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ABSTRACT

We study an image denoising approach the core of which is a locally adaptive estimation of the probability that a
given coefficient contains a significant noise-free component, which we call “signal of interest”. We motivate this
approach within the minimum mean squared error criterion and develop and analyze different locally adaptive
versions of this method for color and for multispectral images in remote sensing. For color images, we study
two different approaches: (i) using a joint spatial/spectral activity indicator in the RGB color space and (ii)
componentwise spatially adaptive denoising in a luminance-chrominance space. We demonstrate and discuss the
advantages of both of these approaches in different scenarios. We also compare the analyzed method to other
recent wavelet domain denoisers for multiband data both on color and on multispectral images.

Keywords: Wavelets, Bayesian estimation, color, multispectral images.

1. INTRODUCTION

Current trends in image denoising demonstrate that the limits of achievable image quality are still growing,
mainly due to the use of multiresolution discontinuity adaptive representations, such as wavelets [1–8], and their
successors, like steerable pyramids [9], contourlets [10], curvelets [11, 12], bandelets [13], ... Another interesting
research track is development of hardware-friendly denoising methods that achieve high denoising quality, but
with a complexity that is suitable for implementations in field programmable gate arrays (FPGA) [14].

Evolution of imaging technology brings an increased use of multivalued or multi-band images in different
application areas. Classical examples are color images. In medical applications, multivalued magnetic resonance
images (MRI) are often acquired using different imaging parameters (e.g., different proton density or diffusion,
different modes: T1 or T2, ...) Other medical imaging examples include different computer tomography (CT)
and nuclear medicine modalities. In remote sensing, the use of multispectral and hyperspectral imagery has
proved advantageous for processing tasks such as classification, object recognition and content analysis. For such
tasks, image denoising is often a crucial preprocessing step. Compared to greyscale image denoising, much less
research has been done on multiresolution denoising of multiband images. Several recent representatives include
multiband wavelet thresholding methods [15,16] and vector-based least square estimators [17,18].

In this paper we develop a Bayesian wavelet domain image denoising method, which adapts itself to the local
spatial and spectral image context. We motivate the proposed estimator by the minimum mean squared error
criterion (MMSE) and we take into account uncertainty about the presence of a signal of interest in a noisy
observation. This work builds on our recent denoising approach [19], by extending it within the MMSE criterion
and by developing it further for multivalued images. In particular, we develop a color image denoising method
in the luminance-chrominance space and we show its advantage over the previous RGB-version of the method
from [19]. We also give a more elaborate analysis of remote multispectral denoising in remote sensing, where we
compare the proposed method with the latest representative multiresolution methods from the literature.
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tific research in Flanders), Belgium.



The paper is organized as follows. Section 2 describes so-called ProbShrink estimator of [19], where we first
introduce the assumed noise model and notations (Sec. 2.1) and then we present the prior used (Sec. 2.2) and the
three versions of the estimator: subband-adaptive (Sec. 2.3), spatially-adaptive (Sec. 2.4) and spatially-spectrally
adaptive estimator (Sec. 2.5). In Section 3, we give a theoretical motivation for this estimator in terms of the
minimum mean squared error criterion. Section 4 addresses multispectral image denoising in remote sensing,
where we analyze the application of the proposed method to Landsat satellite images. Section 5 is devoted
to color image denoising, where we analyze two versions of the proposed method: applied in the RGB space
(Sec. 5.1) and applied in a luminance-chrominance space (Sec. 5.2). Section 6 concludes the paper.

2. A SHRINKAGE ESTIMATOR BASED ON THE PROBABILITY OF SIGNAL
PRESENCE

2.1. Noise model and notation

We assume the input multi-band image is contaminated with additive white Gaussian noise. Let βb
l,s denote the

noise-free value of the coefficient from the image band b, the wavelet subband s and the spatial position l. The
corresponding noisy coefficient value is

yb
l,s = βb

l,s + εb
l,s (1)

where εb
s,l are normal random variables εb

s,l ∼ N(0, σ2). For the sake of compactness, in the remainder we
suppress the indices of the wavelet coefficients unless in cases where they are explicitly needed.

