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Principal Symbols

⊕ : direct sum of two subspaces
∝ : is proportional to
C : clique in a neighboring system
∂l : set of neighboring sites of a site l
f , fl : noise free input image
g, gl : highpass filter in filter bank
h, hl : lowpass filter in filter bank
H0
l : hypothesis “signal is absent at position l”

H1
l : hypothesis “signal is present at position l”

M : measure of significance in Bayesian model
n : number of data points in a discrete finite signal
n, nl : noise in the wavelet domain
pY (y) : probability density function of random variable Y
sj,l : scaling coefficient (level j, position l)
v, vl : noisy input image
w, wl : noisy wavelet coefficients
wj,l : noisy wavelet coefficient at level j, position l
zl : local spatial activity indicator at position l
xl : classification labels (binary)
X : vector of classification labels (mask) in Bayesian model
y, yl : noise-free wavelet coefficients
α, αl : local Lipschitz exponent
ξl : ratio of conditional pdf’s at position l
µl : ratio of prior probabilities of signal presence position l
ρ : ratio of global prior probabilities of signal presence
ϑ, ϑl : input zero mean noise
R : set of real numbers
Z : set of integer numbers
L2(R) : finite energy functions

∫ ∞
−∞ |f(x)|2dx <∞

g∗ : complex conjugate of g
〈f, g〉 : inner product

for continuous signals 〈f, g〉 =
∫ ∞
−∞ f(x)g∗(x)dx

for discrete signals 〈f, g〉 =
∑∞

l=−∞ flg
∗
l

||f || : L2 norm of f ; ||f ||2 = 〈f, f〉
�x� : integer part of a real number x
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Abbreviations

1D : one dimensional
2D : two dimensional
AWGN : Additive white Gaussian noise
ACR : Average cone ratio
APR : Average point ratio
COI : Cone of influence
CWT : Continuous wavelet ransform
DCT : Discrete cosine ransform
DCOI : Discrete cone of influence
DFT : Discrete Fourier transform
DWT : Discrete wavelet transform
FN : False negatives
FP : False positives
GGD : Generalized Gaussian distribution
GPR : Ground penetrating radar
i.i.d : independent identically distributed
IR : Infrared
JC : Joint conditional
JDE : Joint detection estimation
LSAI : Local spatial activity indicator
MAD : Median absolute deviation
MAP : Maximum a posteriori
MLE : Maximum likelihood estimation
MMSE : Minimum mean squared error
MRA : Multiresolution analysis
MRI : Magnetic resonance imaging
MRF : Markov random field
MSE : Mean squared error
PC : Principal component
pdf : Probability density function
PSNR : Peak signal-to-noise ratio
SAR : Synthetic aperture radar
SNR : Signal-to-noise ratio
STSA : Short time spectral amplitude
SURE : Stein’s unbiased risk estimate
QCF : Quadratic cost function
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Chapter 1

Introduction

Owing to its rapidly increasing popularity over last few decades, the
wavelet transform has become quite a standard tool in numerous re-
search and application domains. This thesis is about wavelet domain
image denoising: we study and develop statistical models and estima-
tors for image wavelet coefficients given their noisy observations. In
doing so, we are on a bridge between theory and applications. While
merging theory and practice, from time to time we employ heuristics
too.

1.1 Situation and topical outline

This thesis has started within the context of a project on humanitarian
mine detection. To enhance the quality of images of landmines acquired
by different sensors advanced denoising methods are required. Given a
great variety of sensor technologies in mine detection, and given that
the same technologies appear in other application domains, we decided
not to limit our research to any particular type of images.

In general, image denoising imposes a compromise between noise
reduction and preserving significant image details. To achieve a good
performance in this respect, a denoising algorithm has to adapt to im-
age discontinuities. The wavelet representation naturally facilitates the
construction of such spatially adaptive algorithms. It compresses the
essential information in a signal into relatively few, large coefficients,
which represent image details at different resolution scales.

In this thesis, we further develop some emerging wavelet domain de-
noising methods. Also, we propose new denoising approaches. Through-
out the work, we emphasize the use of spatial context and accurate



2 Introduction

statistical modeling. For spatial context modeling, we consider two ap-
proaches: (1) encoding pixel interactions in a Markov Random Field
prior model and (2) a lower complexity local approach, which computes
a local spatial activity indicator whose marginal densities are character-
ized. In practical applications, we will often simplify the theory using
heuristics, when this leads to algorithms with lower complexity or higher
flexibility. Also, we do not propose a universal denoising method, but
rather build a library of algorithms suitable for a diversity of applications
in close range and remote sensing and in medical imaging.

A common underlying principle in our work is uncertainty as to the
signal presence. In other words, in our developments we always start
from a viewpoint that a signal (of interest) is not surely known to be
present in a given wavelet coefficient. This concept is implicitly present
in many wavelet denoising algorithms but is rarely explicitly formulated
as such. We devote attention to some interesting questions that arise
from this concept: the notion of a “signal of interest” to be reconstructed
from a noisy image; confronting a classical estimation concept (signal
is present with probability p = 1) and a joint detection and estimation
concept (signal is present with probability p < 1). In this respect, we also
point to close relationship between wavelet domain image denoising and
seemingly unrelated problems like spectral estimation of speech signals.

The algorithms developed in this thesis fit into a Bayesian frame-
work illustrated in Fig. 1.1. The main novelties and contributions can
be grouped in the following categories: selection, statistical characteri-
zation and performance evaluation of significance measures for wavelet
coefficients in the presence of noise; developing new MRF prior mod-
els for spatial clustering of the coefficients and developing a new class
of low complexity locally adaptive denoising methods based on joint de-
tection and estimation principles. Practical results of new algorithms
are demonstrated in different applications: in infrared imaging, Ground
Penetrating Radar (GPR) imaging, Synthetic Aperture Radar (SAR)
imaging, medical ultrasound and magnetic resonance imaging (MRI).

1.1.1 Organization

The thesis is organized as follows. In Chapter 2, we first review the
background knowledge on wavelet theory. We try to present a concise,
but self-contained review emphasizing the most relevant aspects for the
topic of this thesis. In the second part of this Chapter, we systematically
describe different wavelet denoising approaches and we link them to our
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Figure 1.1: A Bayesian wavelet domain denoising framework.

later developments.

In Chapter 3, we explain the use of Markov Random Field models
in wavelet domain denoising. The existing wavelet domain approaches
from literature use bi-level MRF’s as prior models for spatial cluster-
ing. With each wavelet coefficient, a given measure of its significance
is assigned; the statistical properties of these significance measures are
expressed in a conditional probability density model, and are combined
with the prior model in a Bayesian framework. We discuss these meth-
ods as a special case of a more general framework. An important original
contribution is a new MRF based denoising method, which aims at a
reduced complexity. We demonstrate its use in hydrology.

Chapter 4, presents our main contributions to wavelet denoising us-
ing MRF priors. We statistically characterize different significance mea-
sures, for which valid probability density models were not yet available.
Then, relying on decision theory, we objectively evaluate the perfor-
mance of the analyzed significance measures. Accordingly, we propose
a new and powerful conditional model. To improve encoding of spatial
clustering properties, we develop a new MRF prior model. The results
demonstrate the advantage of the new prior and conditional models both
in terms of quantitative and visual aspects of image quality.
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In Chapter 5, we turn to locally adaptive denoising concepts that do
not require MRFs. Instead of modeling the spatial context by MRFs,
we model it by much simpler techniques. In this respect, we develop a
new class of low complexity locally adaptive methods. Within the new
framework, we develop three new practical algorithms: the first one is
designed for the suppression of Gaussian noise and achieves denoising
results that are among the best state of the art ones. The second al-
gorithm is flexible, designed to allow user interaction and also to adapt
to various noise types. The third algorithm is aimed at speckle noise
suppression in SAR images. We focus on SAR systems because they
are in wide use in remote sensing and have applications in humanitarian
mine detection as well.

Chapter 6 is devoted specifically to close range sensors in human-
itarian demining applications. We describe a practical mine detection
research program Hudem, and illustrate denoising results on infrared
and on GPR images of landmines.

1.1.2 A summary of contributions and publications

This research has resulted so far in a publication in an international
journal [Pizurica02a], a book chapter [Pizurica01c], an invited talk in a
wavelet seminar [Pizurica00e] and 14 papers in Conference Proceedings
[Pizurica98a]-[Pizurica01b], all of which as the first author. Also, this
research contributed to 7 publications [Duskunovic00a, Duskunovic00b,
Duskunovic00c, Rooms01, Stippel00, Verhoest00a, Xue01] through a co-
authorship.

Most recent research results, presented in Chapter 5, are submitted
to two international journals [Pizurica02b] and [Pizurica02c].



Chapter 2

Wavelets in Image Denoising

This chapter starts with an overview of some basic wavelet concepts.
These can be found in many books and papers at many different levels
of exposition. Some of the standard books are [Chui92, Daubechies92,
Mallat98, Meyer93, Vetterli95]. Introductory papers include [Graps95,
Strang94, Vidakovic94], and more technical ones are [Cohen96, Mallat96,
Strang95]. The rest of the chapter presents ideas of various wavelet based
image denoising methods and reviews the state of the art in this field.

2.1 Introduction to wavelet representation

2.1.1 The wavelet concept and its origins

The central idea to wavelets is to analyze (a signal) according to scale.
Imagine a function that oscillates like a wave in a limited portion of
time or space and vanishes outside of it. The wavelets are such functions:
wave-like but localized. One chooses a particular wavelet, stretches it (to
meet a given scale) and shifts it, while looking into its correlations with
the analyzed signal. This analysis is similar to observing the displayed
signal (e.g., printed or shown on the screen) from various distances.
The signal correlations with wavelets stretched to large scales reveal
gross (“rude”) features, while at small scales fine signal structures are
discovered. It is therefore often said that the wavelet analysis is to see
both the forest and the trees.

In such a scanning through a signal, the scale and the position can
vary continuously or in discrete steps. The latter case is of practical
interest in this thesis. From an engineering point of view, the discrete
wavelet analysis is a two channel digital filter bank (composed of the
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lowpass and the highpass filters), iterated on the lowpass output. The
lowpass filtering yields an approximation of a signal (at a given scale),
while the highpass (more precisely, bandpass) filtering yields the details
that constitute the difference between the two successive approxima-
tions. A family of wavelets is then associated with the bandpass, and
a family of scaling functions with the lowpass filters. This concept is
explained in Section 2.2. At the moment, we address only the general
aspects.

The wavelet family is generated from a unique prototype function
that is called a mother wavelet. Given a real variable x, the function
ψ(x) is called a mother wavelet provided that it oscillates, averaging to
zero

∫ ∞
−∞ ψ(x)dx = 0 and that is well localized (i.e., rapidly decreases

to zero when |x| tends to infinity). By convention it is centered around
x = 0, and has a unit norm ||ψ(x)||. In practice, applications impose
additional requirements (Sec.2.2.8), among which, a given number of
vanishing moments Nv∫ ∞

−∞
xkψ(x)dx = 0, 0 < k ≤ Nv − 1. (2.1.1)

The mother wavelet ψ(x), generates the other wavelets ψa,b(x), a >
0, b ∈ R, of the family by change of scale a (i.e., by dilation) and by
change of position b (i.e., by translation),

ψa,b(x) =
1√
a
ψ(
x− b
a

), a > 0, b ∈ R. (2.1.2)

In Fig. 2.1, several wavelets are shown that are obtained from the mother
wavelet ψ(x) = (1 − 2x2)e−x2

; this wavelet is the second derivative of
a Gaussian function and is called the Mexican hat. Its first use was in
computer vision, for multiscale edge detection [Witkin83].

The origins of the wavelet analysis can be traced to the 1909 Haar
wavelet (that was not called by that name then) and various “atomic
decompositions” in the history of mathematics. For a comprehensive
review, see [Meyer93, p.13-31]. The current use of the name “wavelet”
is due to Grosman’s and Morlet’s work on geophysical signal process-
ing1, which led to the formalization of the continuous wavelet trans-
form [Grosman84]. In the development of wavelets, the ideas from

1In reflection seismology, the modulated pulses sent underground need to have a
short duration at high frequencies in order to separate the returns of fine, closely
spaced layers; the Morlet’s idea was thus to send shorter waves at high frequencies
simply by scaling a single function, called the “wavelet of continuous shape”
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.

many different fields (including subband coding and computer vision)
have merged. Excellent texts on this topic are [Vetterli95, p.1-3] and
Daubechies paper “Where do the wavelets come from” [Daubechies96].

2.1.2 Continuous and dyadic wavelet transforms

The continuous wavelet transform (CWT) of a signal f(x) is defined as

Wf(a, b) =
1√
a

∫ ∞

−∞
f(x)ψ∗

(x− b
a

)
dx = 〈f, ψa,b〉, (2.1.3)

where ψ∗(x) denotes the complex conjugate of ψ(x). The existence
of the inverse transform is guaranteed if

∫ ∞
−∞ |ψ̂(ω)|2/|ω|dω � Cψ <

+∞, where ψ̂(ω) is the Fourier transform of ψ(x). This is called the
admissibility condition [Mallat98]. It implies ψ̂(0) = 0, and thus ψ(x)
can be viewed as an impulse response of a bandpass filter. Obviously,
the CWT offers a great degree of freedom in the choice of a wavelet.
The inverse transform is defined as

f(x) =
(∫ ∞

−∞

∫ ∞

−∞
Wf(a, b)ψa,b(x)dadb/a2

)
/Cψ. (2.1.4)

The CWT is highly redundant, and is shift invariant. It is exten-
sively used for the characterization of signals [Mallat92a]: the evolution
of the CWT magnitude across scales provides information about the lo-
cal regularity of a signal. We return to this aspect in Section 2.5. In
those and similar applications of the CWT, for the sake of memory sav-
ings, dyadic scales a = 2j |j∈Z are commonly used. The corresponding
transform Wf(2j , b) is called the dyadic wavelet transform.

In case of images, one can use an arbitrary number N ≥ 1
of (spatially oriented) wavelets ψn

2j ,u,v
(x, y) = ψn(2−j(x − u, y −
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v)), 1 ≤ n ≤ N , which yield the N -component transform
(W1f(2j , u, v), ...,WNf(2j , u, v)), where

Wnf(2j , u, v) =
1√
a

∫ ∞

−∞

∫ ∞

−∞
f(x, y)ψn∗

(x− u
2j

,
y − v

2j
)
dudv

= 〈f, ψn2j ,u,v〉
(2.1.5)

The conditions, which ψn
2j ,u,v

(x, y), 1 ≤ n ≤ N have to meet for
a complete and a stable representation of an image, are presented in
[Mallat98, p.160]. The dyadic wavelet transform with spatially oriented
wavelets is extensively used in texture processing [Jain91]. In Section
2.2.9, we address another particular type and application of this trans-
form.

2.1.3 What makes wavelets useful in signal processing

In signal processing, the representation of signals plays a fundamental
role. David Marr elaborated in [Marr82] on this topic. For example, the
Arabic numeral representation permits one to easily notice a power of
10, but more difficult to realize a power of 2. With the binary repre-
sentation, the situation is reversed. Meyer [Meyer93, p.10], wrote “any
particular representation makes certain information explicit at the ex-
pense of information that is pushed into the background and may be
quite hard to recover”.

The Fourier representation reveals the spectral content of a signal,
but makes it impossible to recover the particular moment in time (or the
particular space coordinates in case of images) where a certain change
has occurred. This makes the Fourier representation inadequate when
it comes to analyzing transient signals. In signal and image processing,
concentrating on transients (like, e.g., image discontinuities) is a strategy
for selecting the most essential information from often an overwhelming
amount of data. In order to facilitate the analysis of transient signals,
i.e., to localize both the frequency and the time information in a signal,
numerous transforms and bases have been proposed (see e.g., [Mallat98,
Vetterli95]). Among those, in signal processing the wavelet and the
short time Fourier Transform (STFT) are quite standard. Let us briefly
compare the two.

In the STFT transform (which is also called the window Fourier
transform or the Gabor transform) the signal is multiplied by a smooth
window function (typically Gaussian) and the Fourier integral is applied
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Figure 2.2: Basis functions and the time-frequency tillings of the short time
Fourier (a) and the wavelet transform (b) [Vetterli95].

to the windowed signal. For a signal f(x), the STFT is [Mallat98]

S(τ, ω) =
∫ ∞

−∞
f(x)g(x− τ)e−jωxdx, (2.1.6)

where g(x) is the window function. Note that the basis functions of a
STFT expansion are g(x) modulated by a sinusoidal wave and shifted in
time; the modulation frequency is changing while the window remains
fixed. A few of these functions and the corresponding tillings [Nielsen96]
of the time-frequency plane are illustrated in Fig. 2.2 (a).

In wavelet analysis, the scale can be interpreted as the inverse of
frequency. The corresponding tilling of the time-frequency plane is il-
lustrated in Fig. 2.2 (b). As opposed to STFT, which divides the time-
frequency plane into equal blocks, the wavelet transform acts as a mi-
croscope [Vetterli95] focusing on smaller time phenomena as the scale
decreases. This behaviour permits a local characterization of signals,
which the Fourier and the window Fourier transform does not.

Other main advantageous properties of the wavelet transform (to be
clarified in the following Sections) are:
– Multiresolution - a scale invariant representation;
– Edge detection - large wavelet coefficients correspond to image edges;
– Sparsity - the wavelet transform of natural images tends to be sparse;
– Fast algorithms - the complexity of the fast discrete wavelet transform
is a linear function of the number of the input samples.

Besides, the wavelet analysis has been also often motivated from
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the viewpoint of psychophysical aspects of human vision [Mallat89a]: it
corresponds well to the way how we perceive images.

2.2 Discrete Wavelet Transform

The discrete wavelet transform (DWT) is in literature commonly associ-
ated with signal expansion into (bi-)orthogonal wavelet bases. We shall
adopt the same convention in this thesis. Thus, as opposed to the highly
redundant CWT, there is no redundancy in the DWT of a signal; the
scale is sampled at dyadic steps a ∈ {2j : j ∈ Z}, and the position is
sampled proportionally to the scale b ∈ {k2j : (j, k) ∈ Z

2}.
By no means can a DWT be understood as a simple sampling from

a CWT. In the first place, the choice of a wavelet is now far more re-
strictive: if we are dealing with finite-energy signals f(x) ∈ L2(R), the
wavelet ψ(x) has to be chosen such that {ψ(2−j(x − 2jk))}(j,k)∈Z2 is a
basis of L2(R). The first such basis was constructed by Alfred Haar
in 1909 (Section 2.2.1), and the choice for better ones has culminated
in Ingrid Daubechies’s work [Daubechies88]. The systematic framework
for constructing wavelet bases, known as the multiresolution analysis
(Section 2.2.2), was mostly developed by Stéphane Mallat [Mallat89b],
and has merged the ideas of pyramidal algorithms [Burt83] in computer
vision and the filter banks for subband coding [Esteban77]. Books like
[Chui92, Daubechies92, Mallat98, Meyer93, Vetterli95] provide a com-
prehensive treatment of these topics. A particularly comprehensive filter
bank point of view is [Strang96].

The orthogonal wavelets are rarely available as closed form expres-
sions, but rather obtained through a computational procedure which
uses discrete filters (Section 2.2.3). The link between wavelets and these
discrete filters is essential for understanding the Mallat’s fast DWT algo-
rithm in Section 2.2.4 and its extension to images in Section 2.2.4. The
rest of the Sections address the non-decimated transforms and aspects
that are especially important for image denoising.

2.2.1 A note on wavelet frames and bases

We start with a brief reminder of the notion of bases and frames. Recall
that a series expansion of a signal f from some space S is

f =
∑
i

ciφi, (2.2.1)
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where the elementary “atoms” or building blocks φi are typically simple
waveforms. If the set {φi}i∈Z is complete for the space S (meaning that
all f ∈ S can be decomposed as in (2.2.1)), then a dual set2{φ̃i}i∈Z ex-
ists, such that the expansion coefficients ci in (2.2.1) are given by inner
products ci = 〈φ̃i, f〉. A complete and linearly independent set {φi}i∈Z

is a basis of S; its dual set is then also a basis {φ̃i}i∈Z of S, and is
biorthogonal to the primal one: 〈φi, φ̃j〉 = δ(i − j), where δ(i) is the
Kronecker Delta. An important special case is when the set {φi} con-
stitutes an orthonormal basis, where 〈φi, φj〉 = δ(i − j) (the dual basis
is now equal to the primal one). If the set {φi} is complete, but the
functions φi are not linearly independent, the representation is redun-
dant (overcomplete), and is not a basis but a frame. We shall address
the wavelet frame expansions in Section 2.2.7.

A common wavelet basis of L2(R) is a family of functions{
ψj,k(x) =

1√
2j

ψ
(x− 2jk

2j
)}

(j,k)∈Z2
, (2.2.2)

for a suitably constructed ψ(x). For generalizations with other than
dyadic scales, which are beyond our scope, see [Daubechies92, ch.10].
Any finite energy signal f(x) can be decomposed in a basis (2.2.2), as

f(x) =
∞∑

j=−∞

∞∑
k=−∞

wj,kψj,k(x), (2.2.3)

where wj,k are the wavelet coefficients, given by the inner products of
f(x) with the dual basis functions ψ̃j,k(x)

wj,k = 〈f, ψ̃j,k〉 =
∫ ∞

−∞
f(x)ψ̃∗

j,k(x)dx, (2.2.4)

The first example of a wavelet basis is the 1909 Haar system, where the
wavelet is “blocky”:

ψ(x) =




1, if 0 ≤ x < 1/2,
−1, if 1/2 ≤ x < 1,

0, otherwise.

(2.2.5)

The Haar wavelet has a compact support (meaning ψ(x) = 0 out-
side of a bounded interval). Moreover, the corresponding basis is or-
thonormal. However, these blocky wavelets are far from optimal for

2The dual of a linear space L is by definition the set of all linear forms on L. For
more details see [Gao99].
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representing smooth functions. There are infinitely many other choices.
The systematic way of their construction is indirect and starts from the
scaling functions, which span the nested approximation spaces. The
wavelets span the complementary spaces, which contain the differences
between two successive approximations.

2.2.2 Multiresolution Analysis

Multiresolution analysis (MRA) [Mallat89b] results from a sequence of
nested approximation spaces ...V3 ⊂ V2 ⊂ V1 ⊂ V0.... By projecting a
signal onto this sequence, a ladder of its approximations is obtained. We
use the notation in which the index j refers to the resolution scale 2j (in
[Mallat89b], the indexing is reversed).

For finite energy signals f(x), the Vj are subspaces of L2(R). By def-
inition [Cohen96], the approximation spaces satisfy the following prop-
erties:
(1) The spaces are embedded Vj+1 ⊂ Vj .
(2) The orthogonal projections PVjf(x) of f(x) onto Vj satisfy
limj→∞ PVjf(x) = 0 and limj→−∞ PVjf(x) = f(x).
(3) The Vj are generated by a scaling (father wavelet) function ϕ(x) ∈
L2(R), in the sense that, for each fixed j, the family

{
ϕj,k(x) =

1√
2j

ϕ
(x− 2jk

2j
)}

k∈Z

(2.2.6)

is a stable basis (Riesz basis) of Vj .
From this definition, it follows clearly that f(x) ∈ Vj+1 is equivalent to
f(2x) ∈ Vj , and that Vj is invariant under translation of 2j .

The orthogonal projection of a signal f(x) onto Vj , which is its best
approximation fj(x) at the scale 2j , is:

PVjf(x) � fj(x) =
∞∑

k=−∞
sj,kϕj,k(x), (2.2.7)

where sj,k are the scaling coefficients. The details that constitute the
difference between two successive approximations ∆fj(x) = fj−1(x) −
fj(x) are contained in the detail space Wj , which is a complement of Vj
in Vj+1:

Vj ∩Wj = {0} and Vj+1 = Vj ⊕Wj+1. (2.2.8)

The spacesWj are differences between the Vj , and the spaces Vj are sums
of the Wj . For some L < J , VL = (⊕JL+1Wj) ⊕ VJ , i.e., for a function
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in these spaces fL(x) =
∑J

j=L+1 ∆fj(x) + fJ(x). This decomposition
“telescopes” into the signal at the scale 2L.

By analogy with the approximation spaces, the detail spaces are
built by dilating and shifting the mother wavelet ψ(x), such that the
family {ψj,k(x)}k∈Z = {2−j/2ψ(2−jx − k)}k∈Z is a Riesz basis of Wj .
The orthogonal projection of f(x) onto this space is

PWjf(x) � ∆fj(x) =
∞∑

k=−∞
wj,kψj,k(x), (2.2.9)

where wavelet coefficients wj,k carry the necessary information to refine
the signal approximation.

Desired properties of approximation (e.g., the degree of smoothness)
impose a particular choice of ϕ(x), from which the wavelet ψ(x) directly
follows. For example, for piece-wise constant approximations, ϕ(x) is
a box function: let ϕ(x) = 1 for x ∈ [0, 1] and ϕ(x) = 0 elsewhere
and ϕj,k(x) = ϕ((x − 2jk)/2j); fj(x) is then piece-wise constant over
intervals [2−jk, 2−j(k + 1)]k∈Z. The corresponding wavelet is the Haar
wavelet. In this case, {ϕj,k}k∈Z and {ψj,k}k∈Z are orthogonal bases of
Vj and Wj respectively, and Vj⊥Wj . Another example of orthogonal
wavelet and scaling functions together with their frequency responses is
given in Fig. 2.3.

A general MRA is not orthogonal; in a non orthogonal case, the dual
functions ϕ̃(x) and ψ̃(x) are needed to express the coefficients:

sj,k = 〈f, ϕ̃j,k〉, wj,k = 〈f, ψ̃j,k〉. (2.2.10)

The dual families {ϕ̃j,k}k∈Z and {ψ̃j,k}k∈Z span the spaces Ṽj and W̃j

respectively, such that Ṽj⊥Vi and W̃j⊥Wi, for i �= j, and Ṽj⊥Wj and
W̃j⊥Vj for all j. This biorthogonal setting gives more freedom in de-
signing scaling and wavelet bases [Cohen92]. An illustration of primal
and dual scaling and wavelet functions is given in Section 2.2.8.

At this point note that the wavelet series expansion in Eq (2.2.3) can
be rewritten as

f(x) =
J∑

j=−∞

∞∑
k=−∞

wj,kψj,k(x) +
∞∑

k=−∞
sJ,kϕJ,k(x), (2.2.11)

where the expansion of a signal into the scaling basis {ϕJ,k} replaces the
aggregation of infinitely many details (J + 1 < j < ∞). According to
the notation in Eqs (2.2.10) and (2.2.11), ψ̃(x) is the analysis and ψ(x)
is the synthesis wavelet.
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Figure 2.3: Meyer wavelet ψ(x) and scaling function ϕ(x), and amplitudes of
their Fourier transforms |ψ̂(ω)| and |ϕ̂(ω)|.

2.2.3 Wavelets and discrete filters

A direct consequence of the property Vj+1 ⊂ Vj of approximation spaces
is that the function 2−1/2ϕ(2−1x) ∈ V1 can be decomposed into the basis
of V0, which is {ϕ(x−k)}k∈Z. The same argument holds for the function
2−1/2ψ(2−1x) ∈W1, since Wj+1 ⊂ Vj . Formally,

1√
(2)

ϕ(
x

2
) =

∑
k∈Z

hkϕ(x− k), (2.2.12)

1√
(2)

ψ(
x

2
) =

∑
k∈Z

gkϕ(x− k). (2.2.13)

Eq (2.2.12) is called the dilation equation, two-scale equation or the
scaling equation, while Eq (2.2.13) is referred to as the wavelet equa-
tion. The sequences h and g can be interpreted as discrete filters. In
the biorthogonal case, similar relations are defined for the dual scal-
ing and wavelet functions, via the dual h̃ and the dual g̃ filters. A
case of great importance is when the impulse responses of these filters
are finite (FIR): the corresponding wavelet and scaling functions are
then of compact support. A necessary condition for the perfect recon-
struction [Strang96] (i.e., for the duality of ϕ(x) and ϕ̃(x) [Cohen96])
is 2

∑
n∈Z

h̃nh
∗
n+2k = δk. Once h and h̃ are specified, the wavelet fil-

ters follow as gn = (−1)nh̃1−n and g̃n = (−1)nh1−n. The equations
(2.2.12) and (2.2.13) are thus the core for the construction of wavelet
bases [Daubechies92, Mallat98, Strang96], which is beyond the scope of
this thesis, and for the construction of fast discrete wavelet transform
algorithms, which we address now.
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(a) (b)

Figure 2.4: A fast orthogonal DWT: a decomposition (a), and a reconstruc-
tion (b) step. It is a filter bank algorithm: the lowpass and the highpass filters
are followed by the down sampling by 2; at the reconstruction the up sampling
by 2 precedes the filtering.

2.2.4 DWT - A fast discrete wavelet transform algorithm

Mallat has introduced a fast, pyramidal filter bank algorithm [Mallat89b]
for computing the coefficients of the orthogonal wavelet representation;
later it was generalized for the biorthogonal case. This algorithm, is in
literature usually referred to as the discrete wavelet transform (DWT).
The explanation of the algorithm is simple. One can show3 that the
dilation equation (2.2.12), generalizes to ϕj+1,k =

∑
l∈Z

hl−2kϕj,l, and
we have

sj+1,k = 〈f, ϕj+1,k〉 =
〈
f,

∑
l∈Z

hl−2kϕj,l

〉
=

∑
l∈Z

h̄2k−lsj,l, (2.2.14)

where h̄k = h−k is the mirror filter. The scaling coefficients at the scale
2j+1 are thus computed by convolving the scaling coefficients from the
previous, finer scale with the filter h̄ and downsampling by 2. Similarly,
one can show that

wj+1,k =
∑
l∈Z

ḡ2k−lsj,l. (2.2.15)

One step of the above decomposition (the forward DWT) is depicted in
Fig. 2.4(a). At the reconstruction (the inverse DWT), one has

sj,k =
∑
l∈Z

hk−2lsj+1,l +
∑
l∈Z

gk−2lwj+1,l, (2.2.16)

which can be interpreted as up-sampling (by introducing a zero between
each two points) followed by filtering and summation of the filtered

3Note that ϕj+1,k(x) =
∑

l∈Z
〈ϕj+1,k, ϕ̃j,l〉ϕj,l(x); the inner product 〈ϕj+1,k, ϕ̃j,l〉

by a simple change of variable becomes 〈 1√
(2)

ϕ(x
2
), ϕ̃(x + 2k − l)〉 = hl−2k.
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Figure 2.5: Two dimensional DWT. A decomposition step (a) and the usual
organization of the subbands (b).

outputs (Fig. 2.4(b)). For an N -sample vector, the algorithm requires
O(N) operations and is faster than the FFT, which has complexity
O(N logN). Note that in the first step of the DWT decomposition the
scaling coefficients are approximated by the input data samples. Spe-
cific wavelets, coiflets, [Daubechies92, p.258], were designed to make the
corresponding error neglible. In image processing, the error is usually
neglected for other wavelets as well. The reason is that if the sampling in-
terval is sufficiently small [Wickerhauser94] then physical measurements
are good approximations of wavelet scaling coefficients. Another possi-
bility is to pre-filter the samples [Jansen01b, p.23] before computing the
wavelet transform.

2.2.5 DWT in two dimensions

The MRA model from Section 2.2.2 can be generalized to any positive
dimension n > 0. Here we address the conventional separable two-
dimensional (2D) DWT [Mallat89b]. Non-separable decompositions are
described e.g., in [Kovacevic92], and one of those will be briefly addressed
in Section 6.4.2. In the separable 2D case, one can show [Mallat89b],
that the detail spaces of the (bi)-orthogonal MRA are spanned by the
shifts and dilations of the tree “wavelets”: ΨLH(x, y) = ϕ(x)ψ(y),
ΨHL(x, y) = ψ(x)ϕ(y) and ΨHH(x, y) = ψ(x)ψ(y). The fast algorithm
is a straightforward extension of the one in Section 2.2, where the fil-
ter banks are applied successively to the rows and to the columns of
an image. A decomposition step is shown in Fig. 2.5(a), and a usual
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Figure 2.6: An image (a) and its 2D DWT (b). Black pixels denote large
magnitude wavelet coefficients.

representation of the frequency subbands in Fig. 2.5(b).
The DWT of an image yields fairly well decorrelated wavelet coef-

ficients. However, these coefficients are not independent. One can see
this in Fig. 2.6; it shows that large-magnitude coefficients tend to occur
near each other within subbands, and also at the same relative spa-
tial locations in subbands at adjacent scales and orientations, as noted,
e.g., in [Simoncelli99]. Note that the positions of the large wavelet co-
efficients indicate image edges, i.e., the DWT has an edge detection
property. (The use of wavelets for a classical edge detection is men-
tioned in Section 2.2.9). Fig. 2.6 also illustrates the sparsity of the
DWT of images, which makes it in particular suitable for image cod-
ing and compression [Antonini92, Shapiro93]. The 2D DWT is exten-
sively used for image denoising [Banham96], [Donoho92a]-[Donoho95b],
[Nason94, Simoncelli96, Vidakovic94, Weyrich98] as well, but there its
performance is limited, as the next Section explains.

