(H_0) f(\beta|H_0) + P(H_1) f(\beta|H_1).
\]

In [19], a subband-adaptive estimator applies a unique shrinkage function to all the coefficients of a given subband. For the generalized Laplacian prior, for the assumed noise model, with \(\text{ProbShrink} \), to MMSE estimator under the normal mixture prior [24].

We define \(LSAI \) as averaged coefficient magnitude within a small window \(\partial(l) \) of size \(N: z_l = (1/N) \sum_{k \in \partial(l)} \omega_k \), with \(\omega_l = |y_l| \), and simplify that all the coefficients within this small window are equally distributed and conditionally independent given \(H_0 \) or \(H_1 \). In this case, \(f(Nz_l|H_0,1) \) equals \(N \) convolutions of \(f(\omega_l|H_0,1) \) with itself, where \(f(\omega_l|H_0,1) = 2f(\omega_l|H_0,1) \) for \(\omega_l \geq 0 \) and \(f(\omega_l|H_0,1) = 0 \) for \(\omega_l < 0 \). For window sizes 5×5 or 7×7, this estimator outperforms the subband-adaptive version (10) by up to 1dB in peak signal to noise ratio (PSNR) [19]. Visual improvement is significant: flat areas are better smoothed and sharpness is improved. In the remainder, we denote this spatially adaptive denoiser as \(\text{ProbShrink-SP} \).
2.5. Spatially and spectrally adaptive estimator

For multiband images, a combined spatial and spectral version of LSAI from [19] is

$$z^b_{l,s} = \frac{1}{NB} \sum_{i=1}^{B} \sum_{k \in \delta(l)} \omega_{k,s}$$

where B is the number of image bands. With this definition of LSAI the probability of signal presence is conditioned on the spatial context as well as on information from other image bands. Hence, denoising is performed band-per-band, but taking into account the inter-band correlations. In [19], the neighborhood $\delta(l)$ was reduced to a single pixel, i.e., LSAI included only the coefficients at the same spatial position from different image bands. Its conditional densities were estimated by convolving the corresponding densities of the coefficient magnitudes. It was shown experimentally that this method outperforms multiband wavelet thresholding [16] on multispectral Landsat and on color images. In the remainder, we denote this Multi-Band (MB) denoiser as ProbShrink-MB.

3. MOTIVATION IN TERMS OF THE MMSE CRITERION

The minimum mean squared error estimate under the mixture prior (6) is

$$E(\beta|y) = E(\beta|y, H_0)P(H_0|y) + E(\beta|y, H_1)P(H_1|y).$$

The subband-adaptive ProbShrink estimator (10) is an approximation of the MMSE estimate above, where $E(\beta|y, H_1)$ is approximated by one and $E(\beta|y, H_0)P(H_0|y)$ is approximated by zero. If we use the exact expressions for $E(\beta|y, H_0)$ and $E(\beta|y, H_1)$ instead, we can directly upgrade this estimator within the MMSE error criterion. Similarly, for the spatially/spectrally adaptive case, the corresponding MMSE estimator is

$$E(\beta|y, z_l) = E(\beta|y, H_0)P(H_0|y, z_l) + E(\beta|y, H_1)P(H_1|y, z_l).$$

which extends the ProbShrink estimator from Sec. 2.3 and Sec. 2.4 Sec. 2.5 within the MMSE criterion. The conditional means are found as

$$E(\beta|y, H_0) = \int_{-\infty}^{\infty} \beta f(\beta|y, H_0) d\beta$$

$$E(\beta|y, H_1) = \int_{-\infty}^{\infty} \beta f(\beta|y, H_1) d\beta$$

with $f(\beta|y, H_0)$ and $f(\beta|y, H_1)$ given in (8) and (9), respectively. In practical computations, numerical integration should be employed, while for the Laplacian prior (with $\nu = 1$) analytical expressions also exist [33]. As we demonstrate next, the performance loss of the ProbShrink estimator with respect to the full MMSE estimator is usually negligible in practice.