The probability density function of the noise-free wavelet coefficients in each wavelet subband is well modelled
by the generalized Laplacian (also called generalized Gaussian) density [20,21]

f(β) =
λν

2Γ( 1
ν )

exp(−λ|β|ν) (2)

where Γ(x) =
∫

∞

0
tx−1e−tdt is the Gamma function, λ > 0 is the scale parameter and ν is the shape parameter

(typically in the range ν ∈ [0, 1]). The parameters λ and ν are reliably estimated from the noisy coefficient
histogram according to the method in [21]. In particular, the variance σ2

y and the fourth moment m4,y of the
generalized Laplacian signal corrupted by additive white Gaussian noise with standard deviation σ are [21]

σ2
y = σ2 +

Γ( 3
ν )

λ2Γ( 1
ν )

, m4,y = 3σ4 +
6σ2Γ( 3

ν )

λ2Γ( 1
ν )

+
Γ( 5

ν )

λ4Γ( 1
ν )

(3)

From the above equations, we find

κy =
Γ( 1

ν )Γ( 5
ν )

Γ2( 3
ν )

=
m4,y + 3σ4 − 6σ2σ2

y

(σ2
y − σ2)2

(4)

and

λ =
(

(σ2
y − σ2)

Γ( 1
ν )

Γ( 3
ν )

)−
1

2

. (5)

The expression Γ( 1
ν )Γ( 5

ν )/Γ2( 3
ν ) in the left hand side of (4) is a monotonic decreasing function of ν, which

simplifies the numerical computation.

A special case of the prior (2) with ν = 1 also called Laplacian or double exponential : f(β) = (λ/2) exp(−λ|β|)
is often used for simplicity and because it usually does not incur a significant performance loss in denoising and
compression [22]. The scale parameter is in this case simply estimated as λ = [0.5(σ2

y − σ2)]−1/2. We assume
the input noise standard deviation σ in each image channel is known; otherwise it is reliably estimated by the
median absolute deviation of the coefficients in the highest frequancy subband, divided by 0.6745 [23].



2.2. A Bernoulli-Laplacian mixture prior

Our assumed prior on noise-free coefficients belongs to a class of mixture priors that are superpositions of two
distributions, where one distribution models the statistics of “significant” (“high energy”) coefficients and the
other one models the statistics of “non-significant” coefficients. The mixing parameter is a Bernoulli random
variable. Related priors are, e.g., mixtures of two Gaussians [24], a mixture of a Gaussian and point mass at
zero [18, 25–27] and mixtures of a Laplacian and point mass at zero [22, 28]. Denoting the hypothesis “signal
component appears in the observed coefficient with significant energy” by H1 and the opposite hypothesis by
H0, unifies this class of mixture priors as

f(β) = P (H0)f(β|H0) + P (H1)f(β|H1). (6)

Our prior, which also appears in [19, 29, 30], is a mixture of two truncated (generalized) Laplacians. In
particular, we start from the genealized Laplacian model f(β) from (1) and we define

H0 : |β| ≤ T and H1 : |β| > T (7)

where T is a threshold which defines the signal of interest. This model yields

f(β|H0) =

{

B0 exp(−λ|β|ν), if |β| ≤ T
0, if |β| > T

(8)

and

f(β|H1) =

{

0, if |β| ≤ T
B1 exp(−λ|β|ν), if |β| > T

(9)

with B0 = λν
[

2Γ( 1
ν )Γinc

(

(λT )ν , 1
ν

)]−1

and B1 = λν
[

2Γ( 1
ν )

[

1 − Γinc

(

(λT )ν , 1
ν

)]]−1

(for details, see [19]).

2.3. Subband adaptive estimator

A subband-adaptive estimator applies a unique shrinkage function to all the coefficients of a given subband.
In [19], a subband-adaptive ProbShrink estimator is defined as

β̂ = P (H1|y)y =
ηµ

1 + ηµ
y (10)

where η = f(y|H1)/f(y|H0), µ = P (H1)/P (H0) and the product µη is called the generalized likelihood ratio [31].
For the assumed noise model, f(y|H0,1) is the result of convolving f(β|H0,1) with the normal density N(0, σ2).
For the generalized Laplacian prior, P (H1) = 1 − Γinc((λT )ν , 1/ν) and for the Laplacian prior (ν = 1) this
reduces to P (H1) = exp(−λT ). It was experimentally shown that this estimator yields a better mean squared
error performance compared to the subband-adaptive Bayesian thresholding BayesShrink of [32] and compared
to MMSE estimator under the normal mixture prior [24].