2.2.6 Improving the limitations of DWT in denoising

A disadvantage of the DWT is that, in contrast to the CWT, this dec-
imated representation is not invariant under translation. The lack of
shift invariance makes it unsuitable for pattern recognition [Mallat96]
and also limits the performance in denoising [Coifman95]. The latter is
perhaps more clear from the viewpoint of the lack of redundancy: the
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redundancy of a representation, in general, helps to better estimate a
signal from its noisy observation. In this respect, two approaches are
common in wavelet based image denoising:
(1) Cycle spining proposed in [Coifman95]: one averages denoising re-
sults of several cyclically shifted image versions and
(2) Denoising in a non-decimated wavelet representation.
There is a slight confusion in literature regarding the two: some au-
thors (e.g., [Fan01, Romberg01]) refer to the first approach as using
the redundant discrete wavelet transform (RDWT), while this notion
is commonly (and more naturally) associated with the non-decimated
transform. Even though the two approaches are sometimes, e.g. in
[Chang00a], regarded as “equivalent”, they should not be mixed up.
The framework in which one works is quite different. Note that in the
first (cycle-spining) case one removes noise from a decimated and thus
decorrelated set of coefficients - the i.i.d. models are largely justified
and thus the derivation of a MAP or MMSE estimator is facilitated.
In the second (non-decimated) case, the realistic statistical modeling of
coefficients is far more difficult. There are however other advantages. In
the first place, the interscale comparisons between wavelet coefficients
yielding the detection of useful image features are largely facilitated.
Most of our algorithms, except in Section 5.3, are explicitly designed for
the non-decimated transform.

2.2.7 Non-decimated discrete wavelet transform

In an undecimated wavelet transform, a signal is represented with the
same number of wavelet coefficients at each scale. These coefficients
are samples of the continuous wavelet transform at all integer locations
at each dyadic scale Wf(2−j , k)(j,k)∈Z2 . Such a redundant (overcom-
plete) representation results from decomposing a signal into a family
of wavelets 2j/2ψ(2−j(x − k)), also abbreviated by ψj,k(x) for notation
simplicity. Formally, we again have as in Eq (2.2.3)

f(x) =
∞∑

j=−∞

∞∑
k=−∞

〈f, ψ̃j,k〉ψj,k(x),

but now the wavelets ψj,k(x) are not linearly independent; they do not
constitute a basis but a frame. If the frame is tight, ψ̃(x) = ψ(x).
With respect to wavelet bases, the choice of a wavelet is less restrictive
[Cohen96].
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Figure 2.7: An example of the redundant wavelet frame decomposition in
three resolution levels. From left to right are represented lowpass images and
detail images in LH, HL and HH subbands, respectively.

A non-decimated wavelet transform approaches translation invari-
ance and is therefore also called the Stationary Wavelet Transform. It
is computed with the a à trous algorithm [Holschneider89],[Mallat98,
p.156]. If we denote by hj a filter where 2j − 1 zeros are inserted be-
tween each two coefficients of the filter h, then this algorithm is

sj+1,k =
∞∑

l=−∞
h̄jk−lsj,l, wj+1,k =

∞∑
l=−∞

ḡjk−lsj,l (2.2.17)

sj,k =
1
2

( ∞∑
l=−∞

h̃jk−lsj+1,l +
∞∑

l=−∞
g̃jk−lwj+1,l

)
. (2.2.18)

To understand the inserting zeros, note that (2.2.17) should be a con-
sistent extension of the forward DWT in (2.2.14) and (2.2.15): all the
DWT coefficients should reappear in this new transform. To get those
coefficients among the redundant set, we have to skip the “extra” ones
before applying convolutions. A pictorial explanation is in [Jansen01b,
p.28].

Fig.2.7 illustrates the non-decimated wavelet transform of an image.
It requires more calculations and calls for bigger memory than the de-
composition into wavelet bases. However, it enables a better denoising
quality. Also, the nonredundant representation is usually implemented
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ϕ(x) ϕ(x) ϕ(x)

ψ(x) ψ(x) ψ(x)

Figure 2.8: Examples of Daubechies dbNv and Symlet symNv scaling func-
tions and wavelets.

for discrete signals or images whose size is a power of two, because the
number of coefficients is halved in subsequent resolution levels. In con-
trast, the non-decimated transform is equally implemented for arbitrary
input sizes.

2.2.8 Choosing a wavelet for image denoising

Important questions are which wavelet(s) to choose for image denoising
and why. Firstly, denoising in general is facilitated in a sparse represen-
tation (i.e., one with relatively few non-neglible coefficients). Secondly,
when choosing a wavelet for imaging applications, its influence on the
visual quality should be taken into account as well.

One goal is thus to produce as many as possible wavelet coefficients
〈f, ψ̃j,k〉 that are close to zero. Apart from the regularity of the analyzed
signal, this depends on the number of vanishing moments Ñv (see Eq
(2.1.1)) and on the support size K of the analysis wavelet ψ̃(x): Ñv

should be as large as possible and K as small as possible. 〈f, ψ̃j,k〉
is large only if a signal discontinuity is located within the support of
ψ̃(x)j,k. Moreover, any polynomial component of f(x) of a degree less
than Ñv lies in the complementary scaling space [Strang89], yielding
thus zero wavelet coefficients.

For the visual quality of images, the regularity and the symme-
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ψ(x) ϕ(x) ψ̃(x) ϕ̃(x)

Figure 2.9: An example of spline biorthogonal wavelets and scaling functions
of compact support of [Cohen92], with Nv = 7, Ñv = 3.

try of the synthesis wavelet ψ(x) are important. For simplicity, recall
the wavelet series expansion f(x) =

∑
j

∑
k wj,kψj,k(x). When recon-

structing a signal from its (thresholded or quantized) wavelet coefficients,
an error ε added to a coefficient wj,k will add the wavelet component
εψj,k(x) to the reconstructed signal. If ψ(x) is smooth then this error
is smooth as well, and if we work with images it is less visible. The
regularity of a wavelet usually increases with the number of its vanish-
ing moments, even though this is not guaranteed in general [Mallat98,
p.244]. The preference of symmetrical wavelets is due to the fact that
our visual system is more tolerant of symmetric errors than asymmetric
ones [Daubechies92, p.254].

Having in mind the above requirements, now we address some of
the wavelets at our disposal. In the orthogonal case, it is difficult to
achieve a large number of vanishing moments and a small support size
at the same time. The theoretical limit is K = 2Nv − 1 and is achieved
in the Daubechies wavelets [Daubechies88], usually denoted as dbNv.
The shortest member of this group db1 is in fact the Haar wavelet. Two
others, db2 and db8, are illustrated in Fig. 2.8. Note the lack of smooth-
ness in the shorter one and the asymmetry of both. Except the Haar
wavelet, compactly supported orthogonal wavelets cannot be symmetri-
cal. This comes from the properties of filter banks, see e.g. [Strang96].
The least asymmetrical compactly supported orthogonal wavelets, also
constructed by Daubechies, are the symlets symNv (see [Daubechies92]);
an example, sym8, is illustrated in Fig. 2.8. With biorthogonal wavelets
[Cohen92], illustrated in Fig. 2.9, the desired properties are easier to
meet. Firstly, the compact support does not contradict the symmetry.
ψ(x) and ψ̃(x) have equal support size K, but in general a different
number of vanishing moments and a different regularity (one can “com-
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Figure 2.10: The cubic spline smoothing function θ(x) (left) and its first
derivative, the quadratic spline wavelet [Mallat92b] ψ(x) (right).

promise” the properties of the analysis and the synthesis wavelet).
The non-decimated wavelet transform, gives even more freedom in

choosing a wavelet (see e.g., [Mallat98, p.153]). The number of vanishing
moments is less important, since the sparsity is not the main argument
now. In this framework, for image denoising, the quadratic spline wavelet
[Mallat92b] (Fig. 2.10), is often used (e.g., [Xu94],[Malfait97]) because
it is short and smooth. The next Section gives additional arguments.
We shall use this wavelet extensively. Finally, since in image denoising
literature, the db8 and the sym8 are among the most standard ones for
reporting results, we shall also use these wavelets for ease of comparison
of our results with the related state of the art methods.

2.2.9 Multiscale edge detection

A specific type of the dyadic wavelet transform, introduced in
[Mallat92b] acts as a multiscale extension of the Canny [Canny86] edge
detector. The Canny algorithm detects points of sharp variation in an
image f(x, y) by calculating the modulus of its gradient vector

−→∇f = [∂f/∂x ∂f/∂y]T . (2.2.19)

A point (x0, y0) is defined as an edge if the modulus of
−→∇f(x, y) is

locally maximum at (x0, y0) in the direction parallel to
−→∇f(x0, y0). The

multiscale version [Mallat92b] of this edge detector uses two wavelets
that are the partial derivatives of a smoothing function θ(x, y)

ψ1(x, y) =
∂θ(x, y)
∂(x)

and ψ2(x, y) =
∂θ(x, y)
∂(y)

. (2.2.20)

The dyadic wavelet transform Wf(2j , u, v) now consists of the
two components (W1f(2j , u, v),W2f(2j , u, v)), where Wnf(2j , u, v) =
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〈f, ψn
2j ,u,v

〉 as in Eq (2.1.5). The local maxima of the modulus

Mf(2j , u, v) =
√
W1f(2j , u, v) +W2f(2j , u, v), (2.2.21)

in the direction of the angle Af(2j , u, v), defined by

tan
(
Af(2j , u, v)

)
=W2f(2j , u, v)/W1f(2j , u, v), (2.2.22)

are exactly the Canny’s edges of the smoothed image (f ∗ θ2j )(x, y),
where θ2j (x, y) = (1/2j)θ(x/2j , y/2j). From these multiscale edges only,
the algorithm of [Mallat92b] computes an image approximation that is
visually identical to the original one. An important application is in
image denoising [Mallat92a].

A particular choice, leading to a fast implementation, is when the
smoothing function is separable. The two components of the wavelet
transform are then obtained by convolving only the rows and only
the columns of the image with a 1D wavelet ψ(x), respectively. In
[Mallat92b], the quadratic spline wavelet from Fig. 2.10 was proposed for
this purpose: it has a short support and is continuously differentiable,
and its dual is also a spline. This wavelet is the first derivative of the
cubic spline θ(x) in Fig. 2.10 (which results from three convolutions of
the box function defined on [0, 1] with itself).

In practice, the above transform is implemented, using a 2D version
of the à trous algorithm from Sec. 2.2.7, yielding the discretized wavelet
coefficients wlj,m,n = W lf(2j ,m, n) and the corresponding scaling coef-
ficients sj,m,n (see Fig.2.11(a)). It is thus a specific 2D non-decimated
wavelet transform, with two instead of the classical three orientation
subbands. Note that the reconstruction now involves two bandpass fil-
ters. An example illustrating the lowpass and the detail images is shown
in Fig. 2.11(b).

In Chapter 4, we use both the 2-subband and the classical 3-subband
non-decimated wavelet transform with the quadratic spline wavelet.
The filter coefficients for this wavelet are tabulated in [Mallat92b] and
[Mallat98, p.156].

2.2.10 On some extensions of the classical wavelet scheme

Numerous extensions of the “classical wavelet scheme” exist, which will
not be addressed in this thesis. A nice overview is in [Sweldons96]. Here
we briefly mention the wavelet packets [Coifman92, Wickerhauser94]
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Figure 2.11: The non-decimated wavelet transform with two orientation sub-
bands. A decomposition (a) and a reconstruction (b) step, and a decomposition
example (c).

which yield more flexible and signal-adapted [Ramchandran96] represen-
tations at the cost of slightly more complex algorithms; local trigonomet-
ric bases [HessNielsen96]; multiwavelets [Geronimo94, Strang95], where
instead of only one, several mother wavelets are used in order to combine
their useful properties; second generation wavelets, using, e.g., the Swel-
dons’ lifting scheme [Sweldons94, Sweldons95], where the idea of transla-
tion and dilation is abandoned, and the wavelet construction is adapted
to irregular samples, weights, and manifolds [Schroder95, Schroder96].

Recent trends like ridgelets [Candes99],curvelets [Candes00] and ban-
delets [Pennec00] appear as competitors to wavelets in image processing.

2.3 Wavelet Domain Image Denoising

This Section serves as an introduction to the rest of the chapter, where
use of wavelets in image denoising is reviewed.

In denoising there is always a trade-off between noise suppression
and preserving actual image discontinuities. To remove noise without
excessive smoothing of important details, a denoising algorithm needs
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to be spatially adaptive. The wavelet representation, due to its sparsity,
edge detection and multiresolution properties, naturally facilitates such
spatially adaptive noise filtering. A common procedure is: (1) Compute
the DWT or non-decimated wavelet transform; (2) Remove noise from
the wavelet coefficients and (3) Reconstruct the denoised image. The
scaling coefficients are usually kept unchanged, unless in certain cases
of signal dependent noise (Section 5.5.4).

2.3.1 Noise model and Notation

We denote discrete images as vectors f = [f1, ..., fn], where the index l
refers to the spatial position (like in a raster scanning). Most noise re-
duction methods to be reviewed in this Chapter, start from the following
additive model of a discrete image f and noise ϑ

v = f + ϑ. (2.3.1)

The vector v is the input image. The noise ϑ is a vector of random vari-
ables, while the unknown f is a deterministic signal. Some descriptions
(Section 2.6) start from a fully stochastic model, considering f as well to
be a specific realization of a random vector. One usually assumes that
the noise has zero mean (E(ϑ) = 0), so that the covariance matrix is

Q = E[(ϑ− E(ϑ))(ϑ− E(ϑ))T ] = E(ϑϑT ). (2.3.2)

On its diagonal are the variances σ2
l = E(ϑ2

l ). If the covariance matrix
is diagonal, i.e., if E(ϑl, ϑk) = 0 for l �= k, the noise is uncorrelated and
is called white. If all ϑl follow the same distribution, they are said to be
identically distributed. This implies σ2

l = σ2, for all l = 1, ..., n.
An important noise type is Gaussian with the probability density

pϑ(ϑ) =
1

(2π)n/2
√

det(Q)
e−

1
2
ϑTQ−1ϑ. (2.3.3)

If Gaussian noise variables are uncorrelated, they are also statistically
independent pϑ(ϑ) =

∏
l pϑl

(ϑl). The reverse implication (independent
variables are uncorrelated) holds for all densities. A common assumption
is that the noise variables are independent, identically distributed (i.i.d.).
Most of the methods in this chapter are specifically designed for the case
of additive white Gaussian noise, which is often abbreviated as AWGN.
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2.3.2 Noise in the wavelet domain

In the wavelet domain, the most essential information in a signal is
compressed into relatively few, large coefficients, which coincide with
the areas of major spatial activity (edges, corners, peaks, ...) in the
image. On the other hand, noise is spread over all coefficients, and
at typical noise levels (that are of practical importance) the important
coefficients can be well recognized. Now we describe the assumed noise
model in the wavelet domain formally.

Due to linearity of the wavelet transform, the additive model (2.3.1)
remains additive in the transform domain as well:

w = y + n, (2.3.4)

where w =Wdv are the observed wavelet coefficients, y =Wdf are the
noise-free coefficients, n =Wdϑ is additive noise, andWd is an operator
that yields the discretized wavelet coefficients.

An orthogonal wavelet transform maps the white noise in the input
image into a white noise in the wavelet domain. Under such an orthog-
onal transform, i.i.d. noise with a variance σ2 remains i.i.d. with the
same variance σ2.

The situation is slightly more complicated for bi-orthogonal and non-
decimated transforms. In general, one can show that if the input noise
ϑi is i.i.d., then in the wavelet domain the noise variance depends only
on the resolution level and on the subband orientation. In other words,
in each detail image wd

j noise has a constant variance (σdn,j)
2, where

(σdn,j)
2 = Sdj σ

2, (2.3.5)

and Sdj is a function of the coefficients of the particular lowpass h and
the highpass g filters used in the decomposition. Recall the scheme from
Fig. 2.5. To produce wLH

j and wHL
j subbands, the lowpass filter h is

for both horizontal and vertical directions applied 2j − 1 times in total,
and the highpass filter g only once (either horizontally or vertically).
The subband wHH

j , results from in total 2(j − 1) lowpass filtering and
2 highpass filtering. Starting from this, and deriving the second-order
cumulants of the wavelet coefficients, one can show [Foucher01] that

SLH,HLj =
(∑
k

g2
k

)(∑
l

h2
l

)2j−1
, SHHj =

(∑
k

g2
k

)2(∑
l

h2
l

)2(j−1)
,

(2.3.6)
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which holds for both decimated and non-decimated case. In the same
way, for the specific decomposition with two orientation subbands d ∈
{x, y} from Section 2.2.9, one can derive

Sxj = Syj =
(∑
k

g2
k

)(∑
l

h2
l

)2(j−1)
. (2.3.7)

The above equations show that for common AWGN case, one can easily
compute the noise variance in the wavelet domain, provided that the
input noise variance σ2 is known.

2.3.3 Noise variance estimation

In some applications of image denoising, the value of the input noise
variance σ2 is known, or can be measured based on information other
than the corrupted data. If this is not the case, one has to estimate
it from the input data, eliminating the influence of the actual signal.
Wavelet based methods commonly use the highest frequency subband of
the decomposition for this purpose. In the DWT of an image, the HH1

subband contains mainly noise. A robust estimate σ̂ is obtained with a
median measurement, which is highly insensitive to isolated outliers of
potentially high amplitudes. In [Donoho92a], it was proposed

σ̂ = Median(|wHH
1 |)/0.6745. (2.3.8)

The motivation is: if {un} areN independent Gaussian random variables
of zero mean and variance σ2, then E

(
Median(|un|)0≤n<N

)
≈ 0.6745σ.

One often denotes Median(|w|) = MAD(w), where MAD stands for
Median Absolute Deviation.

The estimate in Eq (2.3.8) is commonly used in image denoising
[Chang00a, Coifman95] and we use it in this thesis as well. Other ways
of estimating σ in the wavelet domain include [Jansen99].

2.3.4 Performance evaluation in image denoising

The ultimate objective of image denoising is, of course, to produce an
estimate f̂ of the unknown noise-free image f , which approximates it
best, under given evaluation criteria. Like in any estimation problem,
an important objective goal is to minimize the error of the result as
compared to the unknown, uncorrupted data. In this respect, a common
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criterion is minimizing the mean squared error (MSE)

MSE =
1
N
||f − f̂ ||2 =

1
N

N∑
i=1

(fi − f̂i)2. (2.3.9)

One can express the signal to noise ratio (SNR) in terms of the mean
squared error as

SNR = 10 log10

||f ||2
||f − f̂ ||2 = 10 log10

||f ||2/N
MSE

, (2.3.10)

where SNR is in dB. In image processing, another common performance
measure is the peak signal to noise ratio (PSNR), which is for grey scale
images defined in dB as

PSNR = 10 log10

2552/N

MSE
. (2.3.11)

The above, objective performance measures, treat an image simply as
a matrix of numbers. As such, they do not reflect exactly the human
perception images, i.e., their visual quality, which is also important.
Our visual system is, for example, more tolerable to a certain amount
of noise than to a reduced sharpness. Moreover, the visual quality
[Barten99] is highly subjective, and it is difficult to express it in ob-
jective numbers. In this respect, there exist certain objective criteria,
for expressing the degree of edge preservation (e.g., [Sattar97]). Our
visual system is also highly intolerant to various artifacts, like “blips”
and ”bumps” [Donoho95a] in the reconstructed image. The importance
of avoiding those artifacts is not only “cosmetic”; in certain applica-
tions (like astronomy, or medicine) such artifacts may give rise to a
wrong data interpretation. The conclusion is that validation of image
processing techniques requires both quantitative performance measures
and visual inspection of results.

2.3.5 Ideal coefficient attenuation and ideal selection

Having in mind the nature of the image denoising problem, a joint es-
timation (of all coefficients) seems as a natural strategy. However, all
the wavelet domain denoising methods to be examined in this Chapter,
as well as those that we develop in the later ones, derive an estimator
for each wavelet coefficient separately. The reason is simplicity and the
speed of algorithms. Therefore, the wavelet coefficients will be often
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modeled as independent or conditionally independent random variables,
to decompose a joint estimation problem into independent ones. It is
convenient at this point to examine what an ideal coefficient estimate is.
In this respect, following [Mallat98], we consider a nonlinear estimate

ŷ = θ(y)w (2.3.12)

of the noise-free wavelet coefficient y given the noisy coefficient w. For
AWGN noise with variance σ2

n, one can show that the expected squared
error is E{(y − wθ(y))2} = y2(1 − θ(y))2 + σ2

nθ(y)
2. The estimator

θideal(y) that minimizes this error is the ideal attenuator

θideal(y) =
y2

y2 + σ2
n

, (2.3.13)

which reminds of the Wiener filter [Papoulis84], but is in essence ba-
sically different from it (the Wiener filter performs filtering with con-
stant values, which depend on the covariance eigenvalues). If we restrict
θ(y) ∈ {0, 1}, resulting in a simpler problem, which is the coefficient
selection, we conclude from Eq (2.3.13) that the ideal selection is

θideal/sel. =
{ 1, if |y| > σn,

0, if |y| ≤ σn. (2.3.14)

Even though this is an unrealistic procedure, since we do not know the
noise-free values of y, this ideal selection principle is important for our
later developments (Chapters 4 and 5) in specifying a ”signal of interest”.

2.4 Denoising by wavelet thresholding

Wavelet thresholding is a popular approach for denoising due to its sim-
plicity. In its most basic form, this technique operates in the orthogo-
nal wavelet domain, where each coefficient is thresholded by comparing
against a threshold; if the coefficient is smaller than the threshold it is set
to zero, otherwise, it is kept or modified. One of the first reports about
this approach was by Weaver et al [Weaver92]. A systematic theory was
developed mainly by Donoho and Johnstone [Donoho92a]-[Donoho95b].
They have shown that various wavelet thresholding schemes for denois-
ing have near optimal properties in the minimax sense and perform well
in simulation studies of one dimensional curve estimation. An extensive
review of wavelet thresholding in image processing is in [Jansen01b].
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2.4.1 Hard and soft thresholding

Two standard thresholding policies are: hard-thresholding, (“keep or
kill”), and soft-thresholding (“shrink or kill”). In both cases, the co-
efficients that are below a certain threshold are set to zero. In hard-
thresholding, the remaining coefficients are left unchanged

T hard(w) =
{ 0, if |w| ≤ T,
w, if |w| > T.

(2.4.1)

In soft thresholding, the magnitudes of the coefficients above threshold
are reduced by an amount equal to the value of the threshold

T soft(w) =
{ 0, if |w| ≤ T,

sgn(w)(|w| − T ), if |w| > T.
(2.4.2)

We can say that in both cases each wavelet coefficient is multiplied
by a given shrinkage factor, which is a function of the magnitude of the
coefficient (Fig. 2.12).

In soft thresholding, the estimates are biased: large coefficients are
always reduced in magnitude; therefore, the mathematical expectations
of their estimates differ from the observed values. The reconstructed
image is often oversmoothed. On the other side, a disadvantage of the
hard thresholding is its abrupt discontinuity: estimates have a larger
variance and may be highly sensitive to small changes in the data. In
practice, especially when the noise level is high, hard thresholding yields
abrupt artifacts in the reconstructed image. Due to this, in image pro-
cessing applications the soft thresholding is usually preferred over the
hard one (see, e.g., [Chang00a]).

Various thresholding policies have been proposed, which are a com-
promise between the classical hard and soft ones, like, e.g., the “hyper-
bola” function [Vidakovic94] T hyper(w) = sgn(w)

√
w2 − T 2 for |w| > T ,

and T hyper(w) = 0 otherwise; it attenuates large coefficients less than
soft thresholding, and is continuous. Other shrinkage functions, that are
less ad hoc result from Bayes rules (Section 2.6).

2.4.2 Threshold selection

In wavelet thresholding, the choice of the threshold is a central question,
and a number of publications have been devoted to it. Here we briefly
review some of the ideas and well known threshold selection rules.
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(a) (b)

Figure 2.12: Shrinkage factors that multiply the wavelet coefficients in (a)
hard-thresholding and (b) soft-thresholding.

Most methods for estimating the threshold assume AWGN noise and
an orthogonal wavelet transform. Among those, well known is the uni-
versal threshold of Donoho and Johnstone [Donoho92a]

Tuniv = σ̂n
√

2log(n), (2.4.3)

where σ̂n is the estimate of the standard deviation of additive white noise
and n is the total number of the wavelet coefficients in a given detail im-
age. The rationale behind this threshold is to remove all the coefficients
that are smaller than the expected maximum of i.i.d. normal noise: if
{ui} is a sequence of n i.i.d. random variables with normal distribution
N (0, 1), then the maximum maxi{|ui|} is smaller than

√
2log(n) with

a probability approaching one when n tends to infinity. Moreover, the
probability that maxi{|ui|} exceeds

√
2log(n) by a value t is smaller

than e−t2/2 [Donoho92a, Vidakovic94]. At different resolution scales,
the threshold (2.4.3) differs only in the constant factor that is related to
the number of the coefficients in a given subband.

Other thresholds that are estimated in an adaptive way for each
level were proposed, e.g., in [Donoho95b, Hilton97, Jansen97, Nason94,
Weyrich98]. Among those, well known is the SURE threshold of
[Donoho95b], derived from minimizing the Stein’s unbiased risk estimate
[Stein81] when soft-thresholding is used. Nason [Nason94] proposed a
threshold selection based on a cross-validation procedure, which is fur-
ther extended in [Jansen97, Weyrich98] and applied to correlated noise.
Other methods, like [Chang00b, Ruggeri99], derive the optimum thresh-
old by minimizing the mean squared error in a thresholded signal under
an assumed prior distribution of the wavelet coeffcients. Hilton’s data
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analytic threshold [Hilton97] takes into account the spatial clustering
properties of wavelet coefficients. However, this threshold as well as all
the others mentioned above is spatially uniform, i.e., of the constant
value for the whole detail image.

It is obvious that spatially uniform thresholding is not the best thing
one can do. Instead of applying a constant threshold to all the coeffi-
cients (in a given subband) it would be better to decide for each coef-
ficient separately what is better: keeping or killing (a nice discussion
is in [Jansen01b, p.102]). It was shown in Sec. 2.3.5 that the mean
squared error would be minimized by selecting the coefficients the sig-
nal component of which is above noise standard deviation and removing
the others. A spatially varying threshold selection can better approach
this unrealistic “dream”. In this respect, spatially adaptive threshold-
ing with context modeling of wavelet coefficients [Chang98, Chang00a]
is a state-of-the art approach for image denoising. Briefly, this approach
applies a soft thresholding with the threshold equal to σ2

n/σX , where σn
is the noise standard deviation and σX is the standard deviation of the
signal; to estimate σX at a given position, the coefficients with “similar
context” are clustered; actually the context variable in [Chang00a] is
a weighted average of the coefficient magnitudes in a moving window.
This method appears as a reference method in Table 5.1. Other ap-
proaches, which rely on the decay of individual coefficients across scales
will be reviewed in the next Section.

2.5 Denoising by singularity detection

In real world signals and images the actual transitions are usually less
abrupt, or “softer” than those produced by noise. In mathematical lan-
guage, this means that the local regularity [Mallat98, p.165] of actual
signal transitions and noise is different. This fact can be effectively
exploited for denoising using the wavelet transform. The basic, under-
lying concept is the following: the evolution (i.e., the rate of increase
or decrease) of the amplitude of the wavelet transform through resolu-
tion scales at a particular spatial position is directly related to the local
regularity of the signal at that position: actual edges produce large co-
efficients across many scales, i.e., they show a persistence across scales,
while noise dies out swiftly as the scale increases. This is illustrated
in Fig. 2.13. In this Section, we briefly review several representative
denoising approaches all of which employ a non-decimated wavelet rep-
resentation.



2.5. Denoising by singularity detection 33

Figure 2.13: A noisy signal and its wavelet transform at five successive reso-
lution scales.

Figure 2.14: An illustration of the pointwise Lipschitz exponents.

2.5.1 Lipschitz exponents and the cone of influence

Uniform and pointwise regularity of signals is characterized by Lip-
schitz exponents that are in the mathematical literature also called
Hölder exponents. For an extensive elaboration, see e.g., [Daoudi98],
[Daubechies92, p.289-311], [Jaffard91], [LevyVehel01] [Mallat98, p.165–
184], [Mallat92a]. Lipschitz exponents yield upper bounds on the er-
ror in polynomial approximations of functions, in the following way:
let Px0(x) be the Taylor expansion of f(x) in the neighborhood of x0:
Px0(x) =

∑m−1
k=0

f (k)(x0)
k! (x − x0)k. Now we can define the Lipschitz ex-

ponent as follows:

Definition 2.5.1 A function f(x) is called (uniformly) Lipschitz α ≥ 0
over an interval [a, b] if for all x ∈ [a, b] there exist a polynomial Px0(x)
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of degree m = �α�, and there exist a constant C > 0 such that

∀x ∈ [a, b], |f(x)− Px0(x)| ≤ C|x− x0|α. (2.5.1)

The Lipschitz regularity of f(x) at x0 over [a, b] is the supremum of the
set of all numbers α for which f(x) is ”Lipschitz α”.

If α < 1 at x0, then f(x) is singular (not differentiable) at x0, and
α characterizes the singularity type. If 0 ≤ α < 1, then Px0(x) = f(x0)
and the condition (2.5.1) becomes: |f(x)− f(x0)| ≤ C|x− x0|α.

If a function is continuously differentiable at some point, its Lipschitz
regularity at that point is positive. Exponents α ≤ 0 are determined
through the primitives of functions, as follows: if f(x) is Lipschitz α at
a certain point, then its primitive function is Lipschitz α+1 at the same
point. In this way, one can deduce that a bounded discontinuity (step
function) has Lipschitz regularity 0, and a Dirac pulse has Lipschitz
regularity -1, as it is illustrated in Fig. 2.14.

Following [Jaffard91] and [Mallat98, p.174] one can show that if a
function f(x) is Lipschitz α at a point x0, and if the wavelet function
ψ(x) has Nv vanishing moments with Nv ≥ α, then

|Wf(s, x)| ≤ A sα+ 1
2 , for |x− x0| ≤ Ks, (2.5.2)

where K is the support size of the mother wavelet ψ(x).
Eq (2.5.2) describes the evolution of the amplitude of the wavelet

transform through scales, inside the cone of influence (COI) of the point
x0. The COI of x0 is the region in the scale-space plane (s, u), for which
x0 is included in the support of ψs,u(x). In other words it consists of
the points (s, u) for which the value of Wf(s, u) is influenced by f(x0).
Property (2.5.2) tells us that if the function f(x) has Lipschitz regularity
α > −0.5 at a certain point, then the amplitude of the wavelet transform
increases through scales within the COI of that point. In the oposite
case, for α < −0.5, the amplitude of the wavelet transform decreases
through scales. This is illustrated in Fig. 2.15.

2.5.2 Reconstruction from multiscale edges

An often cited method of Mallat and Hwang [Mallat92a] reconstructs a
denoised image from the detected multiscale edges. This method uses the
wavelet transform from Section 2.2.9, the modulus maxima of which cor-
respond to Canny’s edges [Canny86] at different resolution scales. Image
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Figure 2.15: Cone of influence (COI) (left) and evolution of the wavelet
transform through scales (right).

reconstruction from its multiscale edges is in itself an interesting prob-
lem. Marr [Marr82] was among the first ones to formulate solutions for
this problem. Despite the non-completeness of dyadic wavelet maxima
[Meyer93, p.104–109], the algorithm of Mallat and Zhong [Mallat92b]
yields a close image approximation that is visually identical to the orig-
inal one.

In the presence of noise, the multiscale edges are detected using the
estimates of the Lipschits exponents α, obtained through Eq (2.5.2).
In particular, in [Mallat92a], the wavelet transform modulus maxima
(WTMM) in the COI of each point x0 are linked across scales, to produce
the maximum line. The Lipschitz regularity α at x0 is then estimated
as the maximum slope of log2 |Wf(2j , x)| with respect to j along the
maximum line. If the estimated α < 0 the singularity at x0 is supposed
to be noise, and all the WTMM along the corresponding maximum line
are removed. In the case of images, the method of [Mallat92a] per-
forms additional chaining at each scale and uses prior knowledge about
geometrical properties of image edges to refine the edge selection: im-
portant image structures often generate longer contours, while the short
ones are likely to be created by noise. A denoised image is reconstructed
from the remaining modulus maxima only. The method achieves a high
performance in terms of MSE; we use it as a reference method in Table
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Figure 2.16: Directional cone of influence in [Hsung99]. It is support of
wavelets in different scales with direction indicated by the wavelet transform
angle at a given point.

4.1. The visual quality of images is satisfactory, apart from the fact that
all the textures disappear.

The reconstruction step [Mallat92b] is a computationally demanding
iterative procedure, the core of which are the projections onto convex
sets (POCS) [Youla82]. Several techniques, like [Cetin94], have been
proposed to improve the convergence of the reconstruction process; other
reconstruction algorithms were studied in [Cvetkovic95]. An alternative
is to avoid the WTMM representation, and to incorporate the knowledge
about the evolution of the wavelet transform across scales in a classical
thresholding procedure, as the next Section shows.