Table 1 lists experimental PSNR results for several shrinkers under two mixture priors: the analyzed Bernoulli-Laplacian (B-L) prior and the two-normals mixture of [24], that we denote here as Bernoulli-Gaussian (B-G): $f(\beta) = P(H_1)\phi(\beta; \sigma_1) + P(H_0)\phi(\beta; \sigma_2)$. A standard wavelet denoising procedure was applied: the noisy images were decomposed using a five-level orthogonal wavelet transform with the Daubechies’ wavelet symmlet with eight vanishing moments [1]. In each wavelet subband the noise-free wavelet coefficients were estimated using the corresponding shrinkers for each of the analyzed methods. The inverse wavelet transform was applied to reconstruct the denoised image. The parameters of both priors were calculated adaptively for each subband. For the B-L prior we used $T = \sigma$ and for the B-G prior, we used the default choices of the hyperparameters from [24].

Several conclusions can be drawn from the results in Table 1. In most cases, ProbShrink yields a minor decrease in PSNR compared to the MMSE estimator under the same, Bernoulli-Laplacian prior. The MAP estimator under the B-L prior yields slightly higher performance loss (up to 0.3dB) with respect to the corresponding MMSE estimate. The results also demonstrate that the analyzed Bernoulli-Laplacian prior yields a significant improvement in PSNR with respect to the two-normals mixture, which is in most cases higher than 1dB.
Table 1. Experimental PSNR[dB] results of several subband-adaptive Bayesian wavelet shrinkers and two different mixture priors: Bernoulli-Laplacian (B-L) and Bernoulli-Gaussian (B-G) prior from [24]. Wavelet transform: orthogonal with five decomposition levels and using Daubechies’ least asymmetrical wavelet with eight vanishing moments.

<table>
<thead>
<tr>
<th>Prior</th>
<th>Estimator</th>
<th>Standard deviation of noise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>BOAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>noisy image</td>
<td>28.15</td>
</tr>
<tr>
<td>B-L</td>
<td>MAP</td>
<td>32.00</td>
</tr>
<tr>
<td>B-L</td>
<td>ProbShrink</td>
<td>32.13</td>
</tr>
<tr>
<td>B-L</td>
<td>MMSE</td>
<td>32.23</td>
</tr>
<tr>
<td>B-G [24]</td>
<td>MMSE</td>
<td>31.01</td>
</tr>
<tr>
<td>COUPLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>noisy image</td>
<td>28.15</td>
</tr>
<tr>
<td>B-L</td>
<td>MAP</td>
<td>31.65</td>
</tr>
<tr>
<td>B-L</td>
<td>ProbShrink</td>
<td>31.73</td>
</tr>
<tr>
<td>B-L</td>
<td>MMSE</td>
<td>31.81</td>
</tr>
<tr>
<td>B-G [24]</td>
<td>MMSE</td>
<td>30.48</td>
</tr>
<tr>
<td>LENA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>noisy image</td>
<td>28.13</td>
</tr>
<tr>
<td>B-L</td>
<td>MAP</td>
<td>33.43</td>
</tr>
<tr>
<td>B-L</td>
<td>ProbShrink</td>
<td>33.69</td>
</tr>
<tr>
<td>B-L</td>
<td>MMSE</td>
<td>33.62</td>
</tr>
<tr>
<td>B-G [24]</td>
<td>MMSE</td>
<td>32.84</td>
</tr>
</tbody>
</table>

4. MULTISPECTRAL IMAGE DENOISING IN REMOTE SENSING

In the satellite systems it may be desirable to perform denoising before the image compression step in order to improve the compression efficiency. Also deconvolution of satellite images is often useful and can be performed as an inverse filtering operation followed by denoising [34]. There are several noise sources in optical satellite images (photonic noise, electronic noise, quantization errors...) and the additive Gaussian noise model is a realistic approximation [16, 35, 36]. We test the performance of the proposed ProbShrink-MB method on two different multispectral images shown in Fig. 1.