2.4. Spatially adaptive estimator

A spatially adaptive extension of the estimator (10) uses a local spatial activity indicator (LSAI) zl, as follows:

β̂l = P (H1|yl, zl)yl =
ηlξlµ

1 + ηlξlµ
yl (11)

where

ηl =
f(yl|H1)

f(yl|H0)
, ξl =

f(zl|H1)

f(zl|H0)
and µ =

P (H1)

P (H0)
. (12)

We define LSAI as averaged coefficient magnitude within a small window ∂(l) of size N : zl = (1/N)
∑

k∈∂(l) ωk,

with ωl = |yl|, and simplify that all the coefficients within this small window are equally distributed and
conditionally independent given H0 or H1. In this case, f(Nzl|H0,1) equals N convolutions of f(ωl|H0,1) with
itself, where f(ωl|H0,1) = 2f(yl|H0,1) for ωl ≥ 0 and f(ωl|H0,1) = 0 for ωl < 0. For window sizes 5×5 or
7×7, this estimator outperforms the subband-adaptive version (10) by up to 1dB in peak signal to noise ratio
(PSNR) [19]. Visual improvement is significant: flat areas are better smoothed and sharpness is improved. In
the remainder, we denote this spatially adaptive denoiser as ProbShrink-SP.



2.5. Spatially and spectrally adaptive estimator

For multiband images, a combined spatial and spectral version of LSAI from [19] is

zb
l,s =

1

NB

B
∑

i=1

∑

k∈δ(l)

ωi
k,s (13)

where B is the number of image bands. With this definition of LSAI the probability of signal presence is
conditioned on the spatial context as well as on information from other image bands. Hence, denoising is
performed band-per-band, but taking into account the inter-band correlations. In [19], the neighborhood δ(l)
was reduced to a single pixel, i.e., LSAI included only the coefficients at the same spatial position from different
image bands. Its conditional densities were estimated by convolving the corresponding densities of the coefficient
magnitudes. It was shown experimentally that this method outperforms multiband wavelet thresholding [16]
on multispectral Landsat and on color images. In the remainder, we denote this Multi-Band (MB) denoiser as
ProbShrink-MB.

3. MOTIVATION IN TERMS OF THE MMSE CRITERION

The minimum mean squared error estimate under the mixture prior (6) is

E(β|y) = E(β|y,H0)P (H0|y) + E(β|y,H1)P (H1|y). (14)

The subband-adaptive ProbShrink estimator (10) is an approximation of the MMSE estimate above, where
E(β|y,H1) is approximated by one and E(β|y,H0)P (H0|y) is approximated by zero. If we use the exact ex-
pressions for E(β|y,H0) and E(β|y,H1) instead, we can directly upgrade this estimator within the MMSE error
criterion. Similarly, for the spatially/spectrally adaptive case, the corresponding MMSE estimator is

E(β|yl, zl) = E(β|y,H0)P (H0|yl, zl) + E(β|y,H1)P (H1|yl, zl). (15)

which extends the ProbShrink estimator from Sec. 2.3 and Sec.2.4 Sec.2.5 within the MMSE criterion. The
conditional means are found as

E(β|y,H0) =

∫

∞

−∞

βf(β|y,H0)dβ (16)

E(β|y,H1) =

∫

∞

−∞

βf(β|y,H1)dβ (17)

with f(β|y,H0) and f(β|y,H1) given in (8) and (9), respectively. In practical computations, numerical integration
should be employed, while for the Laplacian prior (with ν = 1) analytical expressions also exist [33]. As we
demonstrate next, the performance loss of the ProbShrink estimator with respect to the full MMSE estimator is
usually negligible in practice.