2.5.3 Regularity estimates for coefficient selection

One can use the rate of increase (decrease) of the wavelet transform
through scales, as an (additional) criterion for selecting “important”
coefficients from which a denoised image is reconstructed. Computa-
tionally, this approach is much simpler than the reconstruction from
the modulus maxima only; on the other hand, with respect to simple
thresholding that operates on coefficient magnitudes only, a much better
performance is achieved with often only a slight increase in complexity.
The selection of significant coefficients can be based on interscale ratios
[Hsung99, Malfait97] or interscale products [Xu94] of the coefficients.
Both of these approaches play an important role in the later develop-
ments in this thesis, so we describe them now in some detail.

Looking for a simpler approach to estimate the local Lipschitz regu-
larity, Hsung et al [Hsung99] define the integral over the COI of a point
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x0

N f(s, x0) =
∫
|x−x0|≤Ks

|Wf(s, x)|dx, (2.5.3)

that they denote as the wavelet transform modulus sum (WTMS), and
show that N f(s, x0) ≤ A′sα+1 where A′ is a constant. According to this
result, one can estimate the exponents α from the upper bound of the
slope of WTMS, instead of tracing the irregularly located wavelet max-
ima across scales. For a practical application in denoising, the wavelet
coefficient W (2j , x0) is selected as being useful if

N f(2j+1, x0)
N f(2j , x0)

∼= 2α+1 ≥ 2, (2.5.4)

because for useful signal transitions it is likely to have that α > 0. In
[Hsung99], the authors further observe that some “small irregular sig-
nals” can falsely fulfill the above criterion due to overlapping of COI’s
and errors in estimation of N f(2j+1, x0); they thus introduce an addi-
tional criterion for useful coefficients, which is the interscale difference

N f(2j+1, x0)−N f(2j , x0) > T, (2.5.5)

where the threshold T is a tuning parameter.
In the 2D case, the method of [Hsung99] uses the wavelet trans-

form with two orientation subbands from Section 2.2.9. The WTMS
N f(2j+1, x0, y0) is now the integral of the wavelet transform modulus
Mf(2j , x, y) from (2.2.21) over the directional cone of influence (DCOI)

{(x, y) : (x− x0)2 + (y − y0)2 ≤ K(2j)2,
y − y0

x− x0
= tan(Af(2j , x0, y0))},

where Af(2j , x, y) is the wavelet transform angle (2.2.22). The DCOI
is just a COI in a particular direction on a 2D-plane, as illustrated
in Fig. 2.16. The line integral over this DCOI is implemented by
linear interpolation since not all wavelet coefficients lie on the direction
indicated by Af(2j , x0, y0). Based on the 2D equivalents to the criteria
(2.5.4) and (2.5.5), the wavelet coefficients in the two detail images
W 1(2j , x0, y0) and W 2(2j , x0, y0) are both either selected or rejected
for reconstruction. Obviously, this approach applies a hard coefficient
classification, based on rough estimates of α, and employs heuristics in
motivating and choosing a tuning parameter T . The results in [Hsung99]
demonstrate its advantage over the classical wavelet thresholding, for
different types of noise, in terms of MSE and the visual quality of images.
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Remark. We note that the forced selection or rejection of both
coefficients W 1(2j , x0, y0) and W 2(2j , x0, y0) is not optimal: for exam-
ple in case of a vertical or horizontal edge only one of these two bears
the signal and the other one is pure noise. In Chapter 4, we compute
the WTMS in each detail image separately; the DCOI is then either
horizontal or vertical and an additional benefit is that no interpolation
is needed. More importantly, in Section 4.2.1, we generalize the
interscale-ratio formulations and investigate their statistical properties
in Section 4.2.2.

2.5.4 Interscale correlations for coefficient selection

Now we turn to the use of interscale products, instead of ratios, for the
coefficient selection. Rosenfeld demonstrated in [Rosenfeld70] that a di-
rect multiplication of the subband decompositions of an image yields an
efficient localization of important edges. Xu et al [Xu94] developed a re-
lated noise filtration technique using a non-decimated wavelet transform.
They use “correlation” (actually, products) among wavelet coefficients
at adjacent scales in order to detect the edge coefficients. The detected
edge coefficients are left unmodified while all the others are set to zero;
a denoised signal or image is then reconstructed by applying the inverse
transform. In the 1D case, the correlation mentioned above is

CL(2j , x) =
L−1∏
r=0

Wf(2j+r, x). (2.5.6)

Since the wavelet coefficients of actual edges propagate well across scales,
while noise dies out swiftly with increasing scale, the above correlation
enhances major edges. Instead of choosing one threshold, the method
of [Xu94] from each subband {Wf(2j , k)}1≤k≤n extracts gradually more
and more “edge” coefficients, until only noise remains; in particular, the
procedure is

1. Rescale the power of {CL(2j , k)}1≤k≤n to that of {Wf(2j , k)}1≤k≤n
2. Identify an edge at position k if |CL(2j , k)| > |Wf(2j , k)|
3. At the detected edge positions, set to zero CL(2j , k) andWf(2j , k);

store the edge positions

4. Repeat the whole procedure until the power of unextracted data
points in {Wf(2j , k)}1≤k≤n is equal to some reference noise level.
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(a) (b)

Figure 2.17: Typical cost functions: (a) quadratic and (b) uniform (delta).

Experimentally, L = 2 was found optimal. In the 2D case, a non-
decimated transform with 3 orientation subbands was used in [Xu94]
and the above procedure was applied to each orientation separately.
The method is robust and has been proved efficient for various types
of natural noise, e.g., in medical [Xu94] and satellite [Foucher96] images.

Remark. In our experiments, the above iterative correlation proce-
dure was often found unstable: a small deviation in the estimated noise
level may cause a large difference in the detected edges. A similar prob-
lem was observed in [Foucher96], and therefore the stopping criterion
was modified: the procedure stops when the number of detected edge co-
efficients reaches a predefined percentage of the total number of image
pixels. We develop in Section 5.4.1 another, non-iterative correlation
approach.

2.6 Wavelet domain Bayes estimation

Bayesian approaches to wavelet shrinkage are less ad-hoc than ear-
lier proposals and were shown to be effective [Abramovich98, Clyde98,
Vidakovic98]. In general, Bayes rules are shrinkers and their shape in
many cases has a desirable property: it can heavily shrink small argu-
ments and only slightly shrink large arguments. The resulting actions
on wavelet coefficients can be very close to thresholding.

2.6.1 Bayes risk, MAP and MMSE estimates

Consider a classical estimation problem: we want to estimate an un-
known signal s from its noisy observation v. The probability density
governing the observation process is the conditional density pV |S(v|s).
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The unknown signal s is treated as a realization of a random vector S.
The Bayes estimate ŝ is the estimate that minimizes the Bayes risk R,
which is the expected value of a cost C(s, ŝ)

R � E{C(s, ŝ)} =
∫ ∞

−∞

∫ ∞

−∞
C(s, ŝ)pS,V (s, v)dsdv. (2.6.1)

In a given problem one chooses a cost function to accomplish two objec-
tives [VanTrees68]: first, the cost function should measure user satisfac-
tion adequately. The second objective is to assign one that results in a
tractable problem. One usually starts by assuming that the cost depends
only on the error of the estimate sε = ŝ − s; the cost function C(sε) is
then reduced to a function of a single variable. Since the joint density
can be rewritten as pS,V (s, v) = pV (v)pS|V (s|v), the risk becomes

R =
∫ ∞

−∞
pV (v)dv

∫ ∞

−∞
C(s− ŝ)pS|V (s|v)ds. (2.6.2)

The estimate that minimizes this risk follows from differentiating the
inner integral and setting it zero: d

dŝ

∫ ∞
−∞C(s − ŝ)pS|V (s|v)ds = 0. To

proceed, the cost function needs to be specified. Two typical cost func-
tions are illustrated in Fig. 2.17.

In Fig. 2.17(a), the cost function is the square of the error C(sε) =
s2ε , and is commonly referred to as the squared error [VanTrees68] or
the quadratic cost function [Middleton68]. It accentuates the effects of
large errors. The corresponding estimate is called the minimum mean
squared error (MMSE) estimate ŝms. One can easily show that it is the
conditional mean

ŝms =
∫ ∞

−∞
spS|V (s|v)ds. (2.6.3)

The uniform cost function in Fig. 2.17(b) assigns zero cost to all errors
less than ±∆/2. In other words, an error sε less than ∆/2 in magnitude
is as good as no error. If |sε| > ∆/2 the cost has a uniform value
1. Of particular interest is the case where ∆ is arbitrarily small but
nonzero number. One can show [VanTrees68, p.57] that the risk is in this
case minimized by choosing the value s at which the posterior density
pS|V (s|v) has its maximum. Hence the name the maximum a posteriori
(MAP) estimate

ŝmap = arg max
s
pS|V (s|v). (2.6.4)

We may wish to rewrite the above expression such as to separate the role
of the observation v and of the a priori knowledge. Since pS|V (s|v) =
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(a) noise-free detail (b) histogram of (a) (c) GL model estimated from (b)

(d) noisy detail (e) histogram of (d) (f) GL model estimated from (e)

Figure 2.18: An illustration of the generalized Laplacian (GL) prior for the
wavelet coefficients, and the estimation of its parameters.

pV |S(v|s)pS(s)/pV (v), and observing that pV (v) is not a function of s,
the expression 2.6.4 can be rewritten as

ŝmap = arg max
s
pV |S(v|s)pS(s). (2.6.5)

The limiting case of the MAP estimate, in which the prior is not available
is the maximum likelihood (ML) estimate: ŝml = arg maxs pV |S(v|s).

In many cases of interest (see, e.g., [VanTrees68, p.59], the MAP
and the MMSE estimates coincide. For a large class of cost functions
the optimum estimate is the conditional mean whenever the a posteriori
density is symmetric about the conditional mean.

2.6.2 Prior distributions of image wavelet coefficients

For natural noise-free images, the histograms of wavelet coefficients are
typically sharply peaked at zero. Mallat [Mallat89b] proposed to model
the marginal prior distribution of image wavelet coefficients pY (y) as a
generalized Laplacian distribution

pY (y) =
ν

2sΓ( 1
ν )

exp(−|y/s|ν), s, ν > 0 (2.6.6)
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where Γ(x) =
∫ ∞
0 tx−1e−tdt is the Gamma function. The above

model is often used in image processing applications, e.g., [Antonini92,
Chang00a, Chang00b, Moulin99, Simoncelli96, Yoo99], where some au-
thors, e.g., [Chang00a, Moulin99] call it the generalized Gaussian distri-
bution (GGD). The model parameters s and ν can be computed from
the histogram of noise-free wavelet coefficients. Specifically, if σ2

y is the
sample variance and κy the kurtosis of the noise-free histogram, then
following [Simoncelli96]

σ2
y =

s2Γ( 3
ν )

Γ( 1
ν )

, κy =
Γ( 1

ν )Γ( 5
ν )

Γ2( 3
ν )

. (2.6.7)

In practice, of course, the histogram of noise-free wavelet coefficients is
not available and the model parameters need to be estimated from the
noisy coefficients w. In case of additive white Gaussian noise (AWGN),
and for the above prior model, it is a simple task. The variance σ2

w and
the fourth moment m4,w of the generalized Laplacian signal corrupted
by AWGN are [Simoncelli96]

σ2
w = σ2

n +
s2Γ( 3

ν )
Γ( 1

ν )
, m4,w = 3σ4

n +
6σ2

ns
2Γ( 3

ν )
Γ( 1

ν )
+
s4Γ( 5

ν )
Γ( 1

ν )
, (2.6.8)

where σ2
n is the noise variance. For natural images, the shape parameter

ν is typically ν ∈ [0, 1]. Fig. 2.18 illustrates the generalized Laplacian
prior, and the estimation of its parameters.

In practice, the Laplacian prior, where ν = 1, is often used due
to simplicity. The scale parameter is then simply computed as s =
[0.5(σ2

w−σ2
n)]

1/2. We shall use the Laplacian and the generalized Lapla-
cian prior model in this thesis. Other long-tailed distributions of wavelet
coefficients have been proposed for specific types of images, like, e.g., the
Pearson distributions for SAR images in [Foucher01], and the α-stable
distributions for medical ultrasound in [Achim01].

Common marginal prior models for wavelet coefficients are also
Gaussian mixture models pY (y) = γN (0, σ2

y,1) + (1 − γ)N (0, σ2
y,1),

where 0 ≤ γ ≤ 1 is a parameter, which can be a constant in a
given subband [Chipman97] or estimated for each coefficient [Crouse98,
Fan01, Romberg01]. A number of methods, e.g., [Mihcak99, Strela00,
Portilla01], to be reviewed in Section 2.6.4, use Gaussian scale mixture
models (GSM) [Andrews74], where each coefficient is modeled as the
product of two independent random variables: y =

√
zu, where z is a

positive scalar, and u is an element of a Gaussian random field.



2.6. Wavelet domain Bayes estimation 43

Joint histograms of image wavelet coefficients in a given subband
were investigated and modeled in [Simoncelli99]. Another way of
modeling the spatial interactions amongst wavelet coefficients is the
use of Markov Random Field (MRF) prior models for spatial clustering
[Malfait97].

Remark. In Chapter 4, we develop a new MRF prior model for
spatial clustering, and a new joint inter- and intrascale statistical model
for the wavelet coefficients. Further on, in Chapter 5, we investigate and
develop analytical and empirical prior models for averaged magnitudes
and other functions of wavelet coefficients in a local surrounding.

2.6.3 Simple Bayesian shrinkers

A large class of Bayesian wavelet domain filtering techniques assume an
orthogonal wavelet transform and approximate the wavelet coefficients
as mutually independent. In this case, optimum Bayes estimates act
as simple “shrinkers” of the coefficients. Such Bayesian shrinkage rules
are often similar to soft-thresholding, but are less ad-hoc and usually
outperform the classical thresholding in terms of the mean squared error
[Chipman97, Vidakovic98]. If the wavelet coefficients are assumed to be
i.i.d., their MAP estimates are

ŷmap = arg max pW |Y (w|y)P (Y = y), (2.6.9)

where we have omitted the indices, since the same procedure is ap-
plied to each coefficient in a given subband. The relationship between
such i.i.d. MAP estimators and wavelet thresholding was studied in
[Moulin99]. There it was shown that the soft-thresholding method is
equivalent to the MAP estimation assuming a Laplacian prior on the
wavelet coefficients, with standard deviation equal to σy = σ2

nT
−1
univ

√
2,

where σ2
n is the noise variance and Tuniv is the universal threshold.

Under the minimum mean square error (MMSE) criterion, the opti-
mum estimate is the conditional mean

ŷms =
∫ ∞

−∞
ypY |W (y|w)dy =

∫ ∞
−∞ ypW |Y (w|y)pY (y)dy∫ ∞
−∞ pW |Y (w|y)pY (y)dy

. (2.6.10)

These estimates were studied by Vidakovic [Vidakovic94], for general
one dimensional estimation problems; for the prior pY (y), a flat-tailed
distribution was used to produce the shrinkage rule similar to threshold-
ing functions. Simoncelli and Adelson [Simoncelli96] apply and discuss
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Figure 2.19: A MMSE estimator for the Laplacian prior (solid) in comparison
with the soft thresholding (dashed).

the above MMSE estimator in the context of image denoising, assum-
ing the generalized Laplacian prior from Eq (2.6.6). They consider the
AWGN case, under which Eq (2.6.10) becomes

ŷms =

∫ ∞
−∞ ypN (w − y)pY (y)dy∫ ∞
−∞ pN (w − y)pY (y)dy

, (2.6.11)

where pN (n) is the normal distribution N (0, σ2
n). For the Laplacian

prior pY (y) the above estimator has no closed form solution and is com-
puted numerically. Its shape is illustrated in Fig. 2.19: small coefficients
are highly attenuated and the large ones slightly, which is known as the
“coring” operation. In [Simoncelli96] this operation was implemented in
a particular, oriented multiresolution representation, known as the steer-
able pyramid and was reported to outperform classical Wiener filtering.
A related approach, but with the orthogonal 2D DWT was applied to
medical ultrasound in [Achim01].

Another important class of Bayesian shrinkers are derived from priors
on pY (y) that are mixtures of Gaussians. Chipman et al [Chipman97]
start with the model pY (y) ∝ γN (0, (cτ)2)+ (1−γ)N (0, τ2), where γ is
a realization of a binary random variable Γ, with P (Γ = 1) = π, and the
parameters π, c and τ depend on the resolution level, but are constant
within a given subband. The MMSE estimate has an explicit form

ŷms =
(
P (Γ = 1|w)

(cτ)2

σ2
n + (cτ)2

+ P (Γ = 0|w)
τ2

σ2
n + τ2

)
w, (2.6.12)

where

P (Γ = 1|w) =
π pW |Γ(w|1)

(1− π)pW |Γ(w|0) + π pW |Γ(w|1)
, (2.6.13)
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Figure 2.20: Local variance modeling [Mihcak99]. Histogram of the ML esti-
mates of local variances of the wavelet coefficients calculated over 5x5 windows,
and the fitted Laplacian distribution.

and pW |Γ(w|1) ∝ N (0, σ2
n + (cτ)2) and pW |Γ(w|0) ∝ N (0, σ2

n + τ2).
Since the parameters π, c and τ can be different at different resolution
levels, this method is level-wise adaptive. Related approaches are, e.g.,
[Clyde96, Clyde98] and a nice overview is given in [Vidakovic98].

Remark. Starting from a different point of view, we derive in Chap-
ter 5 a related estimator, which is both level-wise and spatially adaptive,
and which is not restricted to priors that are mixtures of Gaussians.

2.6.4 Locally adaptive wavelet domain Wiener filters

Locally adaptive wavelet domain Wiener filtering schemes, like [Li00,
Mihcak99, Strela00, Portilla01] result from the MMSE criterion when
local Gaussian scale mixture (GSM) models are used as priors pY (y):
each coefficient is modeled as a product of a Gaussian random variable
and a multiplier derived from its local surrounding. We briefly outline
the main idea.

Recall that a Wiener filter [Papoulis84] is known as a linear estimator
that minimizes the mean squared error. The MMSE estimator in Eq
(2.6.11) for the case where pY (y) = N (0, σ2

y) has a well known closed-
form solution ŷms = σ2

yw/(σ
2
y + σ2

n), which is a simple linear rescaling
of the measurement w. When applied to the coefficients of a Fourier
transform, this estimator corresponds to the Wiener filter. When applied
to subbands of a wavelet transform, the solution is an approximation to
the Wiener filter, in which the power spectral density information is
averaged over each of the subbands [Simoncelli96].

As we have seen in Section 2.6.2, in the case of images, the Gaussian
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prior on pY (y) is not realistic. However, Mihcak et al [Mihcak99], note
that the histogram of the wavelet coefficients, in a given subband, scaled
by their local standard deviations approaches well the Gaussian distribu-
tion. They model the wavelet coefficients as conditionally independent
zero mean Gaussian random variables, given their local variances. Un-
der this model, the MMSE estimator is a locally adaptive Wiener filter
ŷl = σ2

y,lw/(σ
2
y,l + σ2

n), which is practically implemented as

ŷl =
σ̂2
y,l

σ̂2
y,l + σ2

n

wl, (2.6.14)

where σ̂y,l is an estimate of σy,l. This estimate is formed based on a
local surrounding Nl, which was chosen as a square window. A usual,
maximum likelihood (ML) estimate of the variance is then

σ̂2
y,l = arg max

σ2
y>0

∏
i∈Nl

P (wi|σ2
y) = max

(
0,

1
n

∑
i∈Nl

w2
i − σ2

n

)
, (2.6.15)

since P (wj |σ2
y) was modeled as N (0, σ2

y +σ2
n), and n is the total number

of the coefficients in a subband. The main novelty of the approach
[Mihcak99] is the introduction of a prior on the variances: by observing
the histograms of the ML estimates from Eq (2.6.15) (see Fig. 2.20), they
propose an exponential prior p(σy) = λe−λσ

2
y , and accordingly derive the

MAP estimate, σ̂2
y,l = arg maxσ2

y>0

∏
i∈Nl

P (wi|σ2
y)p(σ

2
y), as

σ̂2
y,l = max

(
0,
n

4λ

(
−1 +

√√√√1 +
8λ
n2

∑
i∈Nl

w2
i

)
− σ2

n

)
, (2.6.16)

where the parameter λ is computed for each subband, by fitting the
exponential prior to the histogram of σ̂2

y,l from Eq (2.6.16). The above
approach was in [Mihcak99] abbreviated by LAWMAP, which stands for
locally adaptive window-based denoising using MAP.

Related approaches, [Strela00, Portilla01] also use Gaussian scale
mixture prior models for pY (y) and Wiener filtering. The latter includes
the adjacent scales into the neighborhood Nl and uses a log-normal
prior for the multiplier, with a more involved procedure for estimating
its parameters. Another related method [Li00], applies different filtering
in supposedly smooth and “edgy” regions: the locally adaptive Wiener
filtering using Eqs. (2.6.14) and (2.6.15) is applied in smooth areas,
and a directional filtering along the edges. Some of the above methods
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appear as reference in Table 5.1 for comparison with our method from
Section 5.3.

Remark. The methods examined in this Section are typical repre-
sentatives of the locally adaptive MMSE estimation, where the signal of
interest is assumed to be present with probability p = 1: all the wavelet
coefficients, including those with the smallest magnitudes, carry a sig-
nal to be estimated. in Section 5.3.7, we compare this approach with a
new locally adaptive MMSE method of similar complexity, where each
coefficient is assumed to carry a useful signal with p < 1.

2.6.5 MRF and HMT approaches

The Hidden Markov Tree (HMT) modeling framework is well stud-
ied and quite often used in recent wavelet denoising literature, e.g.,
[Fan00, Fan01, Crouse98, Romberg00, Romberg01]. Use of Markov Ran-
dom Field (MRF) models for spatial clustering of the wavelet coefficients
[Malfait97, Jansen99, Jansen01a] has been considerably less studied and
we devote to this subject the following two Chapters. In this Section,
without going into much detail, we briefly outline the main ideas, concep-
tual differences and similarities between the HMT and the MRF based
approaches.

The HMT modeling framework is naturally related to a decimated
wavelet representation. To improve the results of denoising, related
approaches usually use the cycle spinning method (Section 2.2.6). In
a decimated wavelet transform one can represent the “parent - child”
relationships among the coefficients at two subsequent resolution lev-
els on a quadtree structure. Due to downsampling, each coefficient
at the scale 2j corresponds to four coefficients at the next finer scale
2j−1 (recall Fig. 2.6). In a sense, “predecessors” of the HMT wavelet
methods are multiscale stochastic processes on quadtrees studied in
[Basseville92, Banham96, Luettgen93], where the wavelet coefficients are
modeled using Markov relationships of the type “parent - child” on a
quadtree (see Fig. 2.21(a)). In the HMT approaches (see Fig. 2.21(b))
similar relationships are established among the hidden state variables
rather than among the coefficients themselves.

The wavelet domain HMT model of Crouse et al [Crouse98] forms
a basis for other recent methods from this branch. In this approach,
the pdf of the wavelet coefficients is a Gaussian mixture model, related
to that of [Chipman97] from Section 2.6.3, but spatially varying and
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capturing the interscale dependencies. With each wavelet coefficient wl
a hidden state variable Sl ∈ {S,L} is associated, where S stands for a
small and L for a large coefficient. In a simplified version (the so-called
independent mixture model) where the vertical links in the quadtree
Fig. 2.21(b)) are omitted, the marginal pdf of a noise free coefficient
is a mixture of two normal densities with zero mean and variances σ2

S,l

and σ2
L,l: pY (y) = pSl N (0, σ2

S,l) + pLl N (0, σ2
L,l), where pSl denotes the

probability that Sl = S, and pSl = 1 − pLl . In the HMT model, in
addition, each parent-child state-to-state link has a corresponding state
transition matrix

Al =
[ pS→S

l pS→L
l

pL→S
l pL→L

l

]
(2.6.17)

with pS→L
l = 1 − pS→S

l and pL→S
l = 1 − pL→L

l . The parameters pS→S
l

(pL→L
l ) can be read as “the probability that the wavelet coefficient wl

is small (large) given that its parent is small (large).” These are often
called the persistency probabilities, while pS→L

l and pL→S
l are called the

novelty probabilities [Romberg01], for they express the probability that
the state values will change from one scale to the next. The HMT
model is specified in terms of (1) the mixture variances σ2

S,l and σ2
L,l;

(2) the state transition matrices Al and (3) the probability of a large
state at the root node. Grouping these parameters into a vector Θ, the
HMT model provides a parametric model for the joint pdf pY |Θ(y|θ)
in each of the three orientation subbands. To compute the parameters
one uses “upward-downward” algorithms through the tree, and model
training procedures; these algorithms, detailed in [Crouse98], are out of
our scope. Once the parameters are estimated, the wavelet coefficients
are estimated as

ŷl = E(yl|wl,θ) =
∑

q∈{S,L}
P (Sl = q|wl,θ)

σ2
q,l

σ2
n + σ2

q,l

wl (2.6.18)

where σn is the noise standard deviation. Commonly mentioned prob-
lems are: (1) a large number of unknown parameters; it implies simpli-
fications in practice (usually, a parameter invariance within the scale)
(2) convergence (in estimating the parameters) can be relatively slow
[Romberg99] and (3) lack of spatial adaptation - the links in the quadtree
from Fig. 2.21(b) do not capture the intrascale dependencies. In this
respect, a local contextual HMT model of Fan et al [Fan01] is an im-
provement: an additional hidden state is attached to each coefficient;
this additional hidden variable is a function of the surrounding wavelet
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Figure 2.21: A schematic representation of (a) the multiscale stochastic pro-
cess on a quadtree used in [Basseville92]; (b) the HMT model of [Crouse98]
and (c) the Local contextual hidden Markov model of [Fan01].

coefficients, as illustrated in Fig. 2.21(c). We note that the actual “in-
teractive communication” between the state variables is still only in the
vertical direction and not within the scale.

Precisely the opposite type of interactions are present in a MRF
based approach of [Malfait97]. There, a significance measure for each
coefficient is computed taking into account interscale dependencies,
while the interactive communication among the state variables goes
horizontally, i.e., within the scale. Fig. 2.22 depicts this concept
schematically.

Remark. In this thesis, we do not treat further the HMT ap-
proaches. Some of the methods listed above appear as reference methods
in Table 5.1. A detailed description of the MRF based approach and our
own contributions to this method follow in the next two Chapters.

2.7 Summary

In this Chapter, we reviewed briefly the principles of wavelet theory, the
common concepts in wavelet based image denoising and the representa-
tives of the state-of-the-art methods in this fields.
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Figure 2.22: A schematic representation of the interactions among the at-
tached (hidden) variables in a MRF based approach.

While the continuous wavelet transform is extensively used in func-
tional analysis, the discrete wavelet transform is commonly used in signal
and image processing. In this thesis, we focus therefore on the discrete
wavelet transform. The main properties of this representation, which
make it attractive for image denoising are: locality, the multiresolution
property, sparsity and the edge detection property.

The redundant discrete wavelet representation offers a better de-
noising performance as compared to the orthogonal one. In this respect,
either a non decimated transform is used or a redundant representation
is achieved by implementing denoising in an orthogonal transform within
a cycle-spinning method. Each of the two approaches has certain ad-
vantages. A non decimated transform facilitates interscale comparisons
among the coefficients; in the orthogonal case, statistical modeling of
the wavelet coefficients is usually simpler. In this thesis, we use almost
exclusively a non decimated transform.

In imaging applications, one usually gives preference to symmetrical
wavelets over non symmetrical ones, since the human visual system is
more tolerant of symmetrical errors. In denoising, a higher SNR is usu-
ally achieved by using wavelets with a small support size and with a large
number of vanishing moments; these requirements are often conflicting.
Common wavelets for reporting results in image denoising literature are
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the Daubechies wavelets and symlets; in methods involving regularity
analysis and multiscale edge detection, the quadratic spline wavelet is
commonly used.

Due to the sparsity of the wavelet transform, additive white Gaus-
sian noise is often well suppressed by a simple thresholding of the wavelet
coefficients, with a spatially uniform threshold. Moreover, such classical
wavelet thresholding was shown to meet various optimality criteria (in
the asymptotic sense). In imaging practice, the application of a uni-
form threshold usually yields unpleasant artefacts and/or oversmoothed
results.

More advanced wavelet based denoising methods make use of inter-
scale and intrascale dependencies among wavelet coefficients. In some
approaches (including some of the state of the art methods) the in-
ter and intrascale dependencies are exploited to “mimick” an optimum
coefficient selection; the procedure is similar to standard hard or soft
thresholding, with the significant difference that the threshold is spa-
tially varying. Other approaches derive the MAP or MMSE estimators,
relying on the prior distribution of the wavelet coefficients. The most
popular prior distributions are the generalized Laplacian (or the general-
ized Gaussian distribution GGD) and mixtures of (usually two) Gaussian
distributions.

While the generalized Laplacian distribution models the coefficient
histogram better than the mixture of two Gaussians, we observe that the
latter approach has an advantage of taking into account a probability
(or uncertainty) that a particular coefficient is small (non significant)
or large (significant). We find this concept in particular interesting,
and develop it further in the following Chapters. The existing state-of-
the art approaches, which start from such a reasoning, usually employ
the Hidden Markov Tree (HMT) or the Markov Random Field (MRF)
models. The HMT approach has recently become quite popular and
a number of publications are devoted to this subject. In contrast, the
MRF approach, proposed in [Malfait97] is less well studied and leaves
much room for research and further developments.
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Chapter 3

MRF priors in wavelet domain
denoising

Markov Random Field (MRF) models play an important role in this
thesis. This Chapter will provide the necessary theoretic background.
Representative wavelet denoising approaches using MRF models will
be discussed as an instance in a more general framework, where other
solutions will be also proposed. A basis for our later developments will
be formed.

3.1 Introduction

The use of spatial context is of great importance in image processing and
pattern recognition. The intensity, i.e., the brightness level of a pixel in
an image is highly statistically dependent on the intensities of surround-
ing pixels, unless the image is simply random noise. Using knowledge
about the image structure one can recover missing information or correct
erroneous data. The image structure is also reflected in the detail images
of its wavelet decomposition. Spatial dependencies among wavelet coef-
ficients are especially evident in a non-decimated wavelet representation,
as in Fig. 2.7.

An example in Fig. 3.1 illustrates a noise-free wavelet detail image
and its perturbation due to noise. For typical images, spatial continuity
of pixel intensities and also of the coefficients in a wavelet detail image
is a priori probable. Indeed, as illustrated in the figure, large coeffi-
cients are likely to form spatially connected clusters. One can encode
the prior knowledge about the spatial dependencies among coefficient
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(a) (b)

(c) (d)

Figure 3.1: (a) A noise-free detail image and (b) its perturbation due to noise.
(c) and (d): the results of applying a uniform threshold to the above coefficient
magnitudes; a noise-free detail typically yields spatially connected clusters.

values or about their spatial clustering using appropriate image models.
The Markov Random Field (MRF) model is one such model.

MRFs are widely used in image processing, especially for texture
modeling and classification [Abend65, Chellappa85, Cross83], for image
restoration [Geman84, Gidas89], and for segmentation of noisy and tex-
tured images [Bouman91, Comer99, Derin87, Krishnamachari97]. The
classical concepts of single-resolution image restoration using MRFs and
the maximum a posteriori (MAP) estimation, known as the MAP-MRF
approach, were established in [Geman84]. Their extension to a multi-
grid framework [Gidas89], has even emphasized their advantages. The
application of these ideas in the wavelet domain is an active research
field.

This Chapter consists of four parts. Section 3.2 reviews the basic
concepts of MRF’s and some common MRF models. Next, in Section
3.3, we address the wavelet domain MAP-MRF approach. Two different
directions are discussed: (1) a joint MAP estimation of the wavelet co-
efficients in a given detail image and (2) the MAP estimation of masks,
which indicate the positions of significant coefficients. In the first ap-
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Figure 3.2: A configuration (realization) of an image field sampled on a
rectangular lattice.

proach, the prior knowledge gives preference to detail structures like the
ones in Fig. 3.1(a) over those in Fig. 3.1(b). In the second approach,
preference is given to connected clusters like in Fig. 3.1(c) over those
in Fig. 3.1(d). The difference is that only the location of large coef-
ficients are taken into account, but not their values. Due to practical
reasons, related with the complexity of the optimization techniques, in
the remainder we focus on the second approach. In Section 3.4, related
wavelet shrinkage approaches using bi-level MRF priors and marginal
posterior estimators are discussed and a basis for the latter develop-
ments is formed. An alternative new method is proposed in Section 3.5,
and its practical applications on images with natural noise are demon-
strated. The results presented here are mainly aimed to illustrate the
applications of MRF based denoising; we do not present a performance
analysis of the algorithms (such analysis appears in the next Chapter).

3.2 Markov Random Fields

Many problems in image processing, such as image restoration, segmen-
tation or edge detection fit into a general image labeling framework,
where a given label is assigned to each pixel. In image restoration, the
label that is assigned to a pixel is the “true” gray value of its inten-
sity. In image segmentation the label determines the category of a pixel,
i.e., its belonging to a specific class. In edge detection the labels are
binary: if a pixel belongs to an edge it is assigned one label and in the



56 MRF priors in wavelet domain denoising

opposite case the other. The values of the wavelet coefficients, in this
general framework, can also be interpreted as labels assigned to the cor-
responding pixels in detail images. In the language of random image
models the statistical dependencies among pixel labels are called spatial
interactions.