Figure 1. Noise-free test images. Left: multispectral image MULSC1. Right: multispectral image MULSC2.
The left-hand multispectral image in Fig. 1 is a Thematic Mapper image from the Huntsville area, Alabama, USA. It contains a river and builtup area with several roads. The right-hand test image contains a builtup stroke following a river. In both of these images some bands are mutually highly correlated (e.g., bands 1, 2 and 3), while other bands (like band 4) show significantly less correlation with the remaining ones. For our denoising experiments, we added artificial white Gaussian noise to the reference images from Fig. 1, using three different standard deviations of noise: 15, 25 and 35.

Let \(\mathbf{u} = [u^1 \ldots u^B] \) denote the reference noise-free multiband image, where each image band is presented as a one-dimensional vector \(u^b = [u^b_1 \ldots u^b_L] \) obtained according to raster scanning. Also, let \(\mathbf{g} = \mathbf{u} + \mathbf{n} \) denote the noisy multi-band image, where \(\mathbf{n} \) is added white Gaussian noise, and let \(\mathbf{\hat{u}} \) denote the estimated noise-free image (i.e., the image denoised by wavelet shrinkage). As a quantitative performance measure we use the peak signal to noise ratio defined as \(PSNR = 10 \log_{10}(255^2/MSE) \) where the mean squared error MSE is averaged over all the spectral channels. The input and the output PSNR are thus calculated respectively as

\[
PSNR_{\text{input}} = 10 \log_{10} \frac{255^2}{\frac{1}{L^B} \sum_{l=1}^{L} \sum_{b=1}^{B} (g^b_l - u^b_l)^2}.
\]

\[
PSNR_{\text{res}} = 10 \log_{10} \frac{255^2}{\frac{1}{L^B} \sum_{l=1}^{L} \sum_{b=1}^{B} (\hat{u}^b_l - u^b_l)^2}.
\]

As reference methods we use multiband wavelet thresholding (MBT) [16], and a vector based wavelet domain MMSE estimator [17]. All the methods were implemented using the same non-decimated wavelet transform with four decomposition levels and with the Daubechies’ wavelet of length four. Table 2 lists peak signal to noise ratio (PSNR) values for the two complete multispectral images from Fig. 1, and Fig. 2 displays the PSNR values calculated over two separate spectral bands. In both cases, the results demonstrate that \textit{ProbShrink-MB} outperforms the two reference ones in terms of PSNR. For some image bands the PSNR gain of the proposed method exceeds 2dB (see Fig. 2). Pictures in Fig. 3 demonstrate also advantage of the proposed method in terms of visual quality. In comparison to multiband thresholding [16], \textit{ProbShrink-MB} preserves better image details and fine structures, while better suppressing noise in flat areas than the vector based MMSE method of [17].

We also analyzed PSNR gains per band. The input and the resulting PSNR in a given image band \(b \), are

\[
PSNR_{\text{input}}^b = 10 \log_{10} \frac{255^2}{\frac{1}{L} \sum_{l=1}^{L} (g^b_l - u^b_l)^2},
\]

\[
PSNR_{\text{res}}^b = 10 \log_{10} \frac{255^2}{\frac{1}{L} \sum_{l=1}^{L} (\hat{u}^b_l - u^b_l)^2}.
\]
Figure 3. (a) Noisy detail of the 4th band of image MULSC1, standard deviation 15. (b) The result of the MBT method [16]. (c) The result of the VMMSE method [17]. (d) The result of the proposed ProbShrink-MB method.

Table 2. PSNR[dB] results for two multispectral images in comparison to multiband wavelet thresholding (MBT) [16] and a wavelet domain vector MMSE estimator (VMMSE) [17].