Table 1 lists experimental PSNR results for several shrinkers under two mixture priors: the analyzed Bernoulli-
Laplacian (B-L) prior and the two-normals mixture of [24], that we denote here as Bernoulli-Gaussian (B-G):
f(β) = P (H1)φ(β;σ1) + P (H0)φ(β;σ2). A standard wavelet denoising procedure was applied: the noisy images
were decomposed using a five-level orthogonal wavelet transform with the Daubechies’ wavelet symmlet with
eight vanishing moments [1]. In each wavelet subband the noise-free wavelet coefficients were estimated using
the corresponding shrinkers for each of the analyzed methods. The inverse wavelet transform was applied to
reconstruct the denoised image. The parameters of both priors were calculated adaptively for each subband.
For the B-L prior we used T = σ and for the B-G prior, we used the default choices of the hyperparameters
from [24].

Several conclusions can be drawn from the results in Table 1. In most cases, ProbShrink yields a minor
decrease in PSNR compared to the MMSE estimator under the same, Bernoulli-Laplacian prior. The MAP esti-
mator under the B-L prior yields slightly higher performance loss (up to 0.3dB) with respect to the corresponding
MMSE estimate. The results also demonstrate that the analyzed Bernoulli-Laplacian prior yields a significant
improvement in PSNR with respect to the two-normals mixture, which is in most cases higher than 1dB.



Table 1. Experimental PSNR[dB] results of several subband-adaptive Bayesian wavelet shrinkers and two different mixture
priors: Bernoulli-Laplacian (B-L) and Bernoulli-Gaussian (B-G) prior from [24]. Wavelet transform: orthogonal with
five decomposition levels and using Daubechies’ least asymetrical wavelet with eight vanishing moments.

Standard deviation of noise

Prior Estimator 10 15 20 25

BOAT

noisy image 28.15 24.62 22.10 20.17

B-L MAP 32.00 29.92 28.42 27.37

B-L ProbShrink 32.13 30.05 28.63 27.63

B-L MMSE 32.23 30.14 28.70 27.70

B-G [24] MMSE 31.01 29.04 27.66 26.68

COUPLE

noisy image 28.15 24.60 22.11 20.18

B-L MAP 31.65 29.26 27.89 26.95

B-L ProbShrink 31.73 29.53 28.20 27.18

B-L MMSE 31.81 29.61 28.29 27.32

B-G [24] MMSE 30.48 28.36 27.15 26.27

LENA

noisy image 28.13 24.60 22.12 20.16

B-L MAP 33.43 31.47 30.18 29.23

B-L ProbShrink 33.69 31.70 30.39 29.41

B-L MMSE 33.62 31.65 30.39 29.41

B-G [24] MMSE 32.84 30.97 29.66 28.74

4. MULTISPECTRAL IMAGE DENOISING IN REMOTE SENSING

In the satellite systems it may be desirable to perform denoising before the image compression step in order to
improve the compression efficiency. Also deconvolution of satellite images is often useful and can be performed
as an inverse filtering operation followed by denoising [34]. There are several noise sources in optical satellite
images (photonic noise, electronic noise, quantization errors...) and the additive Gaussian noise model is a
realistic approximation [16, 35, 36]. We test the performance of the proposed ProbShrink-MB method on two
different multispectral images shown in Fig. 1.

Figure 1. Noise-free test images. Left: multispectral image MULSC1. Right: multispectral image MULSC2.



Figure 2. Quantitative performance of the proposed method for band 1 and band 4 from the multispectral image
MULSC1.

The left-hand multispectral image in Fig. 1 is a Thematic Mapper image from the Huntsville area, Alabama,
USA. It contains a river and builded area with several roads. The right-hand test image contains a builded stroke
following a river. In both of these images some bands are mutually highly correlated (e.g., bands 1, 2 and 3),
while other bands (like band 4) show significantly less correlation with the remaining ones. For our denoising
experiments, we added artificial white Gaussian noise to the reference images from Fig. 1, using three different
standard deviations of noise: 15, 25 and 35.

Let u = [u1...uB ] denote the reference noise-free multiband image, where each image band is presented as
a one-dimensional vector ub = [ub

1...u
b
L] obtained according to raster scanning. Also, let g = u + n denote the

noisy multi-band image, where n is added white Gaussian noise, and let û denote the estimated noise-free image
(i.e., the image denoised by wavelet shrinkage). As a quantitative performance measure we use the peak signal
to noise ratio defined as PSNR = 10log10(255

2/MSE) where the mean squared error MSE is averaged over all
the spectral channels. The input and the output PSNR are thus calculated respectively as

PSNRinput = 10log10
2552

1
LB

∑L
l=1

∑B
b=1(g

b
l − ub

l )
2

PSNRres = 10log10
2552

1
LB

∑L
l=1

∑B
b=1(û

b
l − ub

l )
2
.