Markov random field models provide a convenient way of modeling
local spatial interactions, i.e., they describe statistical dependence of a
pixel label on labels in its local spatial surrounding. First, we introduce
the notation.

3.2.1 Notation and definitions

Let L = {1, ..., n} be a finite index set - the set of sites on a regular
rectangular lattice. The elements of L correspond to points at which
an image is sampled, i.e., to the location of image pixels. A family
of random variables X = {X1, ..., Xn} defined on the set L is called
the image field. The notation X = x will be used to abbreviate the
joint event (X1 = x1, ..., Xn = xn). The vector x = {x1, ..., xn} is a
configuration of X, corresponding to a given realization of the image
field. The space of all possible configurations of X will be denoted by
X . A subscript in the notation of a vector will be used to indicate that
only some variables are present in the vector. For example, XL\l =
{Xk : k ∈ L \ {l}}.

A random field is a family of random variables X = {X1, ..., Xn}
such that all its possible configurations have strictly positive probabil-
ity. A specific class of random field models called Markov random fields
furthermore requires that the label of each pixel is influenced only by
pixels that are its neighbors. Not necessarily, but usually these neigh-
bors are the pixels that are surrounding the current one. Formally, the
neighboring relation is defined as follows.

Definition 3.2.1 A collection ∂ = {∂l : l ∈ L} of subsets of L is called
a neighborhood system, if the neighborhoods ∂l associated with the
sites l satisfy:

1. l /∈ ∂l
2. l ∈ ∂k if and only if k ∈ ∂l.

The sites l ∈ ∂k are called neighbors of k.

Two examples of neighborhoods are shown in Fig. 3.3. The neigh-
borhood in Fig. 3.3(a) is called the four-point or the first order neigh-
borhood of the center pixel, and the one in Fig. 3.3(b) is called the
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(a) (b)

Figure 3.3: (a) First order and (b) second order neighborhood.

eight-point or the second order neighborhood of that pixel. For prac-
tical reasons, these two neighborhood systems are the most frequently
used in image processing. The formal definition of a Markov random
field is:

Definition 3.2.2 The random field X is a Markov field with respect
to the neighborhood system ∂, if for all x ∈ X

P (Xl = xl|XL\l = xL\l) = P (Xl = xl|X∂l = x∂l). (3.2.1)

According to this definition, the probability of a pixel label xl, given all
other labels in the image, reduces to a function of neighboring labels
only. By choosing an arbitrarily large neighborhood, the MRF model
can be applied to every image. MRF models that are used in image pro-
cessing are often homogeneous (i.e., strictly stationary), meaning that
the distribution P (Xl = xl|X∂l = x∂l) is the same for all pixels l.

3.2.2 Gibbs distribution

Gibbs random fields (GRF) [Malyshev91] are used in statistical mechan-
ics as probability models for the fluctuations of large physical systems
around their equilibrium state. While MRFs characterize local aspects,
GRFs explicitly express the joint probability of the system variables,
providing thus a model for global context. The link between Markov and
Gibbs random fields provides an excellent framework for specifying the
global context via local spatial interactions. A Gibbs random field is
generally a random field X for which the configurations x obey a Gibbs
distribution

P (X = x) =
1
Z
e−H(x)/T , (3.2.2)

whereH(x) is called the energy function and Z and T are constants. Z is
the normalizing constant Z =

∑
x∈X e

−H(x)/T and is called the partition
function. T is the temperature and it actually controls the “peaking”
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(a)

(b)

Figure 3.4: (a) The clique types for (a) the first order and (b) the second
order neighborhood.

in the probability density: if T is smaller there is a bigger difference
between joint probabilities of different configurations x and peaks in the
density that correspond to configurations with lowest energy are sharper
(that is “easy to find”).

The relationship between Gibbs and Markov random fields is estab-
lished through the notion of cliques (Fig. 3.4). A clique is a set of sites in
which any two different elements are neighbors. The set of all cliques will
be denoted by C. The clique potential VC(x) is a function of only those
variables xl for which l ∈ C. If the energy H(x) can be decomposed as
a sum of clique potentials then the corresponding Gibbs random field
is called a neighbor Gibbs field, and is equivalent to a Markov random
field. This is stated in the often cited Hammersley-Clifford theorem:

Theorem 3.2.1 A random field is a Markov field for the neighborhood
system ∂ if and only if it is a neighbor Gibbs field for ∂.

Different proofs of this theorem can be found in, e.g., [Li95,
Winkler95]. Its practical value is that it provides a simple way of speci-
fying the joint probability of MRFs:

P (X = x) =
1
Z

exp
(
− 1
T

∑
C∈C

VC(x)
)
. (3.2.3)

The equation (3.2.3) characterizes the global context (joint distribu-
tion of all pixels in an image) in terms of local spatial characteristics
that are expressed through clique potentials. One chooses the appropri-
ate clique potential functions to give preference to certain local spatial
interactions. In this way, the prior knowledge about an image is en-
coded. For example, the isolated abrupt changes of pixel intensities
are usually produced by noise. This prior knowledge can be encoded
by choosing such a clique potential function that the lowest potential
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corresponds to the case when all pixel labels in a clique are equal. In
this way we give a preference to spatial continuity over pixels that differ
strongly from their neighbors.

3.2.3 Common MRF models

For an extensive review of different MRF models see e.g., [Li95,
Winkler95]. The particularly simple Ising model is often used as a start-
ing point for studying the more complex ones. This model was proposed
by the German physicist E. Ising in 1925 for the purpose of modeling
the behaviour of ferromagnets. We present it here in terms of images.
The energy function in the Ising model takes the form

H(x) = α
∑
l

xl + β
∑

{k,l}∈C
xkxl, (3.2.4)

where α and β are constants and the label values are binary xl = ±1.
The neighbors {k, l} ∈ C are the horizontally and vertically adjacent
pixels. The first term in (3.2.4) is the cost that is paid for the occurrence
of a given label in the image irrespective of the values of its neighbors:
depending on the sign of α one of the labels -1 or +1 will contribute
to the higher energy, being thus “more expensive” and less probable.
Therefore, by choosing α we encode the prior preference of a given label.
If both labels are equally probable a priori, we choose α = 0. The second
term in (3.2.4) corresponds to the interaction of neighboring labels. If
β < 0 then equal neighboring labels contribute to the lower energy,
and therefore xk = xl is more probable than xk �= xl. For β > 0 the
opposite is true. The Ising model is homogeneous and is also isotropic
(i.e., rotationally invariant). Fig. 3.5 illustrates three samples of this
random field, for α = 0 and different values of β. We have sampled
these configurations using the Metropolis algorithm (Fig. 3.7) at the
unit temperature.

For practical reasons, image processing methods mostly use MRF
models with cliques consisting of two sites (pair-site cliques). When the
prior probabilities of different labels are known (which is less frequently
the case in practice), single-site cliques are additionally used. In general,
the energy of such MRF models is

H(x) =
∑
C∈C

VC(x) =
∑
l

V1(xl) +
∑

{k,l}∈C
V2(xk, xl), (3.2.5)

where V1(xl) denotes the potential function for single-site cliques, and
V2(xk, xl) is the potential function for pair-site cliques.



60 MRF priors in wavelet domain denoising

(a) (b) (c)

Figure 3.5: Different configurations of the Ising model. In all cases α = 0
and (a) β = −0.25, (b) β = −0.45 and (c) β = −0.9.

Commonly used are automodels [Besag74], where V1(xl) = xlgl(xl)
and V2(xk, xl) = βk,lxkxl; gl(x) are arbitrary functions and the constants
βk,l reflect the strength of pair-site interactions. If the constants βk,l
are different for cliques of different orientations then preference is given
to spatial clusters in specific directions; such models appear in texture
analysis [Cross83].

Important classes of auto models are auto-logistic models [Li95],
auto-binomial models [Cross83] and auto-normal models, which are also
called Gaussian Markov Random Field (GMRF) models [Chellappa83,
Chellappa85, Kashiap83, Khotanzad99]. GMRF models are often used
for image segmentation [Bouman91, Comer99, Krishnamachari97].

In the multi-level logistic (MLL) model [Derin87, Geman84], for
cliques containing two or more sites the potentials are

VC(x) =
{ −γc, if all xl, l ∈ C are equal,

+γc, otherwise,
(3.2.6)

where γc is the potential for the type c cliques. In [Geman84], this
model was called the generalized Ising model and was applied to image
restoration.

3.3 The MAP-MRF approach

Now we address the MAP approach to wavelet based image denoising,
applying a MRF prior model. The additive noise model from Eq (2.3.4)
is assumed.
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3.3.1 Joint MAP coefficient estimation

This Section is more theoretical, and serves as a part of a more general
framework, into which the later MRF-based algorithms fit also. Recall
the MAP estimation assuming independent wavelet coefficients from Sec-
tion 2.6.3; its natural extension with MRF priors is the classical method
of Geman [Geman84], but applied to the detail images of the wavelet
decomposition. The objective thus is to find the joint MAP estimate

ŷ = arg max
y

pW|Y(w|y)P (Y = y), (3.3.1)

where y is the noise free detail image, w is the observed detail im-
age and the joint probability P (Y = y) is a Gibbs distribution (3.2.3).
If the noise in the wavelet coefficients is spatially noncorrelated, one
has pW|Y(w|y) =

∏
l pWl|Yl

(wl|yl). Furthermore, one can present an
arbitrary conditional distribution in the exponential form p(w|y) =
A exp(−V (w|y)) by choosing V (w|y) = ln(A) − ln(p(w|y)), where A
is a given constant. Then the conditional probability model becomes

pW|Y(w|y) = A exp
(
−

∑
l

V (wl|yl)
)
. (3.3.2)

If the joint probability P (Y = y) is the Gibbs distribution with the
partition function Z, the temperature T and the energy functionH(y) =∑

C∈C VC(y), the posterior probability is also a Gibbs distribution

P (Y = y|W = w) =
1
ζ

exp
(
−H(y|w)

τ

)
, (3.3.3)

where the partition function is ζ = A/(ZP (W = w)), which is indepen-
dent of y. The temperature is τ = T and the posterior energy, for the
conditional model in (3.3.2) is of the form

H(y|w) =
∑
l

V (wl|yl) + λ
∑
C∈C

VC(y). (3.3.4)

The constant λ represents the influence of the prior knowledge that is
encoded in the model. Thus, the MAP solution (3.3.1) is the global
minimum of the posterior energy (3.3.4). In [Geman84], the posterior
probability is described as an imaginary physical system whose lowest
energy state is exactly the MAP estimate of the noise-free image given
the noisy data. For white Gaussian noise with zero mean and variance
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σ2, the expression (3.3.4) becomes

H(y|w) =
∑
l

(wl − yl)2 +
2σ2

T

∑
C∈C

VC(y). (3.3.5)

A practical way of computing the MAP solution ŷ by minimizing
the posterior energy H(y|w) is addressed in Section 3.3.3. Such a solu-
tion should yield better results than one assuming independent wavelet
coefficients, if the clique potentials are correctly defined.

The specification of clique potentials is a key problem: they should
penalize the abrupt changes due to noise, but not the discontinuities due
to edges in the noise free image. This problem is in general important in
image denoising using MRF priors. In classical, single-resolution tech-
niques some approaches involve “line processes”, which are updated in
parallel with the Markov random field [Figueiredo97, Geman84]. Many
different “discontinuity adaptive” (DA) single resolution methods [Li95]
have been proposed. Generally speaking, DA potentials are nonlinear
functions of the absolute difference between neighboring pixel intensities,
which tend to turn off the smoothing when this difference is large.

The construction of discontinuity adaptive potentials in the wavelet
domain is an interesting problem, which is not well studied yet. For
example, the energy of the wavelet coefficients in local surroundings can
be used to indicate the presence of an edge, like in the HMT approach of
[Fan01]. Such a local measurement can be introduced as an additional
variable in the clique potentials. Similarly, the measurement derived
from several resolution scales, at a given spatial position, may be used
to control the clique potential. Here, we introduce one rough idea:

H(y|w) = f(αl)
∑
l

(wl − yl)2 + f(αk)
∑

{k,l}∈C
(|yl| − |yk|)2, (3.3.6)

where f(αl) is a monotonic increasing function of the local Lipschitz
exponent αl at position l, and such that 0 < f(αl) < 1 for αl < 0
and f(αl) > 1 for αl > 0. In this way, the first term in Eq (3.3.6),
which expresses “closeness to the data” gives more weight to the mea-
surements wl that are likely to represent a useful signal; the second term
in Eq (3.3.6), which takes care of spatial continuity, gives more weight
to neighbors that are likely to represent actual edges. We are currently
investigating the construction of practical algorithms based on this idea.
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Figure 3.6: MAP-MRF mask estimation example. Top: a noisy detail and
its significance map. Bottom: initial mask and its MAP estimate.

3.3.2 MAP Mask estimation

As an alternative to the previously analyzed approach, consider now a
simpler one: we search for the estimate of a binary mask which indicates
the positions of important coefficients in a detail image. This concept is
among the principal ones in this thesis.

The mask x is a set {x1, ..., xn} of binary labels: xl = −1 if wl is
dominated by noise and xl = 1 if wl is dominated by a useful signal. The
MRF prior model P (X = x) encodes now the prior knowledge about the
“geometry” or spatial clustering properties of detail images. Following
Malfait’s idea from [Malfait97], we associate with each wavelet coefficient
a measure of its significance ml, which is computed from the observed
wavelet coefficients. For example, one can define ml as the coefficient
magnitude, an estimate of the local Lipschitz exponent, or the amount of
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interscale correlation at the position l. We call the set m = {m1, ...,mn}
the significance map. To find the MAP mask estimate

x̂ = arg max
x

pM|X(m|x)P (X = x) (3.3.7)

we shall start from an initial mask, that is obtained by applying a thresh-
old to m. The labels of this mask are then iteratively updated, using
a given optimization algorithm. The concept is illustrated with an ex-
ample in Fig. 3.6, and the details of its implementation are explained
in the next Section. Note that if {m1, ...,mn} are conditionally inde-
pendent given x, and if we write pMl|Xl

(ml|xl) = A exp(−V (ml|xl)), the
posterior energy takes the same form as in Eq (3.3.4), i.e.,

H(x|m) =
∑
l

V (ml|xl) + λ
∑
C

VC(x), (3.3.8)

where λ is a constant. One can use the estimated MAP mask estimate
x̂ in different ways to modify the wavelet coefficients. The simplest
approach is a coefficient selection: ŷl = wl if xl = 1, and ŷl = 0 if
xl = −1. It already offers better results than the classical thresholding
of coefficient magnitudes. Even better results are obtained when the
hard binary decision is replaced by a soft modification. In this respect,
we propose one approach in Section 3.5. An alternative is Malfait’s
method (Section 3.4.2), which does not actually use the MAP mask
estimates, but a related marginal estimation concept.

3.3.3 Optimization algorithms

For both problems that were addressed in this Section, the MAP es-
timation of the detail images and the MAP estimation of masks, we
need to minimize the posterior energies of the same form. The signifi-
cant difference is that in the second case we operate with binary labels,
which is usually an easier computational problem. If the values of the
wavelet coefficients are quantized, the same combinatorial minimization
techniques can be used for both problems.

The minimization of the energy function by deterministic gradient
descent algorithms is likely to end up in a local minimum. To over-
come this problem, random search methods are often used, such as the
Metropolis algorithm [Li95] and the Gibbs sampler [Geman84]. These
algorithms allow occasional increases of the energy, in order to get out of
a local minimum. Random search starts from some initial estimate and
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Choose an initial configuration of the MRF field x

Generate a new, candidate configuration byx’

perturbing one or several labels in

Compute the change in posterior energy �H

exp(-�H/T) > random [0,1)

no

yes
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reached?

no

yes
x

x x’�

Figure 3.7: The Metropolis algorithm at the temperature T .

a chain of configurations leading to the optimum is generated by ran-
domly perturbing labels. The convergence is faster if the initial estimate
is good.

The Metropolis algorithm is depicted in Fig. 3.7. During the random
search process, a new “candidate” configuration is obtained by a random
perturbation of the previous configuration; subsequently, it is accepted
or not, depending on the change in the posterior energy ∆H. If ∆H ≤ 0
the change is always accepted and if ∆H > 0 the change is accepted with
probability p. Practically, a random number with uniform distribution
on [0,1) is generated and compared with exp(−∆H/T ). When all the
labels are updated, one iteration is completed. This method does not
guarantee the global minimum solution, but a low energy configuration
is found with a large probability. In general, a sufficient number of
generated sample configurations to reach the equilibrium is 50 times the
size of the image [Li95]. For masks that we consider, 10 iterations usually
suffice if the initial estimate is good. For a more theoretic background
on the above and other samplers, see [Winkler95].

In image processing applications, the iterated conditional modes
(ICM) technique [Besag86] is often used. It searches for a solution close
to the MAP one, by maximizing the marginal conditional probabilities
sequentially. In terms of our mask estimation problem, the ICM algo-
rithm sequentially updates each label xl by maximizing P (Xl = xl|M =
m,XL\l = xL\l). Two assumptions are made in calculating these prob-
abilities: the conditional independence pM|X(m|x) =

∏
l pMl|Xl

(ml|xl)
and the Markovianity of X. From the two assumptions and the Bayes
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theorem, it follows that [Li95, p.189]

P (Xl = xl|M = m,XL\l = xL\l) =
= CpMl|Xl

(ml|xl)P (Xl = xl|X∂l = x∂l), (3.3.9)

where C does not depend on xk. For the serial updating case, con-
vergence is guaranteed and is rapid (5 to 6 raster scans of an image
are sufficient). In our applications, we found this method very efficient
(Section 3.5).

Other optimization techniques, like random and deterministic an-
nealing algorithms, are discussed in [Li95]. Annealing algorithms tend
to overcome the problem of getting trapped in local minima by decreas-
ing the value of a given parameter (e.g., temperature in the Gibbs dis-
tribution) during the iterative minimization. For the MAP estimation
of detail images in the continuous case, like in Eq (3.3.6), a determin-
istic annealing algorithm graduated non-convexity (GNC) [Blake89] is
attractive.

3.4 Bayesian shrinkage with MRF priors

The core of this Section is a stochastic sampling wavelet shrinkage
method, first proposed by Malfait and Roose [Malfait97], and further
motivated and developed in [Jansen99, Jansen01a, Jansen01b]. It uses
the same prior and conditional model formulations as in Section 3.3.2,
and we start from this overlap first.

3.4.1 Prior and conditional models

Recall the MAP-MRF mask estimation problem from Eq (3.3.7). It
requires the MRF prior model P (X = x) for the masks x and the condi-
tional model pM|X(m|x) for a chosen significance map m. These models
appear also in the Bayesian shrinkage algorithm of this Section.

As illustrated in Section 3.2.3, there are a number of possibilities
in designing the MRF prior model. In making a specific choice, the
complexity of realization is an important thing to bear in mind. In
[Malfait97], the isotropic auto-logistic MRF model, with the second
order neighborhood Nl, was used. In this case, and for the label set
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Figure 3.8: The heuristic conditional model of Malfait and Roose [Malfait97],
where ml is a rough estimate of the local Lipschitz exponent. Left: conceptual.
Right: practical, where pMl|Xl

= A exp(−V (ml|xl)).

{−1, 1}, the joint probability of the MRF becomes1

P (X = x) =
1
Z

exp
(
−

∑
l∈L

VNl
(x)

)
, VNl

(x) = −γ
∑
k∈Nl

xlxk, (3.4.1)

where γ is a positive constant. In Section 4.3, we shall introduce a new,
anisotropic model, which adapts to the presence of edge-components
in a given neighborhood. Another prior model, which uses a different
reasoning, and attempts to compute an average degree of isolation of
the ”1” labels was recently proposed in [Jansen01a].

Now we come to the second important issue: the specification of the
conditional model. Regardless of the specific choice for the significance
measure ml, the starting assumption [Malfait95, Malfait97, Jansen99,
Jansen01a, Jansen01b] is the conditional independence

pM|X(m|x) =
∏
l

pMl|Xl
(ml|xl). (3.4.2)

Jansen [Jansen01a] motivates it from the viewpoint that the conditional
model describes local significance (while the spatial correlations are in-
cluded in the prior model). A similar argument was given in [Malfait97].
However, one should note, that in the non-decimate wavelet transform
domain, where these methods operate, the conditional independence
does not actually hold (the wavelet functions are not linearly indepen-
dent). We shall accept the model 3.4.2 as an approximation, which
greatly facilitates the computation and which has been proved to yield

1In [Malfait97], the set of labels was {0, 1}, and this expression was represented in
a less compact way, but it is only a matter of notation.



68 MRF priors in wavelet domain denoising

pWl|Xl
(wl| − 1) pWl|Xl

(wl|1)

Figure 3.9: The conditional model of [Jansen01b]. Solid lines represent the
conditional densities of the noisy coefficients, and dashed lines represent the
assumed underlying distributions of noise-free coefficients.

good results in practice. It still remains to specify the marginal condi-
tional densities pMl|Xl

(ml|xl) for the chosen ml. We shall focus on this
topic in Chapter 4. At the moment, we proceed with the representatives
from the related literature.

Malfait and Roose [Malfait95, Malfait97] incorporate the local regu-
larity information into the conditional model. The significance measure
ml is chosen as the interscale ratio of coefficient magnitudes, averaged
over a certain number d of resolution scales:

ml =
1
d

d∑
j=1

∣∣∣wj+1,l

wj,l

∣∣∣ � 2α, (3.4.3)

yielding a rough estimate of the local Lipschitz exponent α at spatial
position l. Reasoning that for xl = 1 larger ml are more likely than
for xl = −1, a heuristic model from Fig. 3.8 was proposed. Practi-
cally, the conditional probabilities were implemented as pMl|Xl

(ml|xl) =
A exp(−V (ml|xl)), where the functional forms of the potentials V (ml|xl)
consist of two constant parts and a linear transition around a threshold
T . A semi-automatic procedure was proposed in [Malfait97] to compute
the threshold T , but still there are other unknown parameters of this
model, which may complicate its practical use.

Looking for less parametrized and more realistic conditional mod-
els, Jansen and Bultheel [Jansen01a, Jansen01b] chose a simpler sig-
nificance measure: ml = |wl|. Their model for the conditional den-
sities pWl|Xl

(wl|xl) is shown in Fig. 3.9, and the explanation follows.
First, referring to the ideal coefficient selection procedure from Sec-
tion 2.3.5, the authors treat noise-free coefficients yl as significant if
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|yl| > σn, where σn is the noise standard deviation. They further sim-
plify: pYl|Xl

(yl|−1) is uniform on [−σn, σn] and pYl|Xl
(y|1) is uniform on

[−µ, σn]∪ [σn, µ], where µ is a parameter, which is estimated from the
observed coefficients. Convolution of these densities with the noise dis-
tribution pN (n) = N (0, σn) yields the corresponding densities of noisy
coefficients pWl|Xl

(wl|xl) from Fig. 3.9. The corresponding model for the
coefficient magnitudes is straightforward. Equivalently, one can derive
the conditional models for more realistic prior distributions pY (y), like
the generalized Laplacian, as we do in Chapter 4.

3.4.2 Stochastic sampling method of Malfait and Roose

Malfait and Roose proposed in [Malfait97] the following probabilistic
wavelet shrinkage scheme: each wavelet coefficient is multiplied with the
marginal probability that it is noise-free, given the computed significance
map:

ŷl = P (Xl = 1|M = m)wl. (3.4.4)

The motivation was: the shrinkage factor P (Xl = 1|M = m) is always
between zero and one, and it suppresses more those coefficients that are
less likely to represent a useful signal. In [Jansen01b, p.154], this rule
is further motivated as a “posterior expected action”, where ”action” is
the hard coefficient classification according to labels Xl.

The exact computation of the marginal probability in (3.4.4) requires
the summation of the posterior probabilities P (X = x|M = m) of all
possible configurations x for which xl = 1:

P (Xl = 1|M = m) =
∑
x∈X

fl(x)P (X = x|M = m),

where fl(x) =
{ 0, xl = −1,

1, xl = +1.
(3.4.5)

Since this is an intractable task, one typically alleviates it by using
a relatively small, but “representative” subset of all possible configura-
tions. Such a representative subset is obtained via an importance-type
sampling: the probability that a given mask is sampled should be pro-
portional to its posterior probability. An estimate of P (Xl = 1|M = m)
is then obtained by computing the fractional number of all sampled
masks for which xl = 1. This sampling is typically realized using
the Metropolis and the Gibbs samplers that were mentioned in Sec-
tion 3.3.3, in the context of the MAP estimation. Note that now
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Figure 3.10: Estimation of marginal probabilities using the Metropolis sam-
pler.

the MAP mask estimate is not the objective (or at least not a di-
rect one), but the same random search algorithms are employed in the
role of the marginal posterior estimators. In particular, all the meth-
ods in [Malfait95, Malfait97, Jansen99, Jansen01a, Jansen01b] use the
Metropolis sampler. Recall that from each configuration x, it generates
a new, “candidate” configuration xc by switching the binary label at a
randomly chosen position l. The decision about accepting the change
is based on the change in the posterior energy ∆H, or equivalently, the
decision is based on the ratio p = exp(−∆H/T ) of the posterior proba-
bilities of the new and the old configurations

p =
P (xc|m)
P (x|m)

=
pM|X(m|xc)P (xc)
pM|X(m|x)P (x)

. (3.4.6)

If p > 1 the local change is accepted, and if p < 1, the change is accepted
with probability p.

Practically, using the prior model from Eq (3.4.1), and the condi-
tional model from Fig. 3.8, the method of [Malfait97] runs the stochastic
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sampling procedure with the posterior probability

P (x|m) ∝ exp
(
−

(
α

∑
l

V (ml|xl) + β
∑
l

VNl
(x)

))
, (3.4.7)

where the two parameters α and β are experimentally optimized. Note
that for other conditional models, like in Fig. 3.9, the representation from
Eq (3.4.7), is also possible, but may unnecessarily complicate the repre-
sentation. In general, P (x|m) ∝ exp(

∑
c∈C Vc(x))

∏
l pMl|Xl

(ml|xl).
We illustrate the whole procedure in Fig. 3.10. The number of it-

erations depends on the required accuracy of the marginal probability
estimates. This and other aspects of the sampling procedure, like the
use of several short runs as opposed to one long run are discussed in
detail in [Malfait95]. In [Jansen99], one run with 10 sampled masks was
found sufficient in practice, provided that the initial mask is well chosen.

3.4.3 A practical example

Now we illustrate a simplified version of the stochastic sampling proce-
dure of Malfait and Roose on a real noisy image. The idea is to give
the reader a feeling of how the whole procedure works, on a simple-
to-implement example. Let ml = |wl|, and assume a heuristic condi-
tional model from Fig. 3.8, implemented with piece-wise linear poten-
tials V (ml|xl) having two constant parts and a linear transition of the
width 2δT around the threshold T . The prior model P (X = x), is given
in Eq (3.4.1). For the two models, we derive the posterior probability
ratio p from Eq (3.4.6) as

p = exp(−∆Vcond −∆Vprior), (3.4.8)

where for the label switching xCl = −xl

∆Vcond =




−αxl, if ml/T < (1− δ),
αxl, if ml/T > (1 + δ),

αxl(ml/T − 1)/δ, otherwise.

(3.4.9)

and
∆Vprior = βxl

∑
k∈Nl

xk. (3.4.10)

Obviously, the value of α > 0 equals the difference of the two constant
parts in the piece-wise linear model for V (ml|xl), and β = 2γ > 0, where
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noisy detail initial mask

iteration 1 iteration 2 iteration 10

...
estimated marginal prob. cleaned detail

Figure 3.11: A stochastic sampling procedure, applied to the noise removal
from the HH2 subband of the noisy image from Fig. 3.12.

±γ is the potential of pair-wise cliques in the model (3.4.1). Practically,
α and β are two constants, which reflect the relative importance given
to the observed data, and to the prior model, respectively.

We choose T = σ̂, where σ̂ is the estimate of the noise in a given de-
tail image computed as in Eq (2.3.8). We have used the same threshold
to form the initial mask in Fig. 3.12. After some experiments, we set
α = 10, β = 8, δ = 1, and apply 10 iterations with the Metropolis sam-
pler. The shrinkage factors P (Xl = 1|M = m), for l = {1, ..., n} take in
this case 11 different values and are visualized in Fig. 3.11 as a grey scale
image. The same procedure was applied to all the detail images. The
final denoising result is shown in Fig. 3.12 in comparison with a classical
soft-thresholding in an orthogonal wavelet representation. This simple
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Figure 3.12: Left: 256x256 lena image with additive white Gaussian noise of
zero mean and standard deviation 20. Center: the result of the stochastic sam-
pling algorithm, with the heuristic conditional model, PSNR=28.0dB. Right:
the result of the hard thresholding in the orthogonal transform, with Donoho’s
universal threshold; PSNR=25.6dB.

example demonstrates already a potential of the Bayesian shrinkage with
MRF priors. Further improvements will result from more realistic con-
ditional and from better MRF prior models, that we propose in the next
Chapter.

3.5 An alternative estimation approach

As an alternative to the stochastic sampling procedure, we now introduce
a simple and fast edge adaptive denoising method. The specific form of
the shrinkage factor that we derive here will also inspire a broader new
class of denoising techniques, in Chapter 5. Our main intention here is
a reduced complexity of the MRF based denoising approach.

3.5.1 Motivation and idea

In certain applications, like SAR image processing, one deals with ex-
tremely large matrices of pixels. In such cases, stochastic sampling ap-
proaches may take rather long time, which motivates our search for
simpler solutions.

Our reasoning behind this approach is practical: using a fast algo-
rithm, like ICM (see Section 3.3.3), one can find a solution close to the
MAP mask in a few raster scans. In our experiments a good mask is
found already after one iteration; after two or at the most three iter-
ations, the solution is stable. Naturally, the idea comes of using this
mask directly for an edge-adaptive coefficient suppression (as opposed
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Figure 3.13: The principle of edge-adaptive wavelet shrinkage using masks.

to using a number of intermediate masks in a stochastic sampling pro-
cess). We propose one possibility in this respect, where the coefficients
are estimated as:

ŷl = qlwl, ql = q(ml, tl), (3.5.1)

where q(ml, tl) is a shrinkage factor, ml the value of chosen significance
measure and tl = t(x̂∂l) a spatial activity indicator, computed from the
mask. Fig. 3.13 illustrates this concept: we have a family of shrinkage
characteristics q(ml), and the value of tl dictates the choice of the par-
ticular curve. The local spatial context information, which is in this case
derived from the binary mask, thus refines a wavelet shrinkage estimator.

3.5.2 Formal description and algorithm

We are interested in a closed form expression for the shrinkage factor
q(ml, tl) in Eq (3.5.1), which leads to a fast computation. Inspired by
the idea of the ICM algorithm (Sec. 3.3.3), we propose

ql = P (Xl = 1|M = m,XL\l = x̂L\l), (3.5.2)

which has a clear interpretation and which can be easily computed. In
particular, applying Eq (3.3.9), and observing that

P (Xl = −1|m, x̂L\l) + P (Xl = 1|m, x̂L\l) = 1, (3.5.3)

we easily derive

q(ml, tl) =
ξlµl

1 + ξlµl
, (3.5.4)



3.5. An alternative estimation approach 75

where ξl is the likelihood ratio and µl is the ratio of prior probabilities:

ξl =
pMl|Xk

(ml|1)
pMl|Xl

(ml| − 1)
and µl =

P (Xl = 1|x̂∂l)
P (Xl = −1|x̂∂l) . (3.5.5)

The particular form of the likelihood and prior ratios in Eq (3.5.5) results
from the assumed statistical models. For the isotropic auto-logistic MRF
model with pairwise cliques only, one can show that

µl = exp(γtl), tl =
∑
k∈∂l

x̂k (3.5.6)

which is the case depicted in Fig. 3.13. For the auto-binomial models
from [Cross83], tl is a weighted sum of neighboring labels.

The new algorithm is:

Compute the non-decimated wavelet transform

For each orientation and for the resolution scales 2j , 1 ≤ j ≤ 3

– Run the ICM algorithm:

Initialize the binary mask x
Repeat N times (N=1 or 2)

Update the labels xl sequentially: for l = 1...N
Compute the likelihood ratio ξl and the prior ratio
µl from Eq (3.5.5); compute rl = ξlµl.
if rl > 1 set xl = 1; otherwise: xl = −1

– For 1 ≤ l ≤ n:

Recompute rl = ξlµl

Estimate the coefficients: ŷl = [rl/(1 + rl)]wl

Apply the inverse wavelet transform.

3.5.3 A heuristic shrinkage family

Here we illustrate the approach proposed above with simplified condi-
tional models pMl|Xl

(ml|xl). This method has led to some nice practical
results in humanitarian demining (Sections 6.3.3 and 6.4.3) and in hy-
drology (Section 3.5.4), and is thus worth mentioning. In particular, we
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α = 20, γ = 0.2 α = 5, γ = 0.5

α = 12, γ = 0.5 α = 40, γ = 1.5

Figure 3.14: The proposed heuristic shrinkage factor ql = q(ml, tl) versus
normalized measure ml/T .

shall assume Malfait’s conditional model from Fig. 3.8, for which the
likelihood ratio ξl becomes

ξl =




exp(−α) ml/T < (1− δ),
exp

(
α(ml/T − 1)/δ

)
(1− δ) ≤ ml/T ≤ (1 + δ),

exp(α) ml/T > (1 + δ).