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Standard deviation of noise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td>image MULSC1</td>
<td></td>
</tr>
<tr>
<td>MBT [16]</td>
<td>26.63</td>
</tr>
<tr>
<td>VMMSE [17]</td>
<td>26.78</td>
</tr>
<tr>
<td>ProbShrink-MB</td>
<td>27.42</td>
</tr>
<tr>
<td>image MULSC2</td>
<td></td>
</tr>
<tr>
<td>MBT [16]</td>
<td>28.51</td>
</tr>
<tr>
<td>ProbShrink-MB</td>
<td>29.24</td>
</tr>
</tbody>
</table>

respectively. Denoising yields in each band a PSNR gain

\[G_{\text{PSNR}}^b = \text{PSNR}_{\text{res}}^b - \text{PSNR}_{\text{input}}^b \]

and the PSNR gain summed over all the bands is

\[G_{\text{PSNR}} = \sum_{b=1}^{M} G_{\text{PSNR}}^b. \]

Compared to the single-band spatially adaptive version of the same method, the multi-band ProbShrink-MB method achieves an improved performance on all image bands (see Table 3). Table 3 also shows that in comparison with the MBT method of [16] the new method yields a larger total PSNR gain on both multispectral images and for all noise levels. The improvement of the new method wrt. MBT is the biggest in case of weakly- to moderately correlated bands (like band 4 from the two tested multi-band images). This behavior is expected because the MBT method of [16] applies the same modification to the corresponding wavelet coefficients from all image bands and is thus powerful in case of highly correlated bands, but is less efficient in case of discontinuities which are not present in the majority of bands. This is nicely demonstrated by visual results in Fig. 4: for the band 1 from MULSC1 image the two methods yield visually similar results. However, in the band 4 from MULSC2 (the bottom part of Fig. 4) the MBT method destroys a river line (because it is not well visible in other bands) while the new method preserves it well.

The new multi-band denoising method performs well both in case of the highly correlated and in case of weakly correlated bands, because it takes into account both the inter-band correlation and the local statistics of different image bands. The visual results in Fig. 5 also show that the proposed method preserves well details and image texture.
Figure 4. Left to right: parts of noise-free bands, noisy versions $\sigma = 15$, results of MBT [16] and the new method ProbShrink-MB. Top: band 1 of MULSC1. Bottom: band 4 of MULSC2. Note the river line in the bottom case.

Table 3. PSNR[dB] gain summed over all image bands.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>15</th>
<th>25</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBT [16]</td>
<td>13.39</td>
<td>25.93</td>
<td>34.89</td>
</tr>
<tr>
<td>ProbShrink-SP</td>
<td>14.33</td>
<td>24.98</td>
<td>33.33</td>
</tr>
<tr>
<td>ProbShrink-MB</td>
<td>16.79</td>
<td>27.53</td>
<td>35.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimator</th>
<th>MULSC2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MBT [16]</td>
<td>24.01</td>
<td>-38.63</td>
<td>47.35</td>
</tr>
<tr>
<td>ProbShrink-SP</td>
<td>24.10</td>
<td>-36.66</td>
<td>45.87</td>
</tr>
<tr>
<td>ProbShrink-MB</td>
<td>26.73</td>
<td>39.25</td>
<td>48.09</td>
</tr>
</tbody>
</table>

5. COLOR IMAGE DENOISING

One approach to color image denoising is using RGB color space and applying the same approach as discussed in the previous Section. In this Section, we show that such an approach is powerful in case where noise level is equal in all three color channels but is less suitable in case where noise statistics varies from channel to channel. In the latter case better results are achieved by using a luminance-chrominance color space.

5.1. Denoising in the RGB color space

The multiband denoising method from Sec. 2.5 that we named ProbShrink-MB assumes uncorrelated noise of equal variance in all image channels. Table 4 compares the performance of this method to two reference wavelet based multiband denoisers and to two other versions of the proposed denoising method. The reference methods are multiband wavelet thresholding (MBT) [16] and vector based minimum mean squared error estimator (VMMSE) [17]. Two other versions of the proposed denoiser listed in Table 4 are: ProbShrink-SP - spatially...
adaptive method from Section 2.4 applied to each of the RGB channels separately and ProbShrink-SP-YUV the same spatially adaptive method but applied in a luminance-chrominance space, as detailed in the next Section. We implemented all the methods with a non-decimated wavelet transform, with four decomposition levels and with the Daubechies’ wavelet of length four.