As reference methods we use multiband wavelet thresholding (MBT) [16], and a vector based wavelet domain
MMSE estimator [17]. All the methods were implemented using the same non-decimated wavelet transform
with four decomposition levels and with the Daubechies’ wavelet of length four. Table 2 lists peak signal to
noise ratio (PSNR) values for the two complete multispectral images from Fig. 1, and Fig. 2 displays the PSNR
values calculated over two separate spectral bands. In both cases, the results demonstrate that ProbShrink-MB
outperforms the two reference ones in terms of PSNR. For some image bands the PSNR gain of the proposed
method exceeds 2dB (see Fig. 2). Pictures in Fig. 3 demonstrate also advantage of the proposed method in terms
of visual quality. In comparison to multiband thresholding [16], ProbShrink-MB preserves better image details
and fine structures, while better suppressing noise in flat areas than the vector based MMSE method of [17].

We also analyzed PSNR gains per band. The input and the resulting PSNR in a given image band b, are

PSNRb
input =

2552

1
L

∑L
l=1(gl − ul)2

, (18)

PSNRb
res =

2552

1
L

∑L
l=1(ûl − ul)2

, (19)



Figure 3. (a) Noisy detail of the 4th band of image MULSC1, standard deviation 15. (b) The result of the MBT

method [16]. (c) The result of the VMMSE method [17]. (d) The result of the proposed ProbShrink-MB method.

Table 2. PSNR[dB] results for two multispectral images in comparison to multiband wavelet thresholding (MBT) [16]
and a wavelet domain vector MMSE estimator (VMMSE) [17]

.

Standard deviation of noise

Estimator 15 25 35

image MULSC1

MBT [16] 26.63 24.37 22.95

VMMSE [17] 26.78 24.70 22.79

ProbShrink-MB 27.42 24.96 23.45

image MULSC2

MBT [16] 28.51 26.45 25.10

VMMSE [17] 29.30 26.25 24.16

ProbShrink-MB 29.24 27.03 25.63

respectively. Denoising yields in each band a PSNR gain

Gb
PSNR = PSNRb

res − PSNRb
input (20)

and the PSNR gain summed over all the bands is

GPSNR =

M
∑

b=1

Gb
PSNR. (21)

Compared to the single-band spatially adaptive version of the same method, the multi-band ProbShrink-
MB method achieves an improved performance on all image bands (see Table 3). Table 3 also shows that in
comparison with the MBT method of [16] the new method yields a larger total PSNR gain on both multispectral
images and for all noise levels. The improvement of the new method wrt. MBT is the biggest in case of weakly-
to-moderately correlated bands (like band 4 from the two tested multi-band images). This behavior is expected
because the MBT method of [16] applies the same modification to the corresponding wavelet coefficients from all
image bands and is thus powerful in case of highly correlated bands, but is less efficient in case of discontinuities
which are not present in the majority of bands. This is nicely demonstrated by visual results in Fig. 4: for
the band 1 from MULSC1 image the two methods yield visually similar results. However, in the band 4 from
MULSC2 (the bottom part of Fig. 4) the MBT method destroys a river line (because it is not well visible in
other bands) while the new method preserves it well.

The new multi-band denoising method performs well both in case of the highly correlated and in case of
weakly correlated bands, because it takes into account both the inter-band correlation and the local statistics
of different image bands. The visual results in Fig. 5 also show that the proposed method preserves well details
and image texture.



Figure 4. Left to right: parts of noise-free bands, noisy versions σ = 15, results of MBT [16] and the new method
ProbShrink-MB. Top: band 1 of MULSC1. Bottom: band 4 of MULSC2. Note the river line in the bottom case.

Table 3. PSNR[dB] gain summed over all image bands.