(3.5.7)

Several examples of the resulting shrinkage functions ql from Eq (3.5.4)
are shown in Fig. 3.14. It can be seen that if the value of the signifi-
cance measure is equal to the chosen threshold (ml/T = 1) and if the
neighborhood ∂l contains the same number of edge and non-edge labels
(tl = 0), then the shrinkage factor q(ml, tl) equals 0.5. Depending on
its neighborhood, a coefficient can be significantly reduced even if ml

is highly above the threshold. On the other hand, if the neighborhood
indicates an edge, the coefficient is less suppressed even if the value of ml

is small. The greater γ is, the greater is the influence of the neighboring
labels.

Since the underlying model is heuristic, the parameters need to be
experimentally optimized for a given application. We do not analyze in
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Figure 3.15: Top left: original SAR image. Top right: median filtered.
Bottom left: Gamma MAP filtered. Bottom right: the result of the HeurShrink
method.

detail the influence of these parameters on the SNR for specific noise
types. Instead, we shall introduce more realistic conditional models
for such cases in the following Chapters. The main advantage of the
heuristic shrinkage functions of this Section, apart from their simplicity,
is their adaptability to various problems through a user interaction. In
practice, we used δ = 0.5 and 10 ≤ α/γ ≤ 50.

Fig. 3.15 illustrates an application in remote sensing. Images are
highly corrupted by speckle noise [Goodman76]. Later, in Section 5.6, we
shall address this type of noise in more detail. The speckle suppression is
important for further image processing tasks, like segmentation. Here we
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compare visually the performance of the new method with two standard
filters for speckle noise: median filter and the Gamma MAP [Lopes90]
filter. The Gamma MAP filter is considered among the best state of
the art filters for speckle noise suppression [Foucher01, ShiFung94]. In
this case, however, its performance appears to be rather poor and not
better than that of the simple median filtering. The new method clearly
outperforms the two other filters: sharpness and image details are much
better preserved.

3.5.4 An application in hydrology

The method described above has found an interesting application in
hydrology. In particular, Verhoest [Verhoest00b] has confirmed that
the proposed noise reduction method facilitates the extraction of the
soil moisture information from SAR images, and that it outperforms
other filters that are commonly used in this application. Here we briefly
introduce the problem and demonstrate the results.

An important problem in hydrologic science is the prediction of the
effect of rain on the outflow of a river. In order to predict extreme events,
like floods, modeling of the spatial redistribution of soil moisture after
rainfall is needed. In developing such models frequent measurements
of the surface moisture are required. For studies covering large scales
(which go even beyond 1000 km) remote sensing is used.

Due to its high penetration power, Synthetic Aperture Radar (SAR)
is very attractive for this purpose. In [Verhoest98], a technique was pro-
posed to separate the soil moisture information from the other physical
factors that dominate the radar backscattering, such as topography and
land cover. Basically, this technique applies the principal component
(PC) analysis of a time series of eight European Remote Sensing (ERS)
SAR images. The second principal component (PC2) is supposed to
contain most of the soil moisture information. The resulting image is
highly corrupted with noise, which is partially related to the speckle ob-
served within the SAR images themselves. In order to reduce the noise
and to obtain an image that is more appropriate for hydrologic modeling
schemes, we have applied the method from the previous Section.

In our experiments, the PC2 image of the Zwalm catchment was used
[Verhoest00b]. The Zwalm catchment is located approximately 20 km
South of Ghent in Belgium; its total area is 114 km2; the topography
is characterized by hills and mild slopes, with a maximum elevation dif-
ference of 150 m. The drainage map, shown in Fig. 3.16(a) was derived
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Table 3.1: Classification results for the original PC2 and the denoised image
from Fig. 3.16 in comparison with the corresponding result of the FKA method
[VanMeirvenne00] applied to the same original PC2 image. The user’s accuracy
Au and the producer’s accuracy Ap are calculated according to [Lillesand94].

WET AREAS DRY AREAS

ACCURACY Au Ap Au Ap

Original PC2 image 70.5% 66.0% 47.8% 53.0%

FKA method [VanMeirvenne00] 73.1% 58.5% 46.1% 62.3%

New method 77.1% 73.2% 58.1% 63.1%

from the digital soil map of the catchment. This drainage map classi-
fies different soils into well-drained and poorly-drained classes: b and
A are well drained soils, while e, f, g and h correspond to the poorly-
drained classes. The c, D and d classes have an intermediate drainage
capacity. A visual comparison between second principal component PC2
(Fig. 3.16(b)) and the drainage map (Fig. 3.16(a)) already shows that
high PC2 values indeed correspond to the poorly-drained soils, while low
PC2 values correspond to the well-drained uphill soils. The visual sim-
ilarity with the drainage map has improved remarkably after applying
the proposed filter (see Fig. 3.16(c)).

To provide an objective comparison between these figures, Verhoest
[Verhoest00b] calculated the user’s and the producer’s accuracies defined
in [Lillesand94]:

- The user’s accuracy Au - the probability that a pixel classified into
a given category actually belongs to that category;

- The producer’s accuracy Ap - the probability that a pixel from a
given category is classified correctly.

The results are presented in Table 3.1. The Table also lists the classi-
fication results of a standard filtering technique in hydrology: factorial
kringing analysis (FKA) [VanMeirvenne00]. The results demonstrate
that the new wavelet domain filter offers a better performance with
respect to the FKA filter: the classification results in all areas have im-
proved; in wet areas, the producers’ accuracy has increased for 14.7%;
in dry areas, the users’ accuracy has increased for 12%. The achieved
improvement in the delineation of the spatial distribution of the wet and
dry areas was found significant in [Verhoest00b].
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(a)

(b) (c)

Figure 3.16: (a) Drainage map of the Zwalm catchment (ground truth) (b)
Second principal component (PC2) image obtained from a time series of ERS-
1/ERS-2 radar images, after [Verhoest98]. (c) The result of the proposed
method applied to the PC2 image. The river network is draped on top of
the three images.
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3.6 Summary and conclusions

Markov random field models provide a convenient way of modeling lo-
cal spatial interactions, as well as the global image context in terms of
its local characteristics. We reviewed some common MRF models and
explained some optimization methods, like the Metropolis sampler and
the iterated conditional modes (ICM), that are commonly used in MRF
based approaches.

In Section 3.4, we summarized the existing wavelet domain methods
that employ MRFs. Basically, these methods use bi-level MRFs as prior
models for spatial clustering and employ marginal posterior estimation
using the Metropolis sampler. In order to “demystify” the formalism
of these methods, we presented a pictorial illustration (Fig. 3.10) and a
practical, easy-to-implement example (Section 3.4.3).

The main contribution of this Chapter is that we described a more
general framework of the MRF based wavelet denoising, where the ex-
isting methods appear as one possibility. In this context, we discussed
possibilities for the joint MAP estimation of the wavelet coefficients with
MRF priors, which is a direct extension of the classical single-resolution
results. Construction of discontinuity adaptive (DA) potentials in the
wavelet domain seems a challenging topic. In Section 3.3.1, we outlined
one idea in this respect. Regarding the use of bi-level MRFs, we pro-
posed a new algorithm in Section 3.5. The main idea of this approach
is to compute a local spatial activity indicator from the MAP mask es-
timate. The value of this indicator dictates the choice of a particular
curve in a family of shrinkage characteristics; in this way, local spatial
context information refines a wavelet shrinkage estimator. The main
advantage of the new algorithm is a reduced complexity: instead of a
stochastic sampling procedure, a suboptimal but fast ICM method can
be used. This is interesting in cases where large images need to be pro-
cessed. We demonstrated the usefulness of the new algorithm in one
such application (Section 3.5.4).

In the next Chapter, our main goal is to improve the noise suppres-
sion performance, and therefore we shall use a more powerful stochastic
sampling approach. In Chapter 5, we return to the idea of our new al-
gorithm from 3.5 and develop it further and beyond the scope of MRFs.

Some parts of this Chapter appeared in [Pizurica01c]. The al-
gorithm of Section 3.5 with various conditional models was pub-
lished in [Pizurica99c, Pizurica00c, Pizurica00d], and its applications
in [Pizurica00a, Pizurica00b, Verhoest00a].
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Chapter 4

Statistical Modeling in MRF
based wavelet denoising

This Chapter concentrates on advanced concepts in Bayesian wavelet
shrinkage with MRF priors. The necessary background was already
formed. Now we are aiming at an improved noise suppression perfor-
mance through statistical modeling. The contents of the Chapter are
original and present our own contributions in this field. The main nov-
elties with respect to related approaches are: (1) the interscale-ratios
of wavelet coefficients are statistically characterized, and different local
criteria for distinguishing useful coefficients from noise are evaluated;
(2) a joint conditional model is introduced, and (3) a novel anisotropic
Markov Random Field prior model is proposed. The results demonstrate
an improved denoising performance over related existing approaches.

4.1 Introduction

The previous Chapter has established the necessary background theory
for wavelet domain denoising using prior models for spatial clustering.
Fig. 4.1 summarizes pictorially the basic concept of this approach. Now
we concentrate on the following issues:

Significance measures - The main novelties are:
a statistical characterization of the interscale-ratios of the wavelet
coefficients; an evaluation of different local criteria for distinguish-
ing useful coefficients from noise; a joint conditional model, which
combines coefficient magnitudes and their evolution across scales.
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We start from different interscale-ratio formulations, [Malfait97],
[Hsung99], and unify them in a general framework. Instead of using
heuristic models for the ratios, we determine empirically their con-
ditional probability densities in regions containing pure noise, and
in edge regions, respectively. Using the empirical densities and em-
ploying a statistical decision theory, we compare the performance
of different significance measures. Such a performance evaluation
clearly motivates a joint significance measure, which relies on both
coefficient magnitudes and on their evolution across scales. The
resulting joint conditional model offers a superior denoising perfor-
mance with respect to earlier ones that use only interscale ratios
[Malfait97], or only coefficient magnitudes [Jansen01a].

A new Markov Random Field prior model for spatial clustering
We propose an original anisotropic MRF prior model. As com-
pared to the isotropic model from [Malfait97], our model, which is
slightly more complex, preserves image details significantly better.
We use the same formal description as in Eq (4.1.1), so the joint
label distribution is still given by

P (X = x) =
1
Z

exp
(
−

∑
l∈L

VNl
(x)

)
, (4.1.1)

but with a new form of VNl
(x), which adapts to the presence of

edge segments in a given neighborhood.

New prior and conditional models are combined into an upgraded
stochastic sampling procedure. We adopt the estimation approach from
Section 3.4.2: ŷl = P (Xl = 1|M = m)wl, and run the stochastic sam-
pling procedure, which was depicted in Fig. 3.10. We shall rewrite the
ratio p of prior probabilities from Eq (3.4.6) simply as

p =
pMl|Xl

(ml|xcl )
pMl|Xl

(ml|xl) exp
(
VNl

(x)− VNl
(xc)

)
. (4.1.2)

We use a non-decimated wavelet transform with the quadratic spline
wavelet from Fig. 2.10, and consider both the decomposition with two
orientation subbands from [Mallat92b] (Section 2.2.9) and the classi-
cal decomposition with three orientation subbands. The two-subband
decomposition is often used for edge detection, local regularity char-
acterization and denoising [Mallat92a, Hsung99]. We find it attractive
from the computational point of view: e.g., the stochastic sampling runs
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Figure 4.1: A MRF based approach that we now further develop.

on 2 instead on 3 detail images per scale and is thus 50% faster. It is
therefore interesting to compare the noise suppression of the method for
the two and three subband case. We present the results for both. For
the illustrations throughout the Chapter, the 2-subband decomposition
was used.

The Chapter is organized as follows. In Section 4.2, we first propose
a common and slightly more general formulation for different previously
used interscale ratios. Then we present a simulation method for char-
acterizing statistical properties of these and possibly other significance
measures. Further on, we conduct a performance evaluation. The results
motivate clearly a joint significance measure, which relies on both the
coefficient magnitudes and their evolution across scales. We therefore
propose the corresponding joint conditional model, and describe it both
conceptually and in terms of a practical application. In Section 4.3, we
propose a new MRF prior model. In Section 4.4, we describe the up-
graded stochastic sampling algorithm, which uses the proposed prior and
the conditional models. Then we evaluate the influence of those models
on the noise suppression performance and on the visual quality of im-
ages. Further on, we compare the performance of the method (in terms
of SNR and visually) in cases when two and when three orientation sub-
bands are used. We then summarize and discuss the quantitative results
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of the method in comparison with related approaches from literature. In
Section 4.5, we summarize the main conclusions.

4.2 Significance measures

For optimal performance of the MRF based denoising approach from Fig.
4.1, the choice of the significance measure ml and the characterization
of its conditional densities pMl|Xl

(ml|xl) are important. Earlier models
proposed in literature [Malfait97, Jansen01a] were explained in Section
3.4.1 (see Fig. 3.8 and Fig. 3.9 and the related text). In summary, ml was
chosen either as an interscale ratio, with a heuristic and parametrized
conditional model, or ml was chosen as the coefficient magnitude, in
which case more realistic probability models were considered. To our
knowledge, there has been no attempt to quantitatively compare the
performance of these two and possibly other significance measures ml.
Also, for interscale ratios real densities were not examined.

We note that two different formulations of interscale ratios have been
used in recent literature, albeit with the same intention: to estimate
roughly the local regularity of an image and accordingly to make a dis-
tinction between useful edges and noise. One formulation [Malfait97],
was given in Eq (3.4.3), and the other one [Hsung99], was given in Eq
(2.5.4). In the first case, the ratio |wj+1,l/wj,l| was averaged over a given
number of scales, yielding the estimate of 2α, where α is the local Lip-
schitz exponent; in the second case, averaging through scales was not
considered, but the cone of influence was taken into account, and the
estimator of 2α+1 was proposed.

4.2.1 A discretized approximation of interscale ratios

We formulate the two mentioned interscale ratios from Eqs (3.4.3) and
(2.5.4) in a unifying and slightly more general way. Let us define for each
spatial position l the coefficient αn→k,l which determines the average rate
of increase of the magnitudes of the wavelet coefficients between any two
dyadic scales 2n and 2k, where n, k ∈ Z and k ≥ n+ 1

αn→k, l � log2

( 1
k − n

k−1∑
j=n

|wj+1,l|
|wj,l|

)
. (4.2.1)

The logarithm in Eq. (4.2.1) is used in order to make αn→k,l behave as
a rough estimate of the local Lipschitz exponent α. This quantity de-
scribes the evolution of the individual wavelet coefficients at the spatial
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Figure 4.2: An illustration of the “rabbit ears” effect, associated with inter-
scale ratios. Top to bottom: details at two successive scales and the corre-
sponding interscale ratio.

position l. Similarly we define a second quantity βn→k,l, which describes
the “collective” evolution of the wavelet coefficients inside a cone of influ-
ence centered at the spatial position l. We denote by C(j, l) the discrete
set of wavelet coefficients at the resolution scale 2j , which belong to the
cone of influence of the spatial position l, and we define βn→k,l as

βn→k, l � log2

( 1
k − n

k−1∑
j=n

|Ij+1,l|
|Ij,l|

)
, Ij,l �

∑
m∈C(j,l)

|wj,m|, (4.2.2)

which is an estimate of α + 1. We call the quantity αn→k,l the average
point ratio (APR) and the quantity βn→k,l the average cone ratio (ACR).

In the case of images, C(j, l) refers to a directional cone of influence
(DCOI), similar to the one in Fig. 2.16. Note that in contrast to the
formulation from Section 2.5.3 (see also the remark there), we operate on
each detail orientation separately; the direction of the cone of influence
is now simply perpendicular to the subband orientation.

Fig. 4.2 illustrates an interscale ratio: at positions of useful edges
characteristic pulses with “rabbit ears” occur. Due to this, the coeffi-
cients adjacent to edges are falsely detected as significant. In order to
avoid false broadening of the estimated regions with significant edges,
one should avoid averaging of these ratios over a large number of scales.
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21

3 4

1 2

3 4

Figure 4.3: Top: reference images: 1 - “Lena”, 2 - “Goldhill”, 3 - “Fruits”, 4 -
“Barbara”. Bottom: reference edge positions for vertical orientation of details
at resolution scale 22.
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Figure 4.4: The simulation setup in our experiments.

4.2.2 Statistical characterization via simulation

Now we introduce a simulation method to determine the empirical con-
ditional densities pMl|Xl

(ml|xl) of any chosen significance measure ml

and for an arbitrary type of noise. Practically we restrict ourselves to
additive white Gaussian noise. The benefit of knowing the empirical
densities is twofold. Firstly, the performance of different significance
measures can be objectively compared relying on the statistical estima-
tion theory [VanTrees68]. Secondly, the empirical densities can be em-
ployed in an actual denoising procedure instead of the heuristic models,
which should lead to a more accurate estimation.

To determine pMl|Xl
(ml|1) one needs a statistical model for the ac-

tual significant image discontinuities, i.e., the “ground truth” edges. To
achieve realistic results, we extract these discontinuities from various
natural noise-free images, like those in Fig. 4.3. Edge quality measures
are discussed, e.g., in [Abdou79, Bryant79, Kitchen81, Strickland93]. In
our approach, for a given reference image, at each resolution scale and
orientation the reference edge positions are obtained by thresholding the
magnitudes of noise-free wavelet coefficients. For characterizing densi-
ties of interscale ratios, the choice of these thresholds is not critical. In
particular, we choose a threshold for each resolution scale that is equal
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(a) (b)

Figure 4.5: Conditional densities of (a) APR and (b) ACR, computed from
scales 21 − 24. Different reference edges from Fig. 4.3 are used. The standard
deviation of added noise is σ = 25.

to the magnitude of a wavelet coefficient produced by an ideal step edge
of amplitude A, where A equals to 1/16 of the dynamic range of the
image.

The complete simulation procedure is depicted in Fig. 4.4. To esti-
mate pMl|Xl

(ml| − 1), we use an image which consists of pure noise. We
compute the discrete wavelet transform of this image and find the his-
togram of the given significance measure ml. To estimate pMl|Xl

(ml|1),
we apply a similar procedure, except that the noise is added to the ref-
erence image and ml is computed only in the reference positions of sig-
nificant coefficients. The whole procedure is iteratively repeated, adding
every time random noise with the same variance to the noise-free image.
Therefore, we refer to this method as simulation.

Conditional densities of APR and ACR

The conditional densities pAl|Xl
(αn→k,l| − 1) and pBl|Xl

(βn→k,l| − 1), of
APR and ACR, respectively, given pure noise do not depend on the noise
variance: the increase of noise affects the magnitudes of the wavelet co-
efficients at all scales equally and the statistical distribution of their
averaged ratios does not change. These conditional densities, shown
as dashed curves in Fig. 4.5(a) and Fig. 4.5(b), peak in the vicinity
of -1 and 0, respectively. The empirical densities pAl|Xl

(αn→k,l|1) and
pBl|Xl

(βn→k,l|1), for different reference edges from Fig. 4.3 are also il-
lustrated in Fig. 4.5(a) and Fig. 4.5(b), and peak in the vicinity of 0
and 1, respectively. We have verified that the choice of a threshold that
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specifies the reference edges in Fig. 4.3 is not critical for characterizing
these densities.

It should be noticed that the overlap between pBl|Xl
(βn→k,l|−1) and

pBl|Xl
(βn→k,l|1) is smaller than the overlap between pAl|Xl

(αn→k,l| − 1)
and pAl|Xl

(αn→k,l|1). It suggests that ACR provides a better separation
between noise and useful edges than APR. We examine this further in
Section 4.2.3. The robustness of interscale ratio statistics with respect
to noise level is illustrated in the left part of Fig. 4.6. One can see that
the overlap between conditional densities of ACR given noise and given
edges does not change much as the noise variance increases.

Conditional densities of the coefficient magnitudes

The right part of Fig. 4.6 illustrates densities pMl|Xl
(ml|xl), for the case

where ml is the magnitude of the wavelet coefficient, which we denote
by ωl. In case of white Gaussian noise, there is no need to simulate
conditional densities of pure noise; obviously one has

pΩl|Xl
(ωl| − 1) =

2
σn
√

2π
exp

(
− ω2

l

2σ2
n

)
, ω > 0, (4.2.3)

where σn is the standard deviation of the noise in the given detail image.
For pΩl|Xl

(ωl|1), close approximations can be computed directly from the
noisy image itself (Section 4.2.4). For comparative performance analysis
with respect to interscale ratios, we use empirical densities pΩl|Xl

(ωl|1).
It is interesting to compare how the overlap between the conditional

densities of ωl in Fig. 4.6 evolves with increasing of noise level, with
respect to that of ACR that is shown in the same figure. A simple
visual inspection suggests that for relatively small standard deviations
of noise the coefficient magnitude provides a better separation between
noise and useful signal, whereas the opposite is true for high noise levels.
This is further investigated in Section 4.2.3. It is not shown here, but
one can easily extrapolate, that if a different threshold was chosen for
defining the edges of interest in Fig. 4.3, the densities pΩl|Xl

(ωl|1) are
peaked at correspondingly greater or smaller values ωl, but important
is that their qualitative behaviour does not change.
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Figure 4.6: Comparison between empirical densities of ACR computed from
scales 21 − 23 (left) and empirical densities of coefficient magnitudes at scale
22 (right), for reference edges 1 from Fig. 4.3 and for different noise levels.
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4.2.3 Performance Evaluation

By performance of a given significance measure we mean its ability to dis-
tinguish between noise and useful signal without making use of the prior
model. This is equivalent to analyzing the performance under the Bayes
labeling [Duda73, VanTrees68] with P (Xl = −1) = P (Xl = 1) = 0.5.
We shall compute the receiver operating characteristics (ROC) for a
given standard deviation σ of added noise, and the error probabilities de-
pending on σ. The ROC curves plotted in this thesis show the fraction of
the labels xl = 1 that are wrongly classified as xl = −1 (false negatives,
FN), versus the fraction of the labels xl = −1 that are wrongly classi-
fied as xl = 1 (false positives, FP). A customary definition is slightly
different1. For P (Xl = −1) = P (Xl = 1), FN and FP are given by

FN =
∫ T

−∞
pMl|Xl

(ml|1)dml and FP =
∫ ∞

T
pMl|Xl

(ml| − 1)dml.

(4.2.4)
It can be shown that the optimal decision threshold Topt (for which the
total probability of wrongly classified labels is minimum) is the one for
which pMl|Xl

(Topt| − 1) = pMl|Xl
(Topt|1). For the case T = Topt, we shall

compute the error probability Pe = 0.5(FN + FP ).
Recall that we have derived the empirical densities pMl|Xl

(ml|1) from
realistic edges corrupted by noise, and pMl|Xl

(ml| − 1) from pure noise.
Therefore, FN , FP and Pe that we consider refer to the ability to
distinguish realistic noisy edges from pure noise. We call this the ideal
performance (Section 4.2.3). The actual performance for different test
images, where instead of pure noise one deals with a combination of
noise and image texture is addressed later in this Section.

Ideal performance

Using the empirical densities derived from the test images in Fig. 4.3, we
compare first the two interscale ratios: APR and ACR. When discussing
Fig. 4.5, we have already remarked that ACR should perform better.
The computed ROC in Fig. 4.7(a) and error probabilities as a function
of σ in Fig. 4.7(b) confirm this observation. Fig. 4.7(c) illustrates that
the expected performance of interscale ratios improve, when they are
averaged over a greater number of resolution scales.

1By a classical definition [VanTrees68] the ROC plots true positives TP=1-FN ver-
sus false positives FP, i.e., it plots the probability of detection versus the probability
of a false alarm.
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Figure 4.7: (a) ROC for APR and for ACR, calculated from the scales 22−24.
(b) Error probabilities for optimal decision thresholds versus standard deviation
of noise. (c) ROC for ACR averaged over different scales.
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Figure 4.8: A comparative performance of ACR and coefficient magnitudes
at the scales (a) 21 and (b) 22.

Let us now compare the performance of ACR (which was the bet-
ter one among the two considered interscale-ratios) and the magnitudes
of the wavelet coefficients. Fig. 4.8(a) illustrates that at the finest res-
olution scale 21, ACR offers a better performance than the coefficient
magnitude even for small noise levels. However, this is not the case at
coarser resolution scales. At the scale 22, as shown in Fig. 4.8(b), ACR
offers a better performance only for relatively high standard deviations
σ of noise.

Actual performance

The above presented ideal performance comparison between different
significance measures relies on the empirical densities pMl|Xl

(ml|xl) and
refers to the distinction between noisy edges and pure noise. To inves-
tigate the performance in practice, where a non-edge region not only
contains noise but also (partly) texture, we apply a decision threshold
directly to the computed significance map m, and actually count the
number of misclassified labels, with respect to the assumed “ground
truth” edges. A reference edge label at the position l is denoted by xRl ,
and the one that results from thresholding ml is denoted by xTl . The
empirical FP and FN, are then

FPe = #{l|xRl = −1, xTl = 1}/#{l|xRl = −1},
FNe = #{l|xRl = 1, xTl = −1}/#{l|xRl = 1}, (4.2.5)
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where #S denotes the cardinality of the set S. Now, FNe and FPe,
refer to the separation between realistic edges on the one hand and a
combination of noise and image texture on the other hand. For the
coefficient magnitudes, the ideal and real distribution hardly differ. For
the interscale ratios, the real FNe and FPe are greater than those that
were derived from the estimated densities, and the difference is image-
dependent.

In Fig. 4.9, we display the empirical error probabilities computed as
(FNe +FPe)/2 for a range of decision thresholds. One can see that the
main conclusions regarding the comparison between the three signifi-
cance measures remain valid on these empirical curves. Also, it can be
seen that for interscale ratios, a well chosen decision threshold provides
nearly optimal performance for different images and for different noise
levels, as was expected according to the empirical densities.
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Figure 4.9: Empirical error probabilities computed as (FNe + FPe)/2. Left:
for different images and the same noise deviation. Right: for the same image
and different noise deviations.
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Figure 4.10: Empirical joint densities at the scale 22, for different standard
deviations of input noise.

4.2.4 A joint significance measure

On the basis of the previous analysis, we now propose a joint significance
measure ml, which relies on both the coefficient magnitude ωl and on
the interscale ratio at the corresponding spatial position. It was shown
that ACR offers a better performance than APR. Therefore, for wavelet
coefficients at resolution scale 2j we compute ACR β1→j+1,l. It was the
best choice according to our experiments: averaging ratios over scales
coarser than 2j+1 suppresses background noise better, but increases the
number of falsely selected coefficients in regions adjacent to image edges.
To simplify notations, in the remainder we use only the location index l.
The proposed significance measure is thus ml = (ωl, βl), where ωl and βl
are computed from the observed wavelet coefficients, and are realizations
of random variables Ωl and Bl, respectively.
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Figure 4.11: Joint densities for ACR and coefficient magnitudes at the scale
22, for σ = 25.5. Left: Empirical joint densities. Right: Products of empirical
one dimensional densities.
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We still need to specify conditional densities pMl|Xl
(ml|xl) for the

joint significance measure. Using the simulation method from Section
4.2.2, we obtain its empirical conditional densities, examples of which
are given in Fig. 4.10. From a practical point of view, it is convenient
to assume that βl and ωl are conditionally independent given xl,

pMl|Xl
(ml|xl) = pΩl|Xl

(ωl|xl)pBl|Xl
(βl|xl). (4.2.6)

To investigate the validity of this assumption, we compare the actual
joint conditional densities, pMl|Xl

(ωl, βl|xl), with products of the cor-
responding one-dimensional densities adapted for the two-dimensional
case. Fig 4.11 shows the contour plots of the empirical joint densi-
ties in comparison with the product of two independent densities from
Eq (4.2.6). These diagrams suggest that the assumption about the con-
ditional independence is not true, but is acceptable as an approximation.

With the proposed conditional probability model (4.2.6), the param-
eter p in Eq(4.1.2) becomes

p =
(pΩl|Xl

(ωl|xcl )
pΩl|Xl

(ωl|xl)
)λ1

(pBl|Xl
(βl|xcl )

pBl|Xl
(βl|xl)

)λ2

e
λ3

(
VNl

(x)−VNl
(xc)

)
, (4.2.7)

where λ1 = λ2 = 1 and λ3 is a positive constant. In practice, it may be
useful to allow other values of λ1 and λ2 in order to change the relative
importance given to ωl and βl. For example, in the special case where
λ1 = 0, this model reduces roughly to the one in [Malfait97], except for
the fact that there APR was used instead of ACR, and that another,
heuristic density model was assumed. For λ2 = 0 the joint conditional
model basically reduces to the one of [Jansen99] and [Jansen01a], again
with a slight difference that here more realistic densities of coefficient
magnitudes will be actually implemented. The next Section explains the
details regarding the implementation of those densities in our practical
algorithm. The influence of different values λ1, λ2 and λ3 on denoising
results is demonstrated in Section 4.4.2.

4.2.5 Implementation details

In an actual denoising procedure, for interscale ratios, the densities of
which are robust with respect to noise level, we exploit the empirical
results. We have verified that using empirical ratios of ACR densities
pBl|Xl

(βl|1)/pBl|Xl
(βl|−1) derived from different reference edges and for
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different noise variance, does not affect denoising performance notice-
ably. Therefore, in our practical algorithm, one ratio

pBl|Xl
(βl|1)/pBl|Xl

(βl| − 1)

was fitted from the empirical densities, stored and used for all the results
presented in this thesis.

For pΩl|Xl
(ωl| − 1), storing the empirical curves obviously makes

no sense, since one can easily compute their close approximation di-
rectly from the observed image. Since white Gaussian noise is as-
sumed, pΩl|Xl

(ωl| − 1) = 2pN (ωl), ωl ≥ 0, where pN (n) = N (0, σn),
and σn is the noise standard deviation in the given subband. In case
where the standard deviation of input noise is not known, a robust
estimate from Eq (2.3.8) is used. To find pΩl|Xl

(ωl|1), we use a re-
lated model to that of Jansen et al from Section 3.4.1; the difference
is that instead of approximating the underlying pdf of noise free coef-
ficients pY (y) by a uniform distribution, we now use a realistic, gen-
eralized Laplacian model pYl

(yl) ∝ exp(−yl/s)ν . A global approach
is thus: the density of the significant noise-free wavelet coefficients
pYl|Xl

(yl|1) is equal to zero for |yl| < σn, and proportional to exp(−yl/s)p
for |yl| > σn. Since wl = yl + nl, where yl and nl are statistically
independent, the density of wl is given by convolution [Papoulis84]
pWl|Xl

(wl|1) = pYl|Xl
(yl|1) ∗ pN (n), and it is straightforward to show

that pΩl|Xl
(ωl|1) = 2pWl|Xl

(ωl|1), ωl ≥ 0.
The parameters s and ν of the generalized Laplacian model pY (y) are

computed according to Eq(2.6.8) from the noisy coefficients’ histogram,
using its standard deviation σ2

w, and its fourth moment m4,w. One can
apply different numerical procedures to solve the above equations. Our
implementation is summarized below. We first derive from Eq(2.6.8) the
following two expressions

κy =
Γ( 1

ν )Γ( 5
ν )

Γ2( 3
ν )

=
m4 + 3σ4

n − 6σ2
nσ

2
w

(σ2
w − σ2

n)2
, (4.2.8)

and

s =
(
(σ2
w − σ2

n)
Γ( 1

ν )
Γ( 3

ν )

) 1
2
. (4.2.9)

From Eq (4.2.8), we solve the parameter ν numerically (which is easy
since Γ( 1

ν )Γ( 5
ν )/Γ

2( 3
ν ) is a monotonic decreasing function of ν). From

the estimated shape parameter ν, the scale parameter s follows directly,
using Eq (4.2.9).
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Figure 4.12: The proposed sub-neighborhoods.

This completes the specification of the proposed conditional model,
both conceptually and in terms of its practical computation. Now we
turn to the specification of the prior model.

4.3 A New MRF Prior Model

The simplest isotropic MRF model is not well suited to encode prior
knowledge about the spatial clustering of the wavelet coefficients. Sig-
nificant coefficients form relatively narrow clusters with predominantly
horizontal, vertical or diagonal directions, depending on the orientation
subband. At coarser scales, the isotropic model with a small neighbor-
hood still performs well, because the neighborhoods are small compared
to the width of the edges. However, the problem arises at the finest
scales, where details are very thin lines.

The idea behind our model is the following: for each spatial position
l, we define a given number of oriented sub-neighborhoods, which contain
possible edge segments centered at the position l. The binary label value
xl = 1 (edge) should be assigned a high probability if any of the oriented
sub-neighborhoods indicates the existence of an edge element in a certain
direction. On the contrary, the binary label value xl = −1 (non-edge)
should be assigned a high probability only if no one of the oriented
neighborhoods indicates the existence of such an edge element.