The results in Table 4 demonstrate that for uncorrelated noise of equal variance in each channel the proposed approach yields best performance when applied with the local spatial/spectral activity indicator from Section 2.5 in the RGB space. This version of the method, ProbShrink-MB, outperforms separate spatially adaptive channel denoising both in the RGB space (ProbShrink-SP) and in the luminance-chrominance space ProbShrink-SP-YUV. The proposed method compares favorably to the reference ones [16, 17]. On a very textured image Baboon, the vector based VMMSE method [17] yielded slightly better PSNR then ProbShrink-MB, but for other test images ProbShrink-MB yields an improvement of up to almost 2dB, which increases with the increase of noise level. The same behavior was noted on Landsat multispectral images in Section 4 (see Fig. 2).

5.2. Denoising in the luminance-chrominance space

Television broadcasting uses color spaces in terms of one luminance and two chrominance components. A standard PAL broadcasting system defines YUV model, where Y stands for the luminance component (the brightness) and U and V are the chrominance (color) components. YUV signals are created from an original RGB (red, green and blue) source. The weighted values of R, G and B are added together to produce a single Y signal, representing the overall brightness, or luminance, of that spot: $Y = 0.299R + 0.587G + 0.114B$. Two chrominance signals are formed as: $U = 0.492(B - Y) = -0.147R - 0.289G + 0.436B$, and $V = 0.877(R - Y) = 0.615R - 0.515G - 0.100B$. In a matrix form

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$ \quad (22)

and the inverse is

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.140 \\ 1 & -0.396 & -0.581 \\ 1 & -2.029 & 0 \end{bmatrix} \begin{bmatrix} Y \\ U \\ V \end{bmatrix}.$$ \quad (23)
Table 4. PSNR[dB] results for color 512x512 images with equal noise levels in RGB channels. ProbShrink – MB (multiband denoising) and ProbShrink – SP (componentwise denoising using the spatially adaptive single band estimator) are implemented in the RGB space and ProbShrink – SP – YUV in a luminance-chrominance space. All the methods are implemented using a non-decimated wavelet transform with four decomposition levels and Daubechies’ wavelet of length four.

<table>
<thead>
<tr>
<th>Method</th>
<th>Standard deviation of noise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>BABOON</td>
<td></td>
</tr>
<tr>
<td>MBT [16]</td>
<td>28.50</td>
</tr>
<tr>
<td>ProbShrink-MB</td>
<td>30.17</td>
</tr>
<tr>
<td>ProbShrink-SP</td>
<td>29.80</td>
</tr>
<tr>
<td>ProbShrink-SP-YUV</td>
<td>28.17</td>
</tr>
<tr>
<td>LENA</td>
<td></td>
</tr>
<tr>
<td>MBT [16]</td>
<td>33.84</td>
</tr>
<tr>
<td>VMMSE [17]</td>
<td>34.02</td>
</tr>
<tr>
<td>ProbShrink-MB</td>
<td>34.00</td>
</tr>
<tr>
<td>ProbShrink-SP</td>
<td>34.19</td>
</tr>
<tr>
<td>ProbShrink-SP-YUV</td>
<td>34.21</td>
</tr>
<tr>
<td>PEPPERS</td>
<td></td>
</tr>
<tr>
<td>MBT [16]</td>
<td>31.19</td>
</tr>
<tr>
<td>ProbShrink-MB</td>
<td>33.44</td>
</tr>
<tr>
<td>ProbShrink-SP</td>
<td>33.20</td>
</tr>
<tr>
<td>ProbShrink-SP-YUV</td>
<td>32.56</td>
</tr>
</tbody>
</table>

Table 5. PSNR[dB] results for images with nonequal noise level in R, G and B channels: $\sigma_R = 10$, $\sigma_G = 20$ and $\sigma_B = 35$ for three versions of the proposed method from Table 4.