Standard deviation of noise

Estimator 15 25 35

image MULSC1

MBT [16] 13.39 25.93 34.89

ProbShrink-SP 14.33 24.98 33.33

ProbShrink-MB 16.79 27.53 35.52

image MULSC2

MBT [16] 24.01 38.03 47.35

ProbShrink-SP 24.10 36.66 45.87

ProbShrink-MB 26.73 39.25 48.09

5. COLOR IMAGE DENOISING

One approach to color image denoising is using RGB color space and applying the same approach as discussed
in the previous Section. In this Section, we show that such an approach is powerful in case where noise level is
equal in all three color channels but is less suitable in case where noise statistics varies from channel to channel.
In the latter case better results are achieved by using a luminance-chrominance color space.

5.1. Denoising in the RGB color space

The multiband denoising method from Sec. 2.5 that we named ProbShrink-MB assumes uncorrelated noise
of equal variance in all image channels. Table 4 compares the performance of this method to two reference
wavelet based multiband denoisers and to two other versions of the proposed denosing method. The reference
methods are multiband wavelet thresholding (MBT) [16] and vector based minimum mean squared error estimator
(VMMSE) [17]. Two other versions of the proposed denoiser listed in Table 4 are: ProbShrink-SP - spatially



Figure 5. Left to right: noise-free, noisy and denoised band 6 from MULSC2 using ProbShrink-MB.

adaptive method from Section 2.4 applied to each of the RGB channels separately and ProbShrink-SP-YUV the
same spatially adaptive method but applied in a luminance-chrominance space, as detailed in the next Section.
We implemented all the methods with a non-decimated wavelet transform, with four decomposition levels and
with the Daubechies’ wavelet of length four.

The results in Table 4 demonstrate that for uncorrelated noise of equal variance in each channel the proposed
approach yields best performance when applied with the local spatial/spectral activity indicator from Section
2.5 in the RGB space. This version of the method, ProbShrink-MB, outperforms separate spatially adaptive
channel denoising both in the RGB space (ProbShrink-SP) and in the luminance-chrominance space ProbShrink-
SP-YUV. The proposed method compares favorably to the reference ones [16, 17]. On a very textured image
Baboon, the vector based VMMSE method [17] yielded slightly better PSNR then ProbShrink-MB, but for other
test images ProbShrink-MB yields an improvement of up to almost 2dB, which increases with the increase of
noise level. The same behavior was noted on Landsat multispectral images in Section 4 (see Fig. 2).

5.2. Denoising in the luminance-chrominance space

Television broadcasting uses color spaces in terms of one luminance and two chrominance components. A standard
PAL broadcasting system defines YUV model, where Y stands for the luminance component (the brightness) and
U and V are the chrominance (color) components. YUV signals are created from an original RGB (red, green and
blue) source. The weighted values of R, G and B are added together to produce a single Y signal, representing
the overall brightness, or luminance, of that spot: Y = 0.299R + 0.587G + 0.114B. Two chrominance signals are
formed as: U = 0.492(B−Y ) = −0.147R−0.289G+0.436B, and V = 0.877(R−Y ) = 0.615R−0.515G−0.100B.
In a matrix form





Y
U
V



 =





0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100









R
G
B



 (22)

and the inverse is




R
G
B



 =





1 0 1.140
1 −0.396 −0.581
1 −2.029 0









Y
U
V



 . (23)



Table 4. PSNR[dB] results for color 512x512 images with equal noise levels in RGB channels. ProbShrink − MB

(multiband denoising) and ProbShrink−SP (componentwise denoising using the spatially adaptive single band estimator)
are implemented in the RGB space and ProbShrink−SP −Y UV in a luminance-chrominance space. All the methods are
implemented using a non-decimated wavelet transform with four decomposition levels and Daubechies’ wavelet of length
four.