4.3.1 A class of anisotropic potentials

One, but not the only possible, realization of the above explained idea
follows. We choose the sub-neighborhoods Nl,i, 1 ≤ i ≤ 5 shown in
Fig. 4.12; each Nl,i contains four neighbors of the central pixel l. We
use only pair-wise cliques {k, l}, with the potential function V2(k, l) =
−γxkxl, where γ is a positive constant. The potential VNl,i

(x) of the
sub-neighborhood Nl,i, is equal to the sum of all pair-wise potentials

VNl,i
(x) =

∑
k∈Nl,i

V2(k, l) = −γ xl
∑
k∈Nl,i

xk. (4.3.1)



4.4. Practical algorithm and its performance 103

The potential associated with the complete neighborhood Nl of the
position l will be denoted by VNl

(x). To determine this potential we
follow the idea that was introduced at the beginning of this Section. An
edge-label xl = 1 should be assigned a high probability if any of Nl,i

indicates the presence of an edge element. Therefore,

VNl
(x|xl = 1) = min

i
{VNl,i

(x)} = −γ max
i
{

∑
k∈Nl,i

xk}. (4.3.2)

A non-edge label xl = −1 should be assigned a high probability if none
of Nl,i indicates the presence of an edge element. This is accomplished
if we choose

VNl
(x|xl = −1) = max

i
{VNl,i

(x)} = γ max
i
{

∑
k∈Nl,i

xk}, (4.3.3)

which is exactly the opposite with respect to VNl
(x|xl = 1). Both of the

above two potentials can be represented with the same expression, if we
keep the label xl as a variable:

VNl
(x) = −γ xl max

i

{ ∑
k∈Nl,i

xk

}
. (4.3.4)

This completes the specification of the new prior model. The expres-
sion for the joint probability is of the form (3.4.1), but with the new
neighborhood potential VNl

(x), given in (4.3.4).
One should note that the specification of a MRF model in terms of a

neighborhood potential is not common. We did so in order to enable a
clear comparison of the new prior model with the isotropic one from Eq
(3.4.1) and to give a clear insight in the actual pixel interactions that it
involves. An alternative representation of the same model is to treat the
expression in Eq (4.3.4) as the potential of 3x3 cliques, which formally
implies the 5x5 neighborhood, where the potentials of all other possible
cliques are set to zero. Due to the specific potential function, the label of
each pixel is influenced only by labels of its immediately adjacent pixels,
which are its only actual neighbors.

4.4 Practical algorithm and its performance

Here we summarize the practical implementation of the proposed algo-
rithm and demonstrate the influence of the proposed conditional and
prior models on the noise suppression performance and on the visual
quality of the images.
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4.4.1 An upgraded stochastic sampling algorithm

The main advantage of the proposed method with respect to earlier
related approaches is that it combines both the coefficient magnitudes
and their evolution across scales, through a joint conditional (JC) model.
We denote this algorithm as the MRF-JC, and summarize it as:

Compute the discrete wavelet transform without down-sampling

For each orientation and for resolution scales 2j , 1 ≤ j ≤ 3

– For all coefficients wl, 1 ≤ l ≤ n compute significance mea-
sures ml = (ωl, βl)

– Run the Metropolis algorithm:
Initialize binary mask x and set Nlocal ← 0 and Sl ← 0,
for 1 ≤ l ≤ n
Repeat Nglobal times

Repeat until all the positions l have been visited
Choose l at random and set
xcl ← −xl and Nlocal ← Nlocal + 1
Compute p from Eq (4.2.7) and generate a random
number u from U[0,1]
if p > u set xl ← xcl
If xl = 1 set Sl ← Sl + 1

– For 1 ≤ l ≤ n: estimate the wavelet coefficients as
ŷl = wlSl/Nlocal

Applying the inverse wavelet transform.

As initial masks, we use their maximum likelihood estimates, that
are obtained by applying thresholds TMAG and TACR to the coefficient
magnitudes and to ACR, respectively. The thresholds are found from
the intersections of the corresponding densities: pΩl|Xl

(TMAG| − 1) =
pΩl|Xl

(TMAG|1) and pBl|Xl
(TACR| − 1) = pBl|Xl

(TACR|1). Actually, we
compute only TMAG for each detail image, and use TACR = 0.5.

In our experiments, increasing the number of iterations Nglobal above
10 did not contribute to an improved noise suppression performance.
However, we have observed (as was noted in [Malfait95]) that better
results are obtained when several short runs of the Metropolis sampler
are applied instead of the one long run.

The computation of p in Eq (4.2.7), involves three parameters λ1, λ2

and λ3. As it is motivated in the next Section (see Fig. 4.13), we use in
practice λ1 : λ2 : λ3 = 1.5 : 0.75 : 1.
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Figure 4.13: Resulting SNR corresponding to different values of the parame-
ters k1 = λ1/λ3 and k2 = λ2/λ3, for different test images and different standard
deviations σ of added noise.

4.4.2 The performance of the joint conditional model

The proposed method relies on the magnitudes of wavelet coefficients,
their interscale dependencies and on prior knowledge about the spatial
clustering. The relative importance given to these three sources is ex-
pressed through the parameters λ1, λ2 and λ3, respectively, in Eq (4.2.7).
To quantify the relative influence of the two significance measures with
respect to each other, and with respect to the prior model at the same
time, we set λ3 = λ, λ1 = k1λ, and λ2 = k2λ. The choice of λ is then
equivalent to choosing a different “temperature” [Li95] of the Metropolis
sampler, which is not critical in this method. Therefore, we fix it to a
constant value (in particular, λ = 10) and concentrate on the optimum
choice of the relative influences k1 = λ1/λ3 and k2 = λ2/λ3.
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Figure 4.14: Influence of the proposed joint conditional model on the vi-
sual quality of results. Top left: noise-free image. Top right: noisy image
SNR=3dB. Bottom left: the result of the proposed method using the joint
conditional model. Bottom right: the corresponding result for λ1 = 0.

The performance will be illustrated on two representative images:
the peppers and the house images from Fig. 4.14 and Fig. 4.15, with
two different levels of artificial noise. The size of both images is 256x256
pixels. The first one is rich with slow intensity variations and natural
texture, while the second one is mainly characterized by sharp edges and
flat background.

To each noisy image, we apply the algorithm from Section 4.4.1 for 16
values of k1 and k2 in the range 0 to 4 (i.e., 256 denoising procedures)
and compute each time the resulting SNR. The contour plots of the
resulting SNR values for four images are shown in Fig. 4.13. These
contour plots show that the performance of the method is stable for a
wide range of k1 and k2. The SNR plots confirm that better results
are always achieved by combining both significance measures instead of
using either of them alone; we also notice that the benefit from a joint
conditional model is image-dependent. If we examine the centers of
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Figure 4.15: Influence of the proposed joint conditional model on the vi-
sual quality of results. Top left: noise-free image. Top right: noisy image
SNR=0dB. Bottom left: the result of the proposed method using the joint
conditional model. Bottom right: the corresponding result for λ2 = 0.

the regions with maximum SNR, then it indeed appears that for higher
noise variance the optimal proportion of k2/k1 (i.e., λ2/λ1) is bigger, i.e.,
that the use of interscale statistics is more important. The parameters
k1 = λ1/λ3 = 1.5 and k2 = λ2/λ3 = 0.75 are near to optimal for
all analyzed cases, so we use these parameter values for all subsequent
results. The visual quality of results in Fig. 4.14 and Fig. 4.15 confirms
the advantage of using the joint conditional model over special cases,
where λ1 = 0 or λ2 = 0.

4.4.3 The performance of the prior model

Here we demonstrate the performance of the proposed MRF model with
respect to the isotropic one from Eq(3.4.1). Earlier, in Section 3.4.3, it
was demonstrated that the isotropic MRF model performs rather well
on coarser resolution scales (see Fig. 3.11). Now we use the same im-
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INITIAL MASK ISOTROPIC, ITERATION 1 ISOTROPIC, ITERATION 2

INITIAL MASK NEW MRF, ITERATION 1 NEW MRF, ITERATION 2

Figure 4.16: A comparison between the isotropic and the new MRF model.
Several iterations of the Metropolis sampler are shown. Initial mask (top) and
the conditional model is the same in both cases.

age for illustration, as there, but choose the finest resolution subband.
Fig. 4.16 compares the performance of the isotropic model and the new,
anisotropic one, by showing several iterations of the Metropolis sampler,
starting from the same initial mask. In both cases, the same (above de-
scribed) conditional model is used and the same relative importance is
given to the prior model. Another example is given in Fig. 4.17, which
corresponds to vertical details at the resolution scale 21, for the house
image with input SNR=9dB. The figure shows the initial mask and the
results after 10 iterations of the Metropolis sampler, with the isotropic
and with the new prior model. One can see that the isotropic model
removes background noise, but it also removes useful edges. The new
model, in contrast to this, preserves the useful edges well.
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INITIAL MASK ISOTROPIC, ITERATION 10 NEW MRF, ITERATION 10

Figure 4.17: Masks at the scale 21, for SNR=9dB. Left: initial. Middle: using
the isotropic MRF model. Right: using the new, anisotropic MRF model.

Figure 4.18: Comparing the performance of the isotropic and the anisotropic
MRF prior model on a part of the house image. Noise-free image (top left),
noisy image SNR = 9dB (top right) and the results of the 3-subband version
of the proposed method, using isotropic MRF model (bottom left) and using
the new MRF model (bottom right).
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Figure 4.19: Influence of the new MRF model on the visual quality of results.
Top: noise-free image (left) and noisy image (right). Bottom: the results using
isotropic MRF model (left) and using the new MRF model (right).

The influence of the proposed model on the visual quality of denoised
images can be noticed in fine details. In Fig. 4.18, one can see that
the roof edge is better reconstructed. Another example is the boat
image from Fig. 4.19; in this image the thin lines are considerably better
reconstructed from noise when the new MRF model is used.

4.4.4 3-subband versus 2-subband implementation

We have implemented the proposed method with a 3-subband decom-
position as well, using the quadratic spline wavelet from [Mallat92a]
like in [Malfait97]. For all results, we used the same parameters
λ1 : λ2 : λ3 = 1.5 : 0.75 : 1 as in the two-subband case.
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Figure 4.20: From top to bottom: enlarged parts of noise-free images, noisy
images SNR = 9dB, and the results of the proposed method using 2 and using
3 orientation subbands.
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Table 4.1: Comparison of quantitative results, expressed in SNR[dB], for
different methods. Notations 2-s. and 3-s. refer to the wavelet decompositions
with 2, and with 3 orientation subbands, respectively.

PEPPERS HOUSE

Input 9 6 3 0 9 6 3 0

MRF-JC, 2-s. 16.3 14.6 13.0 11.3 17.2 15.6 14.4 13.2

MRF-JC, 3-s. 16.6 15.0 13.4 11.6 17.9 16.4 14.9 13.4

[Malfait97], 3-s. 15.0 13.7 12.4 11.0 18.0 16.4 14.9 13.3

[Mallat92a], 2-s. 14.6 13.7 13.5 11.0 16.4 15.6 14.2 12.2

Spatially adaptive Wiener 15.4 13.5 11.7 9.7 15.4 13.7 11.8 10.0

With respect to the 2-subband case, a certain image-dependent im-
provement is achieved at the expense of computation time. In particular,
in our experiments, use of three orientation subbands instead of two, lead
to the improvements of the SNR ranging from 0.2dB up to 0.8dB. The
difference in visual quality can be judged from Fig. 4.20. In most cases
there is no striking difference in the visual appearance of the results.
One can see the difference in small details: the roof lines on the house
image from Fig. 4.20 are much better reconstructed when the three sub-
band decomposition is used. We have measured the total execution time
for 256x256 images, on a computer with a Pentium III processor. For
the implementations with two and with three orientation subbands, the
corresponding execution times are 45s and 30s, respectively.

4.4.5 Quantitative results and discussion

Quantitative results for the two test images are summarized in Table 4.1.
The table lists the signal to noise ratio values SNR[dB]. To compute
the corresponding PSNR[dB], 13.6 should be added to all values for
the peppers image, and 14.9 should be added to all values for the house
image.

The first method, that is used as a basis for comparison, is the one
of [Malfait97]. It uses 3 orientation subbands and is similar to a special
case of our method, with λ1 = 0. However, note that [Malfait97] uses
APR with a heuristic conditional model, the parameters of which need
to be estimated for each detail image at each scale and that it applies the
isotropic MRF prior model. For the peppers image, our method achieves
a significant improvement, which is bigger for higher input SNR. For ex-
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ample, for input SNR=9dB the new method is 1.6dB better, and for
input SNR=0dB it is 0.6dB better. For the house image, the results
of the new method are almost the same as those in [Malfait97]. One
can also see from the contour plots in Fig. 4.13 that for the house im-
age setting k1 = λ1/λ3 = 0 does not incur such a big penalty on the
resulting SNR as it does for the peppers image. The computation time
is approximately the same for both methods, since the Metropolis sam-
pling procedure accounts for the majority of the computing time. The
differences in prior and conditional models are insignificant in this re-
spect: both prior models practically involve pair-wise pixel interactions
only and converge equally fast.

Table 4.1 also lists the results from [Mallat92a]. The method of
[Mallat92a], previously explained in Section 2.5.2, is considered one of
the best for detecting multiscale edges from a noisy image. However, it
makes all textures disappear, as was noted by the authors themselves.
Our method is also not specifically designed to deal with textures, but
since it applies a probabilistic shrinkage rule to all the wavelet coefficients
(instead of reconstructing the image from its edges only), the natural
texture is better preserved.

We have also included the results of Matlab’s spatially adaptive
Wiener filter, which was derived in [Lee80]. Its window size was op-
timized for each input image to produce the maximum SNR. For both
test images these sizes were 3x3 for input SNR 9dB, 5x5 for input SNR
6 and 3dB and 7x7 for input SNR 0dB.

The performance of the new method on several other images is illus-
trated later, in Chapter 5.

4.5 Summary and Conclusions

In this Chapter, we addressed several issues to improve Bayesian im-
age denoising using prior models for spatial clustering. First we inves-
tigated different significance measures and conducted their statistical
characterization. Then we examined performance evaluation of those
significance measures, relying on the decision theory. Motivated by the
results of this performance evaluation, we proposed a joint conditional
model, which combines both the coefficient magnitudes and their evo-
lution across scales. For the new conditional model, we proposed a
simple practical realization and motivated it by simulations. In order
to preserve image details better, we developed a new MRF prior model.
The advantages of the new prior and conditional models in terms of
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noise suppression performance were demonstrated on different images.
These developments generalize and improve previous methods from this
branch.

Some aspects that were analyzed here may be useful for other denois-
ing schemes as well: the realistic conditional densities of interscale ratios
obtained via simulations, and objective criteria for evaluating noise sup-
pression performance of different significance measures.

This work is published in [Pizurica02a].



Chapter 5

A Generalized Likelihood
Ratio in Denoising

This Chapter introduces a new class of locally adaptive, low-complexity
wavelet based denoising methods. The underlying principle is joint sig-
nal detection and estimation, which is now explicitly formulated. Apart
from Section 5.2, where the general theoretic background is reviewed, the
contents of the Chapter are original and present our own contributions.
Most important among those is the estimation of the probability of sig-
nal presence in a given coefficient from the global coefficient histogram
and from a local indicator of the spatial activity in the image. Three
practical algorithms are developed: a fully analytic and automatic one
for the Gaussian noise, and two heuristic extensions: a versatile algo-
rithm for various noise types, and an algorithm for speckle suppression
in SAR images.

5.1 Introduction

In several previously reviewed and in the newly developed algorithms in
this thesis, the uncertainty of signal presence in a given coefficient was
implicitly used as a starting assumption. In this context, e.g., the ap-
proach of Chipman et al [Chipman97] from Section 2.6.3 uses a level-wise
adaptive Gaussian mixture model for the pdf of noise-free coefficients;
we can say, in this case the uncertainty of signal presence is assumed to
be equal in each coefficient from a given subband. More sophisticated
approaches of this kind, which are locally adaptive as well, were using
either hidden Markov trees (HMT) models or the Markov Random Field
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(MRF) models. Now we propose an alternative approach, which uses a
different concept and which is of low-complexity but compares well with
the best state of the art methods.

We shall also recognize a great body of the related theory
[Middleton68], and noise-suppression algorithms in a much broader
framework than wavelet based image denoising. In particular, there
are numerous examples in telecommunication and data processing sys-
tems where the signal is not surely known to be present in a given point
of the observation space. Radar and speech transmission are among
the most obvious ones. In such problems it is often most natural to
join, i.e., to couple, the detection and the estimation of the signal. The
statistical theory of joint detection and estimation [Middleton68] pro-
vides a consistent approach in this respect. The application of this
theory, and in particular the application of rather simple estimators
that employ the generalized likelihood ratio, has made a great break-
through in speech processing [McAulay80, Ephraim84, Cohen00]; it has
also proved the advantages for image denoising in the Discrete Fourier
Transform (DFT) and the Discrete Cosine Transform (DCT) domains
[Aach96a, Aach96b]. To our knowledge, wavelet domain counterparts of
such simple, but powerful algorithms have received little if any attention
so far.

The approach that we propose here fits in the above general frame-
work, but was initially inspired by a different reasoning. Our starting
point was an edge-adaptive algorithm that we have introduced in Sec-
tion 3.5.2. There, in the scope of the MRF approach we have proposed
to estimate the wavelet coefficients as ŷl = P (Xl = 1|m, x̂∂l)wl, where
m was the significance map and x̂ the estimated mask. Starting from
that expression we have further derived in Eq (3.5.4)

ŷl =
ξlµl

1 + ξlµl
wl, (5.1.1)

where ξl is the likelihood ratio, and µl is the ratio of prior probabilities
of the edge and non-edge labels, conditioned on x̂∂l. Practically, we
had µl = exp(tl), where tl is a local spatial activity indicator (L.S.A.I.),
expressed as a weighted sum of the labels {x̂k : k ∈ ∂l}. From here
on we can observe several steps that lead us to the algorithms of this
Chapter:

- One can use masks to estimate the densities pMl|Xl
(ml|xl) directly

from the observed image, by finding the corresponding histograms
of ml (whatever ml is)
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- Instead of conditioning the ratio of prior probabilities µl on a dis-
crete L.S.A.I. that is derived from the binary labels, one can use a
continuous L.S.A.I. that is derived from the observed neighboring
coefficients {wk : k ∈ ∂l} themselves

- The use of MRF’s and the related optimization algorithms is not
necessary for estimating masks in this approach. An alternative,
simple and robust classification of coefficient labels will be intro-
duced

- Masks are not necessary at all, in case where a continous L.S.A.I. is
used: we shall express all the parameters in terms of the observed
wavelet coefficients themselves

The first three points lead to various heuristic solutions, and flexible al-
gorithms which use rough estimates of masks to empirically estimate the
required parameters and densities. The last one leads to a fully analytic
and automatic approach, which fits in a theoretic, joint detection and
estimation framework.

We shall present the contents of the Chapter in exactly the opposite
direction from the above flow of mind, in order to start from theory and
end with applications. First, we introduce briefly the background of
joint detection and estimation principles, in Section 5.2. The proposed
fully analytic wavelet domain denoising method for Gaussian noise, is
described and discussed in Section 5.3. A general concept, which un-
derlines various empirical extensions, leading to flexible algorithms for
various noise types, is described in Section 5.4. In the above, empirical
framework, two practical algorithms are described, in Sections 5.5 and
5.6. The first one is versatile and applicable to various noise types. Its
application is demonstrated on medical ustrasound and MRI images and
in image deblurring. The algorithm of 5.6 is aimed for speckle suppres-
sion in SAR images. Summary and conclusions are in Section 5.7.

5.2 Joint detection and estimation (JDE)

5.2.1 General principles

In their famous work [Middleton68], Middleton and Esposito have estab-
lished a systematic theory of joint signal detection and estimation. This
theory formalizes optimum (in the Bayesian sense) estimators, which
act on the data when there is uncertainty as to the presence of a signal
(p(H1 < 1). We read in [Middleton68]: “... the occasion frequently
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Figure 5.1: Bayes estimation with QCF of signal waveform or its parameters
when p < 1, after Middleton and Esposito [Middleton68].

arises where the joint or simultaneous detection and extraction of sig-
nals is essential. Here optimal processing often requires the mutual
coupling of detection and extraction for most effective results, so that
each operation may significantly influence the other, as well as over-
all expected performance. Moreover, signal estimation now takes place
under the condition p(H1) < 1: the signal is not surely known to be
present. Examples involving joint detection and extraction [p(H1) < 1]
occur in all circumstances where properties of the signal source or trans-
mission medium (amplitude, phase, range, velocity, waveform structure,
etc.), as well as signal presence or absence or signal classification, are
jointly desired: in radar, communications, adaptive systems, sequential
and multi-decision processes generally, and in filtering and prediction,
to mention some of the more obvious and important areas.”

The exposition in [Middleton68] is remarkably general: it addresses
arbitrary signal vectors, corrupted in an arbitrary fashion and a general
form of the Bayes risk, as well as its various specific forms. Among
the principal results is the one depicted in Fig. 5.1. It relates the
Bayes estimate Υ∗

QCF,p<1 under the quadratic cost function (QCF)
(i.e., the MMSE estimate) and under the uncertainty of signal pres-
ence to the corresponding estimate Υ∗

QCF,p=1 where this uncertainty is
not encountered. The link between the two estimates is a scalar factor:
Υ∗
QCF,p<1 = Λ/(1 + Λ)Υ∗

QCF,p=1, where Λ is the generalized likelihood
ratio. As we shall later develop a related wavelet-domain estimator un-
der specific constraints and model assumptions, it is useful at this point
to see its general meaning.

We shall use different notations than in [Middleton68] to make them
consistent with the ones used in this thesis before. Suppose the follow-
ing situation: the input of a reception system is either a signal S(Θ)
corrupted (in an arbitrary fashion) by a noise process N (state H1), or
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the noise process alone (state H0). In the notation S(Θ), Θ are the
parameters of the waveform S (e.g., its amplitude and phase). At the
output of the reception system, either the estimate of the waveform S or
the estimates of (some of) its parameters Θ are delivered. Let V denote
the input data (that are formed as described above). The spaces of all
possible realizations of the signal (S or Θ) and data V are denoted by
Ω and Γ, respectively. Let us further denote

The pdf of the data V under the hypothesis H1 (i.e., when a signal
s ∈ Ω is present):

pV(v|H1) =
∫

Ω
pV|S(v|s)pS(s)ds = 〈pV|S(v|s)〉s. (5.2.1)

The pdf of the data V under the hypothesis H0 (i.e., when the
signal is absent, or equivalently, when s = 0):

pV(v|H0) = pV|S(v|0) = pN(v). (5.2.2)

The risk associated with the estimation of S can now be written as

R =
∫

Γ

{
q pV|S(v|0)C(0, ŝ) + p

∫
Ω
pV|S(v|s)C(s, ŝ)pS(s)ds

}
dv,

where p = P (H1) denotes the probability of signal presence and q = 1−p.
For the quadratic cost function C(s, ŝ) = |s− ŝ|2, it can be shown that
the above risk is minimized for ŝ = ŝQCF,p<1, where

ŝQCF,p<1 = E(s|v) = p

∫
Ω

sp(v, s)ds
/{

q pV|S(v|0)+p
∫

Ω
pV,S(v, s)ds

}
.

Observing that the classical QCF (i.e., the MMSE) estimate, where
p = 1 is ŝQCF, p=1 =

∫
Ω spV,S(v, s)ds

/ ∫
Ω pV,S(v, s)ds, and denoting

Λ =
p

q

〈pV|S(v|s)〉s
pV|S(v|0)

=
p

q

pV(v|H1)
pV(v|H0)

(5.2.3)

it follows clearly that

ŝQCF, p<1 =
Λ

1 + Λ
ŝQCF, p=1, (5.2.4)

as it is depicted in Fig. 5.1. Equivalently, one can show that the above
relationship holds between the corresponding estimates of the waveform
parameters Θ, which can be e.g., the phase or the amplitude, like in the
next Section.
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5.2.2 JDE under statistically independent observations

The above approach simplifies considerably in the case where statisti-
cally independent data samples are assumed. Precisely such a treatment
has been used for decades in speech processing [McAulay80, Ephraim84]
and has led to the state-of-the art methods for speech enhancement
[Cohen00]. The subject of these methods is the estimation of the am-
plitude of the short time Fourier transform of speech signals, which is
often denoted as the short time spectral amplitude (STSA) estimation.
It is interesting to recognize a close link between the STSA estimation of
speech signals and seemingly unrelated wavelet domain image denoising.
In this respect, we shall first summarize the relevant ideas of the above
mentioned, speech-oriented methods.

Let us start from the abstract signal reception problem from the
previous Section. The samples of the data V are now assumed to be
statistically independent. The input measurement is a random variable
Vl = Sl+Nl, where Nl are i.i.d. random variables. Let Sl = Al exp(jΘl)
and suppose that we are interested in estimating the amplitude Al only.
The amplitude of the input noisy signal will be denoted by Bl. The mini-
mum mean squared estimate of Al under the signal presence uncertainty,
as treated in [McAulay80, Ephraim84] is

Âl = E(Al|Bl, H1
l )P (H1

l |Vl) + E(Al|Bl, H0
l )P (H0

l |Vl). (5.2.5)

Since E(Al|Vl, H0
l ) is the expected value of Al given an observation Vl

and the fact that signal is absent, it has to be zero. The above equation
thus reduces to

Âl = E(Al|Bl, H1
l )P (H1

l |Bl). (5.2.6)

Further on, the Bayes rule gives

P (H1
l |Bl) =

pB(bl|H1
l )P (H1

l )
pB(bl|H1

l )P (H1
l ) + pB(bl|H0

l )P (H0
l )

(5.2.7)

and one can rewrite Eq(5.2.6) as

Âl =
Λl

1 + Λl
E(Al|Bl, H1

l ), (5.2.8)

where

Λl = µl
pB(bl|H1)
pB(bl|H0)

, (5.2.9)
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and µl = P (H1
l )/P (H0

l ). Since speech signals contain large portions of
silence, signal absence in the noisy observations is frequent. This ab-
sence of signal implies its absence in the spectral components as well.
In [Ephraim84], it is underlined that it is also possible that the signal is
present, but appears with insignificant energy in some spectral compo-
nents, which are randomly determined. In the latter case, we immedi-
ately see the analogy with the wavelet representation of a noisy image:
in some wavelet coefficients, the actual signal appears with insignificant
energy.

In most of the approaches mentioned above and in other related
ones the probability of signal presence in a given spectral component
pl = P (H1

l ), was given either a fixed value or it has been treated as a free
parameter that is experimentally optimized. In [Cohen00], a heuristic
formula which exploits the strong correlation of speech presence in the
neighboring frequency bins was proposed.

A related problem was also addressed in [Aach96a, Aach96b], where
the above formalism was applied to image denoising in the Discrete
Fourier Transform (DFT) and in the Discrete Cosine Transform (DCT)
domains. In these methods, lacking the prior knowledge to estimate
E(Al|Bl, H1

l ) the authors propose a simple approximation

E(Al|Bl, H1
l ) ∼= Bl, (5.2.10)

and use it with equality in practice. Further on, µl has been seen as a free
parameter in [Aach96a], and in [Aach96b] a certain heuristic formula was
proposed to estimate it. Specifically, the authors take into account that
the DFT of an image block concentrates the coefficient energy along
the line that is perpendicular to the dominant spatial orientation in
that image block; a larger µl was thus assigned to those coefficients,
which are in the 2D spatial frequency domain located closer to the line
of the dominant energy concentration. The actual expression is rather
complicated and is empirically motivated.

5.3 A wavelet domain GenLik approach

From this Section on, we present our own work, where the above joint
detection and estimation principles are employed in wavelet based image
denoising. Apart from the common underlying principle, which is the
uncertainty about the signal presence, we are not just re-applying the
existing theory to a new problem. We shall propose an original approach
for estimating the probability of signal presence in a given coefficient,
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which is less ad hoc with respect to what has been done in other trans-
form domains from the previous Section. Since the proposed method
employs the generalized likelihood ratio, we have denoted it as GenLik.

5.3.1 Notation and model assumptions

We start from the following noise model in the wavelet domain

wl = yl + nl, (5.3.1)

where yl is an unknown noise-free wavelet coefficient and nl are inde-
pendent, identically distributed (i.i.d.) Gaussian random variables. The
analysis that follows can be easily extended to other noise distributions,
provided that the i.i.d. assumption holds. The method will be practically
implemented both with the orthogonal and the non-decimated wavelet
transforms. In the first case, the above assumed model is realistic. To
make it realistic in the second (non-decimated) case as well, one can
separate the coefficients of a given subband at the scale 2j into 22j

sets
containing non-correlated coefficients, as it was done in [Chang00a]. We
use the i.i.d. model as a simplification without the coefficient separation.

In a wavelet decomposition of a noisy image there is rarely
actual signal absence in any coefficient. However, in numerous coef-
ficients the signal component appears with insignificant energy. The
latter case we characterize as the absence of the signal “of interest”.
The two hypotheses H0

l and H1
l now have the following explicit meaning

H0
l : “signal of interest is absent” ⇔ |yl| < T

H1
l : “signal of interest is present” ⇔ |yl| ≥ T

where T is a threshold that defines what our signal of interest is. Its
precise specification will be addressed later.

The wavelet coefficients representing the signal of interest in a given
subband are assumed to be independent identically distributed (i.i.d.)
random variables with the probability density (pdf) p(wl|H1

l ). Similarly,
the coefficients in the same subband, corresponding to the absence of the
signal of interest, are assumed to be i.i.d. random variables with the pdf
p(wl|H0

l ). With these model assumptions, the MMSE estimate of yl is
the following conditional mean,

ŷl = E(yl|wl) = E(yl|wl, H1
l )P (H1

l |wl)+E(yl|wl, H0
l )P (H0

l |wl). (5.3.2)
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Figure 5.2: An illustration of the involved pdf models (a)-(c) for additive
white Gaussian noise and the estimator (d), where the probability of signal
presence is given as a parameter.

Since H0
l refers to the absence of the signal (of interest) it is reasonable

to take E(yl|wl, H0
l ) = 0, like in all the related approaches from Section

5.2.2. For practical reasons, following Eq (5.2.10) here we also simplify
E(yl|wl, H1

l ) = wl. It is a subject for further research to see whether the
exact expressions would yield a considerable gain in practice. By ap-
plying the Bayes rule to P (H1

l |wl) like in Eq (5.2.7), our final estimator
becomes

ŷl =
Λl

1 + Λl
wl, with Λl = µl

p(wl|H1
l )

p(wl|H0
l )
, (5.3.3)

where for latter convenience we write, like in [Aach96b]:

µl =
P (H1

l |P)
P (H0

l |P)
, (5.3.4)

where P denotes abstract prior knowledge that is involved in estimating
the probability of H0,1

l .
To summarize, our wavelet domain estimator, given by Eqs (5.3.3)

and (5.3.4) has the same general form as the ones that have been used in
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other transformation domains, and also other types of signals as listed
in Section 5.2.2. What follows now is essentially different from all those
approaches.

5.3.2 Spatial adaptation

The critical point in specifying the estimator from Eq (5.3.3) is the
ratio of prior probabilities µl. The crucial question is thus how do we
estimate the probability of the presence of the signal of interest in a given
coefficient wl. We shall propose an original approach in this respect,
where µl is derived from both the global coefficient histogram in a given
subband and from the local spatial context of each coefficient. The idea
itself is rather clear. We first explain our reasoning behind it.

Clearly, if the probability of signal presence is local, in the sense
that it is specifically related to the spatial position l, then it has to be
a function of wl and/or its surrounding coefficients. To simplify the
formalism, let zl be an arbitrary indicator of the local spatial activity,
which is computed from the set {wk : k ∈ ∂l}. The probability of the
hypothesis H1 at spatial position l is thus a function of zl; in other
words this local probability is specified given zl and we may denote it
as P (H1

l |zl). On the other hand, the unconditional probability P (H1
l ),

which is not a function of any local measurement related to l, does not
actually depend on the spatial position l, but is global and may be
denoted as P (H1). To summarize, from this point on we denote

P (H1
l |zl) local probability of signal presence

P (H1
l ) = P (H1) global probability of signal presence

Following the above reasoning, we now replace µl in Eq (5.3.4) by

µl =
P (H1

l |zl)
P (H0

l |zl)
, (5.3.5)

and applying Bayes rule rewrite it as

µl = ρ
p(zl|H1

l )
p(zl|H0

l )
, (5.3.6)

where ρ is the ratio of unconditional, i.e., global prior probabilities

ρ =
P (H1)
P (H0)

. (5.3.7)
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Note that the ratio of prior probabilities µl in Eq (5.3.6) through ρ
depends on global statistical properties of the wavelet coefficients in a
given subband and through p(zl|H0,1

l ) it depends also on a local mea-
surement and its statistical properties. Moreover, the derived expression
has a clear interpretation and what is of particular interest in practice, it
can be easily computed as we show next. We shall estimate both ρ and
p(zl|H0,1

l ) directly from the input noisy image, as it will be explained in
Sections 5.3.3 and 5.3.4.