<table>
<thead>
<tr>
<th>Method</th>
<th>Input</th>
<th>Input</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABOON</td>
<td>20.54</td>
<td>20.54</td>
<td>19.18</td>
</tr>
<tr>
<td>ProbShrink-MB</td>
<td>23.73</td>
<td>30.32</td>
<td>28.17</td>
</tr>
<tr>
<td>ProbShrink-SP</td>
<td>24.85</td>
<td>30.98</td>
<td>29.66</td>
</tr>
<tr>
<td>ProbShrink-SP-YUV</td>
<td>25.47</td>
<td>31.76</td>
<td>29.53</td>
</tr>
</tbody>
</table>

We investigate componentwise denoising in the YUV space by applying the spatially adaptive method from Sec. 2.4 to each channel separately, and we denote this method as ProbShrink-SP-YUV. The results in Table 4 demonstrate that for uncorrelated noise of equal variance in each of the RGB channels, this approach is inferior to multiband denoising in the RGB space. This is also confirmed by the visual results in Fig. 6. However, as we show next, the performance comparison is different in case when noise variances in R, G and B channels are not equal to each other.
Figure 6. (a) A part of the noise-free image *Peppers*. (b) Image with additive white Gaussian noise $\sigma_R = \sigma_G = \sigma_B = 25$. (c) MBT method [16] (PSNR=28.77dB). (d) VMMSE method [17] (PSNR=28.45dB). (e) ProbShrink-MB method (PSNR=30.35dB). (f) ProbShrink-SP-YUV method (PSNR=29.40dB).
Now we experiment with nonequal noise variance in R, G and B channels. In particular, we form noisy images by adding white Gaussian noise with standard deviations $\sigma_R = 10$, $\sigma_G = 20$ and $\sigma_B = 35$ to R, G and B channels, respectively. Table 5 lists the performance of three methods: a multiband spectrally adaptive denoiser in the RGB space (ProbShrink-MB), componentwise spatially adaptive denoising in the RGB space (ProbShrink-SP) and componentwise spatially adaptive denoising in the YUV space (ProbShrink-SP-YUV). Table 5 shows that for nonequal noise levels, ProbShrink-MB shows the worst performance among the three methods. On one out
of three tested images componentwise denoising in the RGB space yielded slightly better results compared to
denoising in the YUV space, but for other two images YUV space offered a significant improvement over the
RGB space for denoising. A poor performance of the ProbShrink-MB method in this case can be explained by
the fact that the information from “bad” (noisier) channels is used to denoise the less noisy ones. Hence, in
case of different noise levels in different channels a direct application of ProbShrink-MB is not suitable, but a
smarter extension is sought, where for example spectral information from less noisy channels is used to denoise
the noisier ones, but not viceversa. A simpler alternative is spatially adaptive componentwise denoising in a
luminance chrominance space, as demonstrated in this Section. This approach performs well both in terms of
PSNR and visually, as demonstrated in Fig. 7.

6. CONCLUSION
We analyzed a Bayesian wavelet domain denoising method for single- and for multiband images, which adapts
itself to the probability of the presence of a signal of interest at each position. In particular, we motivated
the approach of [19] within the minimum mean squared error criterion and we developed further and analyzed
different variants of this estimator for spatially and spectrally adaptive denoising of multispectral and color
images. Our results demonstrated that for color images with unequal noise in RGB channels the use of the color
space transformation is crucial. In this case, the analyzed approach should be implemented in a luminance-
chrominance space to achieve the best denoising results.

REFERENCES
3. M. Malfait and D. Roose, “Wavelet-based image denoising using a Markov random field a priori model,”
8. A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, “A versatile wavelet domain noise filtration technique
10. E. J. Candès and D. L. Donoho, “Curvelets - a surprisingly effective nonadaptive representation for objects
 with edges,” in Curves and Surfaces, e. a. L. L. Schumaker, ed., Vanderbilt University Press,Nashville, TN.,
 1999.
14. M. Katona, A. Pizurica, N. Teslić, V. Kovačević, and W. Philips, “FPGA design and implementation of a
15. A. Fletcher, V. Goyal, and K. Ramchardan, “On multivariate estimation by thresholding,” in Proc. of the