Standard deviation of noise

Method 10 15 20 25

BABOON

MBT [16] 28.50 26.78 25.53 24.56

VMMSE [17] 30.68 28.24 26.63 25.36

ProbShrink-MB 30.17 27.83 26.38 25.27

ProbShrink-SP 29.80 27.34 25.79 24.60

ProbShrink-SP-YUV 28.17 26.80 25.70 24.84

LENA

MBT [16] 33.84 32.29 31.14 30.15

VMMSE [17] 34.02 31.89 30.24 28.88

ProbShrink-MB 34.60 33.03 31.92 31.04

ProbShrink-SP 34.19 32.46 31.22 30.29

ProbShrink-SP-YUV 34.21 32.90 31.87 31.01

PEPPERS

MBT [16] 31.19 30.22 29.45 28.77

VMMSE [17] 33.12 31.13 29.67 28.45

ProbShrink-MB 33.44 32.05 31.12 30.35

ProbShrink-SP 33.20 31.65 30.61 29.75

ProbShrink-SP-YUV 32.56 31.37 30.60 29.40

Table 5. PSNR[dB] results for images with nonequal noise level in R, G and B channels: σR = 10, σG = 20 and σB = 35
for three versions of the proposed method from Table 4.

BABOON LENA PEPPERS

Input 20.54 Input 20.54 Input 19.18

ProbShrink-MB 23.73 ProbShrink-MB 30.32 ProbShrink-MB 28.17

ProbShrink-SP 24.85 ProbShrink-SP 30.98 ProbShrink-SP 29.66

ProbShrink-SP-YUV 25.47 ProbShrink-SP-YUV 31.76 ProbShrink-SP-YUV 29.53

We investigate componentwise denoising in the YUV space by applying the spatially adaptive method from
Sec. 2.4 to each channel separately, and we denote this method as ProbShrink-SP-YUV. The results in Table 4
demonstrate that for uncorrelated noise of equal variance in each of the RGB channels, this approach is inferior
to multiband denoising in the RGB space. This is also confirmed by the visual results in Fig. 6. However, as we
show next, the performance comparison is different in case when noise variances in R,G and B channels are not
equal to each other.



Figure 6. (a) A part of the noise-free image Peppers. (b) image with additive white Gaussian noise noise σR = σG =
σB = 25. (c) MBT method [16] (PSNR=28.77dB). (d) VMMSE method [17] (PSNR=28.45dB). (e) ProbShrink-MB

method (PSNR=30.35dB). (f) ProbShrink-SP-YUV method (PSNR=29.40dB).



Figure 7. Top left: noise-free image. Top right: image with additive white Gaussian noise noise σR=55, σG=25 and
σB = 10. (PSNR=17.17dB). Bottom left: ProbShrink-MB (PSNR=25.67dB). Bottom right: ProbShrink-SP-YUV

(PSNR=29.54dB).

Now we experiment with nonequal noise variance in R, G and B channels. In particular, we form noisy images
by adding white Gaussian noise with standard deviations σR = 10, σG = 20 and σB = 35 to R, G and B channels,
respectively. Table 5 lists the performance of three methods: a multiband spectrally adaptive denosier in the
RGB space (ProbShrink-MB), componentwise spatially adaptive denoising in the RGB space (ProbShrink-SP)
and componentwise spatially adaptive denoising in the YUV space (ProbShrink-SP-YUV ). Table 5 shows that
for nonequal noise levels, ProbShrink-MB shows the worst performance among the three methods. On one out



of three tested images componentwise denoising in the RGB space yielded slightly better results compared to
denoising in the YUV space, but for other two images YUV space offered a significant improvement over the
RGB space for denoising. A poor performance of the ProbShrink-MB method in this case can be explained by
the fact that the information from “bad” (noisier) channels is used to denoise the less noisy ones. Hence, in
case of different noise levels in different channels a direct application of ProbShrink-MB is not suitable, but a
smarter extension is sought, where for example spectral information from less noisy channels is used to denoise
the noisier ones, but not viceversa. A simpler alternative is spatially adaptive componentwise denoising in a
luminance chrominance space, as demonstrated in this Section. This approach performs well both in terms of
PSNR and visually, as demonstrated in Fig. 7.

6. CONCLUSION

We analyzed a Bayesian wavelet domain denoising method for single- and for multiband images, which adapts
itself to the probability of the presence of a signal of interest at each position. In particular, we motivated
the approach of [19] within the minimum mean squared error criterion and we developed further and analyzed
different variants of this estimator for spatially and spectrally adaptive denoising of multispectral and color
images. Our results demonstrated that for color images with unequal noise in RGB channels the use of the color
space transformation is crucial. In this case, the analyzed approach should be implemented in a luminance-
chrominance space to achieve the best denoising results.
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