In order to compute both ρ and the conditional densities p(zl|H0,1
l )

and p(wl|H0,1
l ), which completely specify the estimator from Eq (5.3.3),

we shall need the underlying distribution of noise-free wavelet coefficients
p(y). We assume a model for p(y) and compute its parameters directly
from the input noisy image. We consider two candidates for p(y): the
generalized Laplacian (GL) prior

pY (y) =
ν

2sΓ( 1
ν )

exp(−|y/s|ν), (5.3.8)

and the Laplacian prior (LP)

pY (y) =
1
2s

exp(−|y/s|). (5.3.9)

Recall from Sections 2.6.2 and 4.2.5 that in case of AWGN the param-
eters of these densities are easily computed from the observed noisy
image. For the latter convenience, let us repeat here briefly: if σw is
the standard deviation of the noisy coefficients histogram, and m4,w the
fourth moment, then the parameter ν from Eq (5.3.8) is found by solving

Γ( 1
ν )Γ( 5

ν )
Γ2( 3

ν )
=
m4 + 3σ4

n − 6σ2
nσ

2
w

(σ2
w − σ2

n)2
. (5.3.10)

which is easily solved numerically, and the scale parameter s follows
directly as

s =
(
(σ2
w − σ2

n)
Γ( 1

ν )
Γ( 3

ν )

) 1
2
. (5.3.11)

For the simpler, Laplacian prior from 5.3.9, one has

s = [0.5(σ2
w − σ2

n)]
1/2. (5.3.12)
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Figure 5.3: An illustration of the proposed global probabilities of the presence
and absence of a signal of interest.

5.3.3 Global prior probability ratio

Now we turn to the actual estimation of the ratio ρ = P (H1)/P (H0).
We reason that P (H1) is the fraction of the wavelet coefficients in a
given subband, which represent the signal of interest, i.e.,

P (H1) =
∫ −T

−∞
pY (y)dy +

∫ ∞

T
pY (y)dy, (5.3.13)

as it is depicted in Fig. 5.3. It leads to

ρ =
1− ∫ T

−T p(y)dy∫ T
−T p(y)dy

. (5.3.14)

For the generalized Laplacian prior we derive (see the Appendix A):

ρ =
1− Γinc

((
T
s

)ν
, 1
ν

)
Γinc

((
T
s

)ν
, 1
ν

) , (5.3.15)

where
Γinc(x, a) =

1
a

∫ x

0
ta−1e−tdt (5.3.16)

is the incomplete gamma function. The parameters ν and s are com-
puted directly from the noisy coefficient histogram using Eqs (5.3.10)
and (5.3.11).

For the Laplacian prior p(y) from Eq (5.3.9), ρ has a simple form
(see the Appendix A):

ρ =
exp

(
T
s

)
1− exp

(
T
s

) , (5.3.17)
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and the parameter s is computed from the noisy coefficient histogram
using Eq (5.3.12).

5.3.4 Estimation of conditional densities

The specification of the generalized likelihood estimator further requires
the conditional densities p(wl|H0,1

l ), and p(zl|H0,1
l ), where wl is the ob-

served coefficient, and zl is the given local spatial activity indicator.
Actually, only the specification of p(zl|H0,1

l ) needs to be explained; the
derivation of p(wl|H0,1

l ) is already clear from the earlier exposition in
Section 4.2.5. Nevertheless, since a different estimation framework, and
a different notation is used in this Chapter, with respect to that in Chap-
ter 4, we proceed with a complete treatment to avoid any confusion.

Since we consider here additive white Gaussian noise (AWGN), the
pdf of noisy wavelet coefficients under the hypothesis H0 is

p(wl|H0
l ) = p(yl|H0

l ) ∗ pN (n), (5.3.18)

where pN (n) = N (0, σn) is the normal distribution with zero mean and
standard deviation σn. Equivalently, the density of noisy wavelet coeffi-
cients under the hypothesis H1 is

p(wl|H1
l ) = p(yl|H1

l ) ∗ p(n), (5.3.19)

where p(yl|H1
l ) is the pdf of the noise-free coefficients representing the

signal of interest: p(yl|H1
l ) = 0 for |yl| < T , and p(yl|H1

l ) ∝ p(yl) for
|yl| ≥ T .

For the sake of tractability, we use the locally averaged magnitude
of the wavelet coefficients as the indicator of local spatial activity,

zl =
1
N

∑
k∈∂l

ωk, where ωk = |wk| (5.3.20)

and ∂l is the square window W ×W centered at position l, and N =
W 2. Due to intrinistic image properties the wavelet coefficients in a
relatively small local window are likely to be identically distributed, i.e.,
according to either p(wl|H1

l ) or p(wl|H0
l ). With our model assumptions,

the wavelet coefficients are also assumed to be locally i.i.d. given H0
l or

H1
l . Therefore, p(zl|H1

1 ) is simply computed via N = W 2 convolutions
of p(ωl|H1

1 ), and p(zl|H0
l ) is computed via N convolutions of p(ωl|H0

l ):
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p(Nzl|H1
l ) = p(ωl|H1

l ) � p(ωl|H1
l ) � ... � p(ωl|H1

l )︸ ︷︷ ︸
N

,

p(Nzl|H0
l ) = p(ωl|H0

l ) � p(ωl|H0
l ) � ... � p(ωl|H0

l )︸ ︷︷ ︸
N

, (5.3.21)

where p(ωl|H0,1
l ) = 2p(wl|H0,1

l ), ωl > 0. The validity of this model is
illustrated in Fig. 5.4. The positions of the coefficients representing the
signal of interest in a given subband SH1 = {l : |yl| > σn}, shown in this
figure, were obtained from noise-free wavelet coefficients. The right-hand
side of the figure shows the histograms of {zl : l ∈ SH1} in comparison
with the model from Eq 5.3.21, where p(wl|H1

l ) was estimated from
the noisy image. On the basis of these and similar results on other
images, we have concluded that a simple model 5.3.21 is reasonable for
a relatively small window size.

In the experiment described above, we have related the threshold T
that specifies the signal of interest to the noise level, like in Chapter
4. In the next Section, we investigate whether in the proposed method
such a specification of the value of T is indeed optimal in the sense of
the mean squared error.
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Figure 5.4: Left: reference positions for the signal of interest in the LH
subband at the scale 22 for the Lena image, for two noise standard deviations:
30 (top) and 16 (bottom). Right: the corresponding histograms of zl compared
to the analytical models p(zl|H1

l ) estimated from the noisy image under the
Laplacian (dashed line) and the generalized Laplacian (solid line) priors p(y).
The window size is 7x7.

Apart from the specification of the threshold that specifies the signal
of interest, we have now completed the description of the key points in
the new method. A general form of the estimator is presented in Fig. 5.2.
This estimator tends to leave untouched large magnitude coefficients,
while the others are suppressed to a degree that depends on the global
and on the local image context. In contrast to this, a classical MMSE
estimator from Section 2.6.3, depicted in Fig. 2.19, applies the same
shrinkage action to each coefficient (no matter of the spatial context)
and introduces a bias on large magnitude coefficients.



130 A Generalized Likelihood Ratio in Denoising

0 50 100
26

27

28

29

30

31

32

33
orthogonal spatial adaptationno

lena

goldhill

barbara

=15

T

P
S

N
R

[d
B

]

=30

T

P
S

N
R

[d
B

]

0 50 100
23

24

25

26

27

28

29

30
orthogonal spatial adaptationno

lena

goldhill

barbara

=15

T

P
S

N
R

[d
B

]

0 50 100
26

27

28

29

30

31

32

33
orthogonal spatial adaptationwith

lena

goldhill

barbara

=30

T

P
S

N
R

[d
B

]

0 50 100
23

24

25

26

27

28

29

30
orthogonal spatial adaptationwith

lena

goldhill

barbara

Figure 5.5: Influence of the threshold that specifies the signal of interest, on
the denoising performance, when an orthogonal transform (with the wavelet
dB8 ) is used. Top: a simplified version of the method, without spatial adap-
tation. Bottom: full method. The standard deviation of the added noise σ is
denoted on each diagram.
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Figure 5.6: Influence of the threshold that specifies the signal of interest, on
the denoising performance, when a non-decimated transform (with the wavelet
dB8 ) is used. The standard deviation of added noise σ is denoted on each
diagram.

5.3.5 Signal of interest and performance evaluation

Now we come to a crucial question, which is what actually our signal
of interest is, i.e., how do we practically specify the threshold T , which
appears in the previous equations.

Our reasoning is purely objective. Noise has a precisely known dis-
tribution (Gaussian) and the signal of interest needs to be specified such
that the overall performance of the method is optimized in terms of the
mean squared error. One should expect that in this respect it is most
reasonable to relate the threshold T to the standard deviation σn of
noise. One reason is intuitive: the lower the noise level, the more image
features can be actually reconstructed from it. Another reason is the-
oretical: recall the optimal coefficient selection principle from Section
2.3.5. In the related, MRF-based denoising approach, the conditional
densities of coefficient magnitudes were drawn from this reasoning as
well.

We have performed extensive simulations to investigate the optimal
specification of the threshold T in the current estimation framework.
Apart from the main one, other interesting conclusions will be drawn
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from those results as well: the benefit from using a local context in
estimating µl will be quantified, as well as the benefit from using a
non-decimated representation with respect to the orthogonal one. In all
cases, we shall use the more accurate, generalized Laplacian prior, and
the three representative images: ”Lena”, ”Barbara” and ”goldhill” from
Fig. 4.3. Now we take one step at a time.

First, we investigate the performance of the method, with respect
to T , when an orthogonal wavelet transform is used. In particular, the
Daubechies db8 wavelet from Fig. 2.8 is used. In all the subbands, the
noise standard deviation σn is the same and is equal to the standard
deviation of input noise σ. Let us start from a simplified version of the
proposed method, in which there is no spatial adaptation in determining
the probability of signal presence. In this case, µl is equal for all the
coefficients in a given subband, and computed from their global statistics
only: µl = ρ = P (H1)/P (H0). For various values of σ, the optimal T
was as expected: T = σ; representative diagrams for different values of
σ = 15, and σ = 30 are shown in the top of Fig. 5.5. Now we repeat
the simulations with the full, spatially adaptive method, where µl is
influenced also by the local spatial activity indicator zl, using thus eqs.
(5.3.6), (5.3.20) and (5.3.21). The representative diagrams, for the same
two values of σ as above are shown in the bottom of Fig. 5.5. The window
size was 5x5. One can see that the value T = σ is optimum in this case
as well. From these diagrams one can also quantify the benefit from
computing µl from both the global and the local statistical properties
with respect to the above simplification. The diagrams clearly show
that the improvement is always present, and that it is image-dependent,
ranging from 0.2dB only up to large differences of 1dB.

Now we investigate the influence of the threshold T when a non-
decimated transform is used. We do not analyze the simplified version
of the method anymore, but only the complete, spatially adaptive one.
We use the “orthogonal” db8 wavelet as above. The standard deviation
of noise is therefore again the same in each subband and is equal to that
of the input noise σ. Simulations have revealed an interesting result. The
optimal value of T is again related to σ, but through a constant factor,
larger than one. Two representative diagrams showing the resulting
PSNR with respect to T are shown in Fig. 5.6. The optimal value is
approximately 1.5σ. A possible explanation for this is that in a non-
decimated wavelet transform, white input noise is transformed into a
spatially correlated one, and the assumed statistical model should be
seen as an approximation in this case. One should also note that the
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difference in the resulting PSNR for T = σ with respect to the optimum
value of T is rather small (less than 0.16dB in all analyzed cases); the
differences are hardly or even not visible. Finally, by comparing the
diagrams from Fig. 5.6 with those from the bottom of Fig. 5.5, one
can quantify the benefit of using a non-decimated representation with
respect to the orthogonal one. The improvement is obviously large: in
most cases, the PSNR has increased of ≈ 1.3 dB.

To summarize, the most important conclusions from this Section are

In an orthogonal wavelet transform the optimum (in the MSE
sense) threshold that specifies the signal of interest is T = σ, where
σ is the standard deviation of noise. This conclusion was drawn
from simulations and has confirmed the expectations according to
theory.

In a non-decimated wavelet transform the optimum threshold in
the above sense is T ≈ 1.5σ. Choosing a threshold equal to σ in-
stead of an optimum one incurs a penalty, which is usually neglible.

Estimating µl from both local and global statistical properties of
the wavelet coefficients, as compared to using the global statistics
only, yields an image dependent improvement of up to 1dB.

When a non-decimated transform is used instead of the orthogonal
one, the PSNR increases for more than 1 dB.

Using the proposed method with the orthogonal transform might be
interesting in applications where both image denoising and compression
are desired (see e.g., [Chang00a]). This subject is left for further re-
search. Since our interest here is to develop high-performance image
denoising techniques, we shall not further treat the orthogonal trans-
form, which is inferior in this respect as compared to the non-decimated
one. Another possibility is to use the orthogonal transform with the cy-
cle spinning method (Section 2.2.6), but the latter was not implemented
in our algorithms. All the subsequent results were obtained using the
non-decimated wavelet transform.
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5.3.6 Algorithm overview

The complete algorithm of the proposed method is

Compute the non-decimated wavelet transform

If σ is not available, estimate it using Eq (2.3.8)

Choose the window size (we use W=7)

For each orientation and scale:

– Estimate the parameters of pY (y): Eqs (5.3.10) and (5.3.11)
for the GL prior (or Eq (5.3.12) for the LP prior)

– Estimate ρ = P (H1)/P (H0) : Eq (5.3.15) for the GL prior
or Eq (5.3.17) for the LP prior

– Split pY (y) into pY (y|H0) and pY (y|H1), where T = 1.5σ:
pY (y|H1) = 0 for y < T and pY (y|H1) ∝ pY (y) for y ≥ T
pY (y|H0) ∝ pY (y) for y < T and pY (y|H0) = 0 for y ≥ T

– Find pW (w|H0) and pW (w|H1): Eqs (5.3.18) and (5.3.19)

– pΩ(ω|H0) = 2pW (w|H0), and pΩ(ω|H1) = 2pW (w|H1), ω > 0
Find pZ(z|H1,0): Eq (5.3.21)

– For all the coefficients in the given subband, l = 1, ..., n

Set ξl = pY (yl|H1
l )/pY (yl|H0

l )
Compute zl from Eq (5.3.20)
Set ηl = pZ(zl|H1

l )/pZ(zl|H0
l )

Estimate the coefficient: ŷl = ρξlηl/(1 + ρξlηl)wl

Apply the inverse wavelet transform

The characteristic parts from this algorithm are depicted in Fig. 5.7.

5.3.7 Results and Discussion

The performance of the proposed method will be demonstrated on differ-
ent images with artifical noise, and compared both with the MRF-based
approach from Chapter 4, and with other, state of the art methods from
literature.
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Figure 5.7: An illustration of the characteristic parts in the GenLik method.

Comparison with the MRF-based approach

In the previous Chapter, we have developed an advanced MRF based
wavelet denoising method, which was denoted as MRF-JC algorithm.
The new GENLIK method of the previous Section is obviously less com-
plex, but aims also at using accurate statistical modeling. It is useful
to summarize at this point the most important differences between the
two algorithms:

Dependencies Prior knowledge
accounted for based on

MRF-JC intra and interscale spatial clustering of important coefficients
GENLIK intrascale spatial continuity of coefficient magnitudes

in a local window and the global histogram

Numerous experiments have been performed to compare the perfor-
mance of the two methods. Interestingly enough, the results have shown
that on certain types of images (as we next demonstrate) the MRF-JC
performs best, while on others GENLIK is the best. On most images of
natural scenes the differences are small and hardly visible.

Images on which the MRF-JC method yields a superior performance,
with respect to GENLIK, (and all the other tested methods) are those
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that are dominated by large areas of uniform (or slightly varying) in-
tensity, intercepted by sharp edges and/or thin lines. Examples of such
images are the house image from Fig. 5.8, and the artificial, hand-drawn
image in the same figure, which consists of a flat background and of par-
ticularly thin lines. The advantage of the MRF-JC method is more pro-
nounced at high noise levels: the background noise is strongly suppressed
due to its powerful, joint conditional model; moreover, the anisotropic
MRF model helps connecting thin lines that are largely disturbed by
noise. On the extremely noisy house image, the result of the MRF-JC
method is better than that of the GENLIK method for 0.8 dB, and on
the hand-drawn image this difference is 0.5dB. The corresponding differ-
ences on both images were smaller when the input PSNR was larger. For
comparison, we have included also the results of two classical methods:
the spatially adaptive Wiener filter and the hard thresholding in the
orthogonal DWT. The latter two methods are obviously inferior both in
terms of PSNR and visually.

It is interesting that on images that are rich in natural textures, and
especially at low to moderate noise levels (where those textures are not
completely covered by noise), GENLIK usually outperforms the more
complex MRF-JC. In this respect, a good example is the standard Lena
image; for the input noisy image with σ = 20, shown in Fig. 5.9, the
result of the GENLIK method is better than that of the MRF-JC by
more than 1dB. In this case, one can also clearly see the difference in
visual quality in Fig. 5.10; the most obvious differences are in the texture
of the hat and in the face. Another example is the particularly textured
’Baboon’ image from Fig. 5.11. For the input image from the bottom of
Fig. 5.11, with σ = 25, the GENLIK method yields a result that is 0.7
dB better than that of the MRF-JC method. However, the differences
in the visual appearance in Fig. 5.12, are now hardly noticeable. The
latter conclusion is valid for many images of natural scenes: the two
methods most often yield a similar visual appearance.
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ORIGINAL INPUT, PSNR=16.5dB MRF-JC, PSNR=30.1 dB

WIENER, PSNR=26.8dB HT, PSNR=25.2 GENLIK, PSNR=29.6dB

ORIGINAL INPUT, PSNR=14.9dB MRF-JC, PSNR=28.3dB

WIENER, PSNR=24.8dB HT, PSNR=23.2 GENLIK, PSNR=27.5 dB

Figure 5.8: A comparison between the MRF-JC and GENLIK algorithms,
and two classical methods: the spatially adaptive Wiener filter and the hard
thresholding (HT) in the orthogonal DWT.
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Figure 5.9: 512x512 Lena image (top) and the noisy image, with σ = 20
(bottom).
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Figure 5.10: The results of the MRF-JC (top, PSNR=31.3dB) and the GENLIK

(bottom, PSNR=32.5dB) algorithms applied to the noisy image from Fig. 5.9.
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Figure 5.11: 512x512 Baboon image (top) and the noisy image, with σ = 25
(bottom).
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Figure 5.12: The results of the MRF-JC (top, PSNR=24.2dB), and the GENLIK

(bottom, PSNR=24.9dB) algorithms applied to the noisy image from Fig. 5.11.
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Comparison with other methods

In Table 5.1, the quantitative performance of the proposed GENLIK
method is compared with the available state of the art results, on two
standard 512x512 test images: ‘Lena’ and ‘Barbara’. The table lists also
the results of a single resolution spatially adaptive method: Matlab’s
spatially adaptive Wiener filter. The results of the proposed method are
given for both the generalized Laplacian (GL) and the Laplacian prior
(LP), the latter being slightly easier to implement. All the methods in
the Table 5.1 are organized into three categories: “orthogonal WT”, (the
orthogonal wavelet transform), “redundant WT” (including both the
cycle spinning method and the non-decimated transform), and ”single
resolution” methods.

The reference methods from Table 5.1 were recently published:

- Spatially Adaptive Wavelet Thresholding (SAWT) with the con-
text modeling [Chang98, Chang00a]; its idea was explained in Sec-
tion 2.4.2

- The Locally Adaptive Wiener filtering with the MAP estimation
of the standard deviation of the wavelet coefficients (LAWMAP)
[Mihcak99]; a brief explanation was given in Section 2.6.4

- The Spatially Adaptive denoising under Overcomplete Expansion
(SAOE) [Li00], which was also mentioned in Section 2.6.4

- Redundant Hidden Markov Tree (RHMT) method of [Romberg99];
its concept was briefly explained in Section 2.6.5

- Local Contextual Hidden Markov Modeling (LCHMM) method of
[Fan01]. Its main idea was also explained in 2.6.5

Three different wavelets have been used in the above methods, as
indicated in front of each method in the Table 5.1. Most methods use
orthogonal wavelets: the Daubechies db8, or the least asymetrical sym8
wavelet. In our experiments these two wavelets yield minor differences
in PSNR (0.1-0.2dB at the most). The SAOE method is the only one
among the ones listed, where biorthogonal wavelets, with a large number
of vanishing moments were used to minimize the mean squared error.

The RHMT and LHCMM are more complex with respect to all the
others in the Table 5.1, and are the only ones that include training proce-
dures for estimating their parameters. Among those two, the LHCMM is
more powerful (and also more complex), and makes use of both the local
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spatial context and the inter-scale dependencies of the coefficients (see
Fig. 2.21). These two schemes use the redundant wavelet representa-
tion that is obtained through a cycle spinning procedure (Section 2.2.6).
On the two standard test images, the proposed GENLIK method clearly
outperforms the RHMT approach and compares well with the LCHMM.

In [Mihcak99], the LAWMAP method was implemented only with
the inferior orthogonal transform. To enable a fair comparison, we have
implemented this method with the same non-decimated transform that
appears in our algorithms as well. The corresponding method is in the
Table 5.1, denoted as LAWMAP-ND. The SAWT method uses the same
non-decimated transform as in our algorithms. The SAOE method uses
a specific overcomplete expansion that is obtained in a similar fashion to
cycle spinning: the difference is that instead of processing the shifted ver-
sions separately, all the coefficients are put together, and are treated as
a single, overcomplete representation. The methods LAWMAP, SAOE,
and SAWT are of similar complexity as the new GENLIK method. The
new method achieves better results on the analyzed test images.

We shall further demonstrate the visual quality for the GENLIK
method in comparison with the LAWMAP-ND. The latter method is
the most relevant among the ones above for this comparison: the two
methods use the same wavelet transform; they are of similar complexity
and both employ the MMSE estimation using a local spatial window.
Under this setup, the LAWMAP-ND applies a classical estimation, while
the GENLIK method is based on the uncertainty of the presence of a
signal of interest. By comparing the two methods, the advantage of the
developed model may be clearly evaluated. The PSNR results in the
Table 5.1 are in favor of the new method. The corresponding differences
in visual quality are demonstrated in Fig. 5.13 and Fig. 5.15, for the
above two test images. The new method yields an improved visual
appearance. The sharpness and the details in the results are preserved
equally well by both methods, but the new one introduces considerably
less artifacts.
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Table 5.1: A comparison of resulting PSNR [dB] for several state of the art
wavelet methods, and a single resolution adaptive filtering. The wavelet type
is listed in front of each method.

Standard deviation of noise

10 15 20 25

L E N A

orthogonal WT

db8 LAWMAP [Mihcak99] 34.3 32.3 31.0 30.0

redundant WT

sym8 LAWMAP-ND 35.1 33.3 31.9 30.9

sym8 SAWT [Chang98] – 33.0 31.9 30.6

bior10/18 SAOE [Li00] 34.9 33.0 31.7 30.6

db8 RHMT [Romberg99] 34.6 32.6 31.2 30.1

sym8 LCHMM [Fan01] 35.0 33.0 31.7 30.6

sym8 GENLIK-GL 35.7 33.9 32.5 31.4

sym8 GENLIK-LP 35.7 33.8 32.2 31.2

Single resolution

Adaptive Wiener 33.6 31.1 29.0 27.2

B A R B A R A

orthogonal WT

db8 LAWMAP [Mihcak99] 32.6 30.2 28.6 27.4

redundant WT

sym8 LAWMAP-ND 33.1 30.8 29.1 27.8

sym8 SAWT [Chang98] – 30.7 28.9 27.6

bior10/18 SAOE [Li00] 33.3 31.1 29.4 28.2

db8 RHMT [Romberg99] 32.8 30.3 28.6 27.7

sym8 LCHMM [Fan01] 33.6 31.4 29.7 28.5

sym8 GENLIK-GL 33.5 31.2 29.5 28.3

sym8 GENLIK-LP 33.5 31.3 29.6 28.3

Single resolution

adaptive Wiener 29.9 28.3 26.8 25.5
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Enlarged parts of (a) the noise-free Lena image, (b) a noisy image
standard deviation 40, (c) the result of the improved, redundant implementa-
tion of the LAWMAP [Mihcak99] method (LAWMAP-ND), PSNR=28.58 dB,
and (d) the result of the GENLIK method PSNR=29.08 dB. (e) and (f) are
histogram-equalized versions of the images (c) and (d), respectively.
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Figure 5.14: 512x512 Barbara image (top) and the noisy image, with σ = 25
(bottom).
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Figure 5.15: The results of the LAWMAP-ND (top, PSNR=27.8 dB) and the
GENLIK (bottom, PSNR=28.3 dB) methods on the noisy image from Fig. 5.14.
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Discussion

We developed a new joint detection and estimation method for wavelet
domain image denoising. The method combines the MMSE criterion
with an assumption that each wavelet coefficient represents a signal of
interest with the probability p < 1. To estimate this probability, we have
introduced an analytic model, which is adapted to both the global coef-
ficients histogram and a local indicator of spatial activity. In particular,
the local spatial activity indicator was chosen simply as the locally aver-
aged magnitude, and a simple local model for its statistical distributions
given the signal presence and given the signal absence was assumed. The
resulting algorithm is of low complexity, both in its concept and the im-
plementation. Furthermore, the method is fully automatic. The local
window size is fixed and all the other parameters are computed directly
from the input noisy image.

In comparison with the advanced MRF based approach from Chapter
4, the GENLIK algorithm is considerably less complex. For images that
are dominated by large areas of uniform or slowly varying intensity,
intercepted by sharp edges and thin lines, the MRF based method offers
a superior performance. However, for most images of natural scenes,
the two methods yield similar results, and on images that are rich with
natural texture the GenLik method yields a superior performance in
comparison with the MRF based one.

The new algorithm compares well with the best state of the art meth-
ods from literature of similar and of higher complexity. The advantage
over related methods has been demonstrated both in terms of PSNR
and visually.

Many extensions of the proposed method are possible. Using of a
more complex indicator of the local spatial activity, which takes into
account the inter-scale correlations as well, is likely to further improve
the noise suppression performance. For such extensions, the appropriate
pdf models p(zl|H0,1

l ) should be developed. This and other aspects,
like e.g., use of more exact expressions for E(yl|wl, H1

l ) instead of the
approximation E(yl|wl, H1

l ) = wl are subjects for further research.

5.4 An empirical GenLik Approach

Now we slowly turn towards various practical applications. The fully
analytical method from the previous Section offers a good performance
on various types of images, in the case of Gaussian noise. In numer-
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ous practical applications one faces the suppression of Gaussian noise or
noise which can be approximated by Gaussian. However, we shall also
treat applications in which this is not the case. In order to apply the
previous, analytical approach one needs first to estimate the parameters
of the underlying distribution pY (y) of the noise free coefficients from
their noisy histogram. For other than Gaussian noise types this might
be difficult. And we go one step further: suppose that a versatile algo-
rithm is desired, which might be suboptimal, but applicable to various
and possibly unknown noise distributions. This reasoning motivates the
empirical approach that we introduce now.

We shall develop two practical algorithms, the use of which will be
later illustrated in various applications: medical image denoising, image
deblurring and speckle noise suppression in SAR images. This Section
explains a global idea behind these algorithms and puts them in a com-
mon framework, from which other extensions may be foreseen.

5.4.1 The main idea and the global concept

A common concept of the algorithms that follow in the rest of this Chap-
ter is an empirical estimation of the probabilities and the probability
density functions that specify the generalized likelihood ratio estima-
tor in Eq (5.3.3). These empirical estimates will be found using masks
which roughly indicate the positions of important wavelet coefficients in
a given detail image. The notion of masks may bring us back to the
MRFs from Chapters 3 and 4, but now we shall focus our interest in
a different direction. A simplified concept, which illustrates the use of
masks for the empirical estimation of the required conditional densities
is given in Fig. 5.16.

We shall find it convenient to represent the two hypotheses H1
l and

H0
l , referring to the presence and to the absence of a signal of interest,

by the events Xl = 1 and Xl = 0, respectively, where Xl is a binary
random variable. With this notation we have P (H1

l ) = P (Xl = 1),
pW (w|H1) = pWl|Xl

(wl|1), etc. The estimator from Eq (5.3.3) which we
consider is thus

ŷl =
ξlµl

1 + ξlµl
wl, (5.4.1)

ξl =
pWl|Xl

(wl|1)
pWl|Xl

(wl|0)
, µl =

P (Xl = 1|P)
P (Xl = 0|P)

. (5.4.2)

In estimating µl we may use a continuous indicator of local spatial ac-
tivity zl, as we have done in the analytical approach of Section 5.3,
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Figure 5.16: The idea of the empirical GenLik method.

where

µ̂l = ρ
pZl|Xl

(zl|1)
pZl|Xl

(zl|0)
, ρ =

P (Xl = 1)
P (Xl = 0)

. (5.4.3)

An alternative, discrete indicator of the local spatial activity may be
derived from the estimated mask x̂, as a function of neighboring labels
x̂∂l

µ̂l =
P (Xl = 1|x̂∂l)
P (Xl = 1|x̂∂l) . (5.4.4)

We have first used the latter case in Section 3.5 in the scope of an MRF
based method. Now it has been placed into a broader framework, where
MRF’s are not necessarily used.

To estimate the above probabilities and pdf’s empirically from a
given detail image, an estimate of the mask x̂ is required. In this respect,
we now introduce a simple and robust coarse-to-fine procedure:

x̂l =
{ 0, when |wl,j ||ŷl,j+1| < (Kσ̂n,j)2,

1, when |wl,j ||ŷl,j+1| ≥ (Kσ̂n,j)2,
(5.4.5)

where σ̂n,j is an estimate of the standard deviation of noise at the reso-
lution scale 2j , and K is a parameter, which controls the notion of the
“signal of interest”. In most applications K will be set to a fixed value.
In some sensitive applications, like in medical ultrasound, a user interac-
tion may be preferred. An alternative for this classification step is, e.g.,
the iterative correlation method of [Xu94], but that method imposes
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some practical problems as we remarked in Section 2.5.4. We avoid here
the iterative procedure, and yet (as it is demonstrated later) achieve a
robust edge detection, due to a coarse-to-fine processing strategy: al-
ready processed, coarser detail coefficients ŷl,j+1 at the scale 2j+1, are
used to better detect the positions of important ones at the scale 2j .

Having the estimate x̂ = {x̂1...x̂n}, let

S0 = {l : x̂l = 0} and S1 = {l : x̂l = 1}.

The empirical estimates p̂Wl|Xl
(wl|0) and p̂Wl|Xl

(wl|1) are found from
the histograms of {wl : l ∈ S0} and {wl : l ∈ S1}, respectively. Equiva-
lently, one can find the empirical estimates of pZl|Xl

(zl|xl). In practical
algorithms, since the pdf’s of the wavelet coefficients are highly sym-
metrical around zero, we shall compute the histograms of coefficient
magnitudes ωl = |wl| and use

ξ̂l =
pΩl|Xl

(ωl|1)
pΩl|Xl

(ωl|0)
. (5.4.6)

It is obvious that one cannot use directly the (normalized) histograms
to compute the required conditional pdf’s ratios: due to large errors in
the tails, unreasonable results would be produced. Therefore, we shall
use one of the following two strategies

- If no prior knowledge is available about the functional form of those
densities: piece-wise linear fitting of the log-ratio. We develop a
simple algorithm based on this idea in Section 5.5.

- If the functional forms of the densities are available: MLE (max-
imum likelihood parameter estimation) of their parameters from
the corresponding histograms. In Section 5.6, we propose analytic
models for the densities in case of SAR images and derive a simple
and fast algorithm.
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Figure 5.17: A summary of the developed GENLIK approaches.
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5.5 A versatile algorithm for various noise types

In the framework of the previously described empirical generalized like-
lihood ratio approach, we now propose a versatile algorithm where no
assumption is made about the type of underlying signal and noise dis-
tributions. Its application will be demonstrated on medical ultrasound
images (correlated speckle noise), MRI images (Rician noise) and in im-
age deblurring (suppression of artifacts produced by deconvolution).

The proposed algorithm starts from Eqs (5.4.1), (5.4.2) and (5.4.6).
The required quantities therein will be obtained via the preliminary
coefficient classification from Eq (5.4.5), according to which a mask x̂ =
{x̂1, ..., x̂n} is estimated for each detail image w = {w1, ..., wn}.

Reasoning that P (Xl = 1) is the fractional number of labels for
which x̂l = 1, we now estimate ρ = P (Xl = 1)/P (Xl = 0) as

ρ̂ =
∑n

l=1 x̂l
n−∑n

l=1 x̂l
. (5.5.1)

Further on, as was explained in Section 5.4.1, using x̂, and computing
the corresponding histograms, we obtain empirical estimates p̂Ω|X(ω|0),
p̂Ω|X(ω|1), p̂Z|X(z|0), p̂Z|X(z|1) of the required densities. Since those
cannot be used directly in subsequent computations, and since we do not
make any assumption about their analytic form (or approximation of it),
we propose a simple solution. Note that our method does not use these
densities directly, but rather their ratios: ξ̂(ω) = p̂Ω|X(ω|1)/p̂Ω|X(ω|0)
and η̂(z) = p̂Z|X(z|1)/p̂Z|X(z|0). Observing that the logarithms of both
of these ratios can be approximated well by fitting a piece-wise linear
curve as illustrated in Fig. 5.18, we approximate

log(ξ̂(m)) �
{ a1 + b1m, for p̂M |X(m|0) > p̂M |X(m|1),
a2 + b2m, for p̂M |X(m|0) ≤ p̂M |X(m|1),

(5.5.2)

log(η̂(e)) �
{ c1 + d1e, for p̂E|X(e|0) > p̂E|X(e|1),
c2 + d2e, for p̂E|X(e|0) ≤ p̂E|X(e|1),

(5.5.3)

In a summarized form, using the above three expressions, we estimate
each wavelet coefficient as

ŷl =
ρξ̂(ωl)η̂(zl)

1 + ρξ̂(ωl)η̂(zl)
wl. (5.5.4)
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Figure 5.18: Examples of the empirical pdf’s computed in the proposed
method, for the top left ultrasound image from Fig. 5.19.
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5.5.1 The practical algorithm

Here we first summarize the complete algorithm and then discuss some
implementation details. The proposed algorithm is:

Compute the non decimated wavelet transform

Estimate the noise standard deviations σdn,j for each subband

Select a value of K to specify the level at which a signal becomes
“of interest”

– For each scale and orientation

For all the spatial positions l = 1, ..., n
If |wl,j ŷl,j | > (Kσn,j)2, set x̂l = 1; otherwise x̂l = 0
compute the L.S.A.I. zl

Compute ρ̂ =
∑n

l=1 x̂l/(n−
∑n

l=1 x̂l)
With S0 = {l : x̂l = 0} and S1 = {l : x̂l = 1} compute:
p̂Ω|X(ω|0) = normalize(histogram{ωl : l ∈ S0})
p̂Ω|X(ω|1) = normalize(histogram{ωl : l ∈ S1})
p̂Z|X(z|0) = normalize(histogram{zl : l ∈ S0})
p̂Z|X(z|1) = normalize(histogram{zl : l ∈ S1})
Fit the log-ratio from (5.5.2):

Find: Rξ = {l : p̂Ω|X(ωl|0) �= 0, p̂Ω|X(ωl|1) �= 0} and
ξlog = {log(p̂Ω|X(ωl|1))− log(p̂Ω|X(ωl|0)) : l ∈ Rξ}
Find the coefficients a1,b1 and a2,b2 such that
a1 + b1ωl � ξlog,l, for ξlog,l < 0 and
a2 + b2ωl � ξlog,l, for ξlog,l > 0 and use a function

ξ̂(ω) =

{
exp(a1 + b1ω), for ξ̂(ω) < 1,
exp(a2 + b2ω), for ξ̂(ω) ≥ 1.

(5.5.5)

Fit the log-ratio from (5.5.3):
Apply the procedure from the previous item, using
now p̂Z|X(z|0) and p̂Z|X(z|1), and leading to

η̂(z) =

{
exp(c1 + d1z), for η̂(z) < 1,
exp(c2 + d2z), for η̂(z) ≥ 1.

(5.5.6)

For l = 1, ..., n : ŷl = ρ̂ξ̂(ωl)η̂(zl)/(1 + ρ̂ξ̂(ωl)η̂(zl))wl

Apply the inverse wavelet transform
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The new algorithm can be seen as a direct empirical extension of
the analytical one from Section 5.3.6. Lacking prior knowledge about
the underlying distribution of noise-free coefficients and noise, we now
estimate all the “ingredients” in this method empirically.

Here we choose the local spatial activity indicator (L.S.A.I.) zl as
the averaged magnitude of eight neighboring coefficients of wl, where
the neighbors are the nearest coefficients in the same scale and the “par-
ent” (i.e., the coefficient at the same spatial position at the first coarser
scale). One can choose zl as an arbitrary function of the neighboring
wavelet coefficients in the same and/or adjacent resolution scales: all
the other steps remain unchanged. It gives another degree of flexibility
to this method. It might be interesting to experiment with other similar
functions for zl, where, e.g., the influence of the neighbors is weighted
according to their distance from the current spatial position.

The proposed method can be implemented with arbitrary wavelets.
Since the preliminary classification step involves products of the wavelet
coefficients across scales, we use an “edge detection wavelet” (in par-
ticular, Mallat’s quadratic spline from Fig. 2.10). In various ap-
proaches where interscale coefficient products or ratios were used (e.g.,
[Xu94],[Hsung99],[Malfait97] and our own from Chapter 4) this wavelet
was found the most appropriate.

5.5.2 On medical applications

A possible application where the proposed method may find its use is
medical imaging. We shall demonstrate its application on medical ul-
trasound images and on medical MRI images. In the latter case a slight
extension of the algorithm will be required to cope with the noise in-
duced reduction of image contrast.

In medical images, noise suppression is a particularly delicate and
difficult task. A trade off between noise reduction and the preservation
of actual image features has to be made in a way that enhances the diag-
nostically relevant image content. Image processing specialists usually
lack the biomedical expertise to judge the diagnostic relevance of the
denoising results. For example, in ultrasound (US) images, even speckle
noise may contain information useful to medical experts, since the speck-
les originating from different tissues have different properties. The use of
speckled “texture” in US B-scans for diagnostics was discussed in, e.g.,
[Kossoff76, Sommer81]. Therefore, even though smoothing out speckle
noise may increase the signal to noise ratio and may be useful for some
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applications (e.g., segmentation) the denoised image may have less di-
agnostic relevance than the original, noisy one.

Another difficulty in dealing with biomedical images is, as pointed
out in [Unser96], the extreme variability of signals and the necessity
to operate on a case by case basis. This motivates the construction
of robust and versatile denoising methods that are applicable in various
circumstances, rather than being optimal under very specific conditions.
The algorithm proposed above is robust and adapts to various types
of image noise as well as to the preference of the medical expert : a
single parameter (K) can be used to balance the preservation of (expert-
dependent) relevant details against the degree of noise reduction.

In particular, the classification step of the proposed method involves
a tunable parameter K, which can be related to the notion of the expert-
defined “relevant image features”. Once this parameter is specified, all
the other parameters are computed directly from the noisy image. In
certain applications the optimal value of K can be selected as the one
that maximizes the signal-to-noise ratio (SNR) and the algorithm can
operate as fully automatic. However, in most medical applications the
tuning of this parameter leading to a gradual noise suppression may be
advantageous. Since the proposed method is simple and fast, such a
tuning is feasible.

5.5.3 Application to medical ultrasound images

Ultrasound images are corrupted by speckle noise [Goodman76] that
affects all coherent imaging systems. Within each resolution cell a num-
ber of elementary scatterers reflect the incident wave towards the sensor.
The backscattered coherent waves with different phases undergo a con-
structive or a destructive interference in a random manner. The acquired
image is thus corrupted by a random granular pattern, that hinders the
interpretation of the image content and reduces detectability of the fea-
tures of interest.

For an experienced radiologist, speckle noise, that is in medical lit-
erature also referred to as “texture” [Wagner83], may present useful
diagnostic information [Kossoff76, Sommer81]. In this application, it is
therefore advantageous to provide a user interactive denoising method,
where the degree of speckle smoothing can be tuned. The examples in
Fig. 5.19 illustrate the gradual suppression of speckle using the pro-
posed method. The results in this figure correspond to the window size
5x5 and different values of the tuning parameter K in Eq (5.4.5). The
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results demonstrate that the increase of K leads to a stronger suppres-
sion of the background texture and the enhancement of sharp intensity
variations.

We investigate the quantitative performance of the method, using
images with artificial speckle noise. A speckled image v = {v1, ..., vn} is
commonly modeled as [Achim01, Sattar97]

vl = flϑl, (5.5.7)

where f = {f1, ..., fn} is a noise-free image, and ϑ = {ϑ1, ..., ϑn} is
a unit mean random field. Realistic spatially correlated speckle noise
ϑl in ultrasound images can be simulated by lowpass filtering a com-
plex Gaussian random field and taking the magnitude of the filtered
output [Sattar97]. We perform this lowpass filtering by averaging the
complex values in the 3x3 sliding window. Such a short-term correla-
tion was found sufficient to model the realistic images well [Achim01].
By changing the variance of the underlying complex Gaussian random
field, we generate images with different levels of speckle noise. Two
types of reference noise-free images are used: (1) real ultrasound images
from Fig. 5.19, in which natural speckle noise was previously suppressed
by the proposed method, and (2) a purely synthetic image in Fig. 5.20,
which consists of regions with uniform intensity, sharp edges, and strong
scatterers.

Regarding the quantitative noise suppression performance, the pro-
posed method shows a stable behaviour with respect to the tuning pa-
rameter K. Fig. 5.21 demonstrates that for different noise levels and for
different test images the same value of this parameter can be chosen to
provide the maximum output SNR. It can be also seen that the window
size 3x3 is optimal under the assumed speckle model.

We compare the performance of the proposed method with one con-
ventional approach in speckle filtering: the homomorphic Wiener filter
[Achim01]. In particular, we apply Matlab’s spatially adaptive Wiener
filter to the image logarithm and subsequently perform the exponential
transformation of the filtered output. The window size of the Wiener fil-
ter was experimentally optimized to produce the maximum output SNR
for each test image and for each noise level used in simulations. Our
results clearly demonstrate that the proposed filter outperforms the ho-
momorphic spatially adaptive Wiener filtering both in terms of SNR
(Fig. 5.22) and in terms of the visual quality of results in Fig. 5.20.
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ORIGINAL ULTRASOUND IMAGE ORIGINAL ULTRASOUND IMAGE

THE RESULT FOR K = 2 THE RESULT FOR K = 2

THE RESULT FOR K = 4 THE RESULT FOR K = 4

Figure 5.19: Original ultrasound images and the results of the proposed
method for two different values of the parameter K, illustrating a gradual
suppression of speckle.
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TEST IMAGE 1 TEST IMAGE 2 TEST IMAGE 3

ARTIFICIAL SPECKLE ARTIFICIAL SPECKLE ARTIFICIAL SPECKLE

Homomorphic WIENER Homomorphic WIENER Homomorphic WIENER

GENLIK blind GENLIK blind GENLIK blind

Figure 5.20: From top to bottom: test images, artificially speckled images,
the results of the homomorphic spatially adaptive Wiener filter, and the results
of the proposed method.
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Figure 5.21: The performance of the proposed method as a function of the
value of the parameter K. Left: noisy test image 1, input SNR=13.6 dB, Right:
noisy test image 2, input SNR=11.6 dB.
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Figure 5.22: Comparison between the proposed filter and the homomorphic
Wiener filter on the synthetic test image of Fig. 5.20.

5.5.4 The algorithm adapted for medical MRI images

In magnetic resonance imaging the practical limits of the acquisition
time impose a trade-off between SNR and image resolution (see, e.g.,
[Gudbjartsson95, Macovski96, McVeigh85]). The acquisition time is
limited in practice due to patient comfort and due to physical limi-
tations (especially in dynamic applications, such as cardiac imaging and
functional MRI [Nowak99]). Post-processing noise reduction is therefore
often seen as the only means of achieving a desired MRI image quality.
Previously proposed wavelet domain filtering methods for MRI images
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were based on different thresholding schemes [Nowak99, Weaver92], in-
cluding [Xu94], where the coefficient selection was based on inter-scale
correlations. Only the first method among the above mentioned ac-
counts explicitly for a specific noise type in MRI. In particular, Nowak
in [Nowak99] explained that proper removal of noise from MRI images
requires (1) a certain image transformation (squaring the magnitude im-
age) prior to computing the wavelet transform, and (2) a modification
of both the scaling and the wavelet coefficients. First we explain in some
more detail the problem and then extend our algorithm from Section 5.5
along those lines.

Noise in MRI

The main source of noise in MRI images is the thermal noise in the
patient [Edelstein86]. The MRI image is commonly reconstructed
by computing the inverse discrete Fourier transform of the raw data
[Macovski96]. The signal component of the measurements is present in
both real and imaginary channels; each of the two orthogonal channels
is affected by additive white Gaussian noise. The noise in the recon-
structed complex-valued data is thus complex white Gaussian noise.

Most commonly, the magnitude of the reconstructed MRI image is
used for visual inspection and for automatic computer analysis. Since
the magnitude of the MRI signal is the square root of the sum of the
squares of two independent Gaussian variables, it follows a Rician dis-
tribution. In low intensity (dark) regions of the magnitude image, the
Rician distribution tends to a Rayleigh distribution [Papoulis84] and in
high intensity (bright) regions it tends to a Gaussian distribution. A
practical consequence is a reduced image contrast: noise increases the
mean value of pixel intensities in dark image regions.

Due to the signal-dependent mean of the Rician noise, both the
wavelet and the scaling coefficients of a noisy MRI image are biased
estimates of their noise-free counterparts. In [Nowak99] it was shown
that one can efficiently overcome this problem by filtering the square
of the MRI magnitude image in the wavelet domain. In the squared
magnitude image, data are non-central chi-square distributed, and the
wavelet coefficients are no longer biased estimates of their noise-free
counterparts. The bias still remains in the scaling coefficients, but is not
signal-dependent and it can be easily removed: at the resolution scale
2j , from each scaling coefficient 2j+1σc should be subtracted, where σ2

c is
the underlying complex Gaussian noise variance. This value is typically
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estimated from the noisy image: MRI images include an empty region
of air outside the patient; in the squared magnitude image, the average
pixel value in those empty (border) regions is 2σ2

c .

The adapted algorithm and its results

According to the explanation given above, we now adapt the algorithm
of Section 5.5.1 for the MRI images as:

- Compute the square of the MRI magnitude image;
- Compute the non-decimated wavelet transform with L decompo-

sition levels (in practice, we used L=4);
- Estimate the wavelet coefficients as described in Section 5.5.1;
- Subtract 2L+1σc from the scaling coefficients;
- Apply the inverse wavelet transform;
- Compute the square root of the image.

First, we illustrate the performance of the proposed method on an MRI
image with artificial noise, and compare it with the spatially adaptive
Wiener filter. For the reference noise-free image we have chosen a suf-
ficiently clean, original MRI magnitude image of a human brain (the
top left image in Fig. 5.23). In simulations, complex zero mean white
Gaussian noise with standard deviation σc was added to this image.
The top right image in Fig. 5.23 shows the noisy MRI magnitude for
σc = 30. The results from Fig. 5.23 demonstrate that the proposed
method suppresses noise better and preserves image sharpness better
than the spatially adaptive Wiener filter.

The quantitative performance of the proposed method, with respect
to the tuning parameter K is illustrated in Fig. 5.24(a). For different
amounts of noise the optimal value of this parameter is in the range
(1.8, 2), and the algorithm shows a stable behaviour with respect to K.
In our experiments, on a number of different reference MRI images, the
improvement over spatially adaptive Wiener filtering was at least 0.5 dB
(for relatively clean images) and more than 3 dB for low SNR images.
Fig. 5.24(b) illustrates such a comparison between the two filters for the
reference image from Fig. 5.23.

The application of the proposed method to real noisy MRI images is
demonstrated in Fig. 5.25. The MRI images were provided by the Ghent
University hospital. The noise suppression in these images facilitates
further automatic processing, like, e.g., the segmentation.
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Figure 5.23: Top left: original MRI image. Top right: image with artificial
Rician noise. Bottom left: the result of spatially adaptive Wiener filtering.
Bottom right: the result of the proposed method.
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Figure 5.24: Quantitative performance of the proposed method. (a) Influence
of the parameter K. (b) Noise suppression performance in comparison with the
spatially adaptive Wiener filtering. Reference image is the top left MRI image
from Fig. 5.23.

Figure 5.25: Application to realistic noisy MRI images. Left: original images,
right: the results of the proposed method.
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5.5.5 Application in image deblurring

Another application of the proposed method is in image deblurring.
Sharpening of edges increases noise and causes various artifacts. Wavelet
based denoising techniques are therefore often used as a regularization
step in image deblurring [Mallat98, p.455]. We have tested our algo-
rithm in combination with the wavelet based regularized deconvolution
(WaRD) approach of [Neelamani99]. Instead of the classical hard thresh-
olding that is implemented in the WaRD software of the Rice Univer-
sity [Neelamani99a], we have implemented the algorithm described in
Section 5.5.1. Other wavelet domain deconvolution methods include
[Donoho95c, Jalobeanu01, Kalifa99].

The WaRD approach of [Neelamani99] considers the following classi-
cal deconvolution scenario. Two degradations corrupt the observation vl
of the desired data fl: convolution with a linear shift-invariant system
having impulse response h and additive white Gaussian noise ϑl with
variance σ2. The observed data are

vl = (h � f)l + ϑl, l = 0, ..., n− 1 (5.5.8)

In the discrete Fourier transform (DFT) domain, defined as H(ωk) =∑n−1
l=0 hle

−jωkl, with ωk = 2πk/N , k = 0, ..., n− 1, one equivalently has

V (ωk) = H(ωk)F (ωk) + ϑ(ωk), k = 0, ..., n− 1 (5.5.9)

If the system frequency response has no zeros, an unbiased estimate of f
is obtained by a pure inversion: F̂ (ωk) = H−1(ωk)V (ωk). This inversion
amplifies noise enormously at frequencies ωk whereH(ωk) is small. Noise
amplification can be alleviated by using an approximate, regularized in-
verse instead of a pure inverse. Here, the regularization assumes atten-
uation (shrinking) the frequency components F̂ (ωk): the components at
which the signal power is smaller are shrunk more; the aim is to provide
a better solution by reducing noise in exchange for some distortion in the
estimate. The WaRD method combines the Fourier domain regulariza-
tion (FoRD) (actually Wiener filtering) followed by wavelet denoising.
The FoRD estimate is given by F̂FoRD(ωk) = H−1(ωk)Rα(ωk)V (ωk),
where the frequency dependent weights Rα are

Rα(ωk) =
|H(ωk)|2|Pf (ωk)|2

|H(ωk)|2|Pf (ωk)|2 + ασ2
. (5.5.10)

Pf (ωk) is the power spectral density [Papoulis84] of the input signal,
and α is a regularization parameter, which controls the amount of noise
suppression and the amount of signal distortion.
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(a) (b)

(c) (d)

(e)

Figure 5.26: (a) Original image; (b) blurred image, with 9x9 boxcar blur;
(c) the FoRD estimate of [Neelamani99a]; (d) the final result (the WaRD es-
timate) of [Neelamani99a] and (e) the proposed method applied to the FoRD
estimate (c).
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The WaRD software of [Neelamani99a] uses a small value of the
regularization parameter (α = 0.1) and suppresses the remaining noise
by wavelet shrinkage. The input in the wavelet denoising procedure is
f̂FoRD, which is the inverse Fourier transform of F̂FoRD.

While the original WaRD method uses a simple hard thresholding of
the wavelet coefficients for denoising the FoRD estimate, other wavelet
based denoising methods can be used in this approach as well. The re-
sults in Fig. 5.26 demonstrate that the proposed algorithm from Section
5.5.1 may be considered as a good candidate in this respect. Noise and
artifacts are well suppressed and the sharpness of image details is well
preserved. A more extended analysis is left for further research.

5.5.6 Discussion

In this Section, we proposed a new, robust and efficient wavelet do-
main denoising technique, which is applicable to various types of image
noise. The method is simple to implement and is fast. It can be seen
as a direct empirical extension of the analytical one from Section 5.3.6.
Lacking prior knowledge about the underlying distribution of noise-free
coefficients and noise, we estimate in this method all the involved prob-
abilities and pdf’s empirically. The method relies on the persistence of
significant wavelet coefficients across scales and performs accordingly a
preliminary coefficient classification, in a coarse-to-fine manner: already
processed coefficients from the coarser scales are used to better detect
the positions of edges in a given detail image. We demonstrated the
application of the method to different types of noise in medical imaging
and in image deblurring.

The proposed method is interesting for medical image denoising,
since it accounts for the preference of the medical expert: a single pa-
rameter can be used to balance the preservation of (expert-dependent)
relevant details against the degree of noise reduction. Such a user in-
teraction is in the first place useful for speckle noise removal from the
ultrasound images. The algorithm was adapted to cope with the noise
in MRI images. In this case, a signal-dependent noise reduces the im-
age contrast; both the wavelet and the scaling coefficients are biased
counterparts of their noise-free versions. The proposed method is in
this case applied to the squared magnitude image and the remaining,
constant bias is removed from the scaling coefficients. The core of the
algorithm remains the same.
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5.6 SAR image despeckling

Active radar sensing is often a prime source of inventory information
about remote and cloud-covered areas of the world. Due to its high
penetration power, Synthetic Aperture Radar (SAR) acquires high res-
olution images in almost all atmospheric conditions. However, the au-
tomatic interpretation of SAR images is often extremely difficult due
to speckle noise. Appearing as a random granular pattern, speckle se-
riously degrades the image quality and hampers the interpretation of
image content.

In this Section, we propose and demonstrate a new, fast locally adap-
tive algorithm for speckle noise suppression in SAR images. First we
explain the problem in some detail and we review briefly several well
known filtering approaches.

5.6.1 Speckle noise in SAR images

Speckle noise in SAR images arises as a consequence of the coherent
illumination used by radar. The principle of its formation is similar
to that of the speckle formation in medical ultrasound (Section 5.5.3).
Within each ground resolution cell a large number of elementary scatter-
ers reflects the radar wave towards the sensor. The backscattered waves
being coherent and having different phases undergo a constructive or
a destructive interference in a random manner. For a surface that is
rough on the scale of the radar wavelength, the number of elementary
scatterers within a resolution cell is large enough to ensure the statistical
independence in phase and amplitude of the elementary backscattered
waves. The speckle is then fully developed and its formation is referred
to as Rayleigh fading [Ulaby86a].

Usually, the speckle is partially suppressed already during the image
formation process, by using the multilook technique: L “looks” at the
same scene corresponding to, e.g., disjoint frequency bands are averaged.
The L-look averaging reduces the standard deviation of speckle by a
factor of

√
L, but it also deteriorates the resolution by a factor of L

[Goodman76].
Fully developed speckle behaves as random multiplicative noise de-

scribed by Eq (5.5.7). Within the homogeneous and the weakly textured
areas of SAR images this multiplicative noise model is considered to be
valid [Verhoest00b]: given the underlying scene reflectivity fl, the ob-
served pixel intensity is vl = flϑl, where ϑl is a random variable. The
spatial correlation of the speckle in SAR images is less prominent than
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that in the medical ultrasound images, and is most often neglected in
developing models for the filtering procedures [Foucher01, Walessa00].

It is widely accepted [Foucher01, Ulaby86b, Walessa00] that the ob-
served intensity of an L-look SAR image conditioned on the underly-
ing reflectivity is Gamma distributed: pV |F (v|f) ∝ vL−1 exp(−Lv/f).
Under this model, the multiplicative noise is also Gamma distributed.
Such models follow from the assumption that the real and the imagi-
nary parts (i.e., the so called in-phase and quadrature components) of
the speckle in a complex SAR image are zero mean Gaussian distributed.
The mean-to-standard deviation ratio of the resulting noise density sat-
isfies [Gagnon97] ( ϑ̄

σϑ

)2
= L = constant. (5.6.1)

The usual way to characterize the speckle noise in a SAR image is to
calculate Eq (5.6.1) over areas of uniform pixel intensity. The resulting
estimate of L is often termed the Equivalent Number of Looks (ENL).
Other noise distributions have been also used in literature, e.g., a χ2

distribution with 2L degrees of freedom in [Lee89, Ulaby86a], and a
Log-Normal distribution in [Gagnon97]. These models for the speckle
noise density in SAR images are discussed in detail in [Verhoest00b,
p.8-55].

Regardless of the particular functional form of the speckle noise pdf,
a normalization to the unit mean E(ϑ) = ϑ̄ = 1 is largely employed
in literature. In this case it can be shown that the following relations
hold between the mean values f̄ and v̄ and the normalized standard
deviations Cf and Cv [Foucher01, Kuan85]

f̄ = v̄, and C2
f =

C2
v − C2

v

1 + C2
ϑ

, (5.6.2)

where Cf = σf/f̄ , Cv = σv/v̄ and Cϑ = σϑ/ϑ̄ = 1/
√
L. Numer-

ous locally adaptive speckle filtering techniques, e.g., [Lee80, Kuan85,
Lopes90, Lopes90a, Foucher01], use an estimate of Cv from a local win-
dow to distinguish homogeneous regions (Ĉv ≤ Cϑ) where Cf = 0 from
heterogeneous areas (Ĉv > Cϑ) where Cf > 0. Some of those and some
other speckle filtering methods, are briefly reviewed in the next Section.

5.6.2 Filtering SAR images

A nice overview of various speckle filters and their comparative per-
formance can be found in e.g., [Gagnon97, ShiFung94]. Here we briefly
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review some of the well known filters. The indices that denote the spatial
position are omitted for clarity: the corrupted pixel intensity is v = fϑ,
where ϑ̄ = 1. Many standard filters require knowledge of v̄ and σv.
In practice, these quantities are estimated within a finite-size window.
Noise standard deviation σϑ (or the number of looks L) is either given
as the input filter parameter or it is estimated from a uniform area in
the image: ENL = (v̄/σv)2 = 1/σ2

ϑ.

Single-resolution speckle filters

Among the standard filters for speckle noise,[Frost82, Kuan85, Lee80] are
best known. These filters apply a local MMSE estimation, employing the
second-order sample statistics. Practically, the pixel intensity and the
local mean [Kuan85, Lee80] or the neighboring pixel intensities [Frost82]
are weighted, where the weighting factors depend on the local intensity
variability.

In particular, the Kuan filter [Kuan85] considers the multiplicative
noise model under the form v = f + (ϑ − 1)f , from which the corre-
sponding linear MMSE filter is deduced. Under the unit-mean noise
assumption, the pixel value estimate f̂ is

f̂ = v̄ +
σ2
f (v − v̄)

σ2
f + (ȳ2 + σ2

f )/L
, where σ2

f =
Lσ2

y − ȳ2

L+ 1
. (5.6.3)

In the “pathological” cases, when the estimated σ2
f < 0, one puts f̂ = v̄.

The Lee filter [Lee80] was earlier derived in a similar fashion, but
by approximating the multiplicative noise model by a first-order Taylor
expansion of v about f and ϑ. The corresponding filter is a special case
of Eq (5.6.3), where the term σ2

f/L is removed from the denominator.
The Frost filter [Frost82] is an adaptive Wiener filter which convolves

the pixel values within a fixed size window with an exponential impulse
response exp(−KCv|t|), where Cv = σv/v̄, t is a distance from the pro-
cessed pixel, and K is a filter parameter. This response results from an
autoregressive exponential model for the scene reflectivity f .

The enhanced versions of the above and similar filters (like the so-
called enhanced Lee and the enhanced Frost filters [Lopes90a]) apply
a combined filtering and a pixel classification: on the basis of the esti-
mated local standard deviation, the image pixels are assigned into one of
the three classes: homogeneous, weakly textured or highly heterogeneous.
Supposedly homogeneous image segments are simply averaged, while the
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highly heterogeneous ones are kept unmodified; only the remaining im-
age segments (weakly textured and/or ”edged”) are adaptively filtered
(with a given filter). Fig. 5.27 illustrates a SAR image and the three
different classes of image segments mentioned above.

The first maximum a posteriori (MAP) approach to speckle filtering
[Kuan87] was assuming a Gaussian probability density function (pdf)
for the scene reflectivity, while the Gamma-MAP filter [Lopes90] as-
sumes a more realistic Gamma distribution. The Gamma-MAP filter of
[Lopes90] combines in practice the filtering with a pixel classification, as
explained above, and estimates the pixel intensity as

f̂ =




v̄, if σv/v̄ ≤ 1/
√
L,

(α−L−1)ȳ+
√
ȳ2(α−L−1)2+4αLgv̄

2α , if 1/
√
L < σv/v̄ <

√
2/L,

v, if σv/v̄ ≥
√

2/L.
(5.6.4)

where
α =

L+ 1
L(σv/v̄)2 − 1

. (5.6.5)

This filter is commonly used as a standard for comparison in re-
cent speckle suppression literature. A more sophisticated and a high-
complexity MAP filtering approach, which uses MRFs for texture mod-
eling, was recently proposed in [Walessa00]. This approach retains image
texture well but has problems with the preservation of the strong point-
like targets1. This is due to the fact that the underlying continuous MRF
model penalizes strongly such highly localized intensity peaks; in their
turn, these intensity peaks also hamper the estimation of the texture pa-
rameters in a given window. In order to solve this difficult problem, the
approach of [Walessa00] removes the strong scatterers from the image
and places them back after the image is processed.

Other speckle filters include: the Oddy filter [Oddy83] (it replaces the
pixel intensity by the mean value of the pixel intensities within a varying-
shape window); the Adaptive Filter on Surfaces (AFS) of [Alparone90]
(employs a similar concept, where adaptive masks within a window are
used for the selection of the pixel that are subsequently averaged); the
Crimmins geometric filter [Crimmins85] (it represents an image as a 3-
dimensional diagram; the morphological filtering is then performed on
2-dimensional slices, each of which is a binary image). The three filters
mentioned above are usually outperformed by the ones that employ the

1Strong scatterers have a great importance for the physical interpretation of the
image content, because they correspond to high reflectivity objects.
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local MMSE (Lee, Frost, Kuan) or local MAP estimation (Gamma MAP
filter) (see, e.g., a comparative study in [Gagnon97]).

According to recent studies in [Foucher01, ShiFung94, Verhoest00b,
Walessa00], the Gamma MAP filter from Eq (5.6.4) is currently among
the best speckle filters, and we shall use it for comparisons with the new
wavelet filter.

Wavelet domain speckle filters

For speckle noise, the standard wavelet thresholding is not effective.
Therefore, usual wavelet domain despeckling techniques filter the image
logarithm, since after the logarithmic transformation the speckle noise
becomes approximately additive Gaussian. Such an approach was ap-
plied, e.g., in [Gagnon96] and [Odegard95]. Foucher et al [Foucher01]
note that the logarithmic transformation itself leads to a biased estima-
tion of the reflectivity, which calls for alternative approaches that filter
the wavelet coefficients of the original, speckled image. Only a few such
methods have been published. The approach of [Foucher96] basically
applies the correlation method of [Xu94] (Section 2.5.4) to select the
wavelet coefficients at different scales. A recently proposed multiscale
MAP filtering technique of [Foucher01] performs a filtering combined
with pixel classification (see Fig. 5.27): in supposedly homogeneous and
highly heterogeneous regions no filtering is performed, but the wavelet
coefficients are replaced by zero in the first case and left unmodified
in the second case; in supposedly textured regions the MAP filtering
is applied, with Pearson-type prior and noise distributions, leading to a
third-degree equation that is numerically solved. In comparison with the
Gamma MAP filter, the multiscale MAP filter of [Foucher01] preserves
more detail in weakly textured areas, but it smooths more the strong
reflectors. In general, the preservation of strong scatterers (point-like
targets) appears a difficult problem in numerous SAR filtering meth-
ods, including the most complex ones like the earlier mentioned single-
resolution MAP-MRF approach of [Walessa00]. A new wavelet filter
that we introduce next has precisely the ability to preserve the strong
scatterers well, while smoothing speckle in the homogeneous areas.
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Figure 5.27: A SAR image and an illustration of a homogeneous, an edged
and a highly heterogeneous region. Typical speckle filtering methods apply
different types of filtering in these regions.

5.6.3 A new family of wavelet shrinkage functions

Most of the SAR speckle filters from the previous Section do not show a
sufficient spatial adaptation to remove noise in the homogeneous areas
while retaining details in the highly heterogeneous ones. To alleviate
this problem, various “practical tricks” are employed, among which the
most common one is a preliminary pixel classification into three disjoint
classes and applying the actual filtering only in one of those, while simply
averaging or leaving unchanged the pixels from the other classes.

In contrast, our approach achieves a “soft” spatial adaptation, from
the homogeneous to the highly heterogeneous areas. We do not filter the
wavelet coefficients in different regions according to different rules, but
apply a unique shrinkage function, that automatically adapts to the local
spatial activity in the image, as it is depicted in Fig. 5.28. We start from
a global concept from Section 5.4, and in particular from the equations
(5.4.1), (5.4.4) and (5.4.6). Fig. 5.17 explains in a summarized form
both the common framework and the conceptual differences between the
algorithm of this Section and the two others that we developed in this
Chapter. The main novelty here is that we introduce functional forms for
the densities pΩl|Xl

(ωl|0) and pΩl|Xl
(ωl|1) of the coefficient magnitudes.

The parameters of the proposed densities are estimated quickly from
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Figure 5.28: An illustration of the proposed wavelet shrinkage functions for
SAR image despeckling. A unique shrinkage function is softly adapted to the
local homogeneity in the image; “strong reflectors” are never smoothed.

the corresponding coefficient histograms. The discrete indicator of the
local spatial activity (L.S.A.I.) that we use here, leads to a family of
shrinkage functions (Fig. 5.28) similarly as we had earlier in Section 3.5.3
(Fig. 3.14). While the shrinkage functions from Section 3.5.3 were chosen
heuristically, the new ones are adapted to the statistical properties of
the coefficient magnitudes of SAR images.

An exponential-Gamma likelihood model for SAR images

The pdf models that we propose here result from our experiments on
a number of different SAR images. By investigating the histograms of
the wavelet coefficients in regions dominated by speckle noise on the
one hand and in regions dominated by actual image transitions on the
other hand, we observed that the two corresponding pdf’s follow well
the scaled exponential and Gamma densities, respectively:

p̂Ωl|Xl
(ω|0) � (1/a) exp(−ω/a), (5.6.6)

p̂Ωl|Xl
(ω|1) � (1/2b)(ω/b)2 exp(−ω/b). (5.6.7)

The fit between these analytic models and the normalized coefficient his-
tograms (computed from the masks in the new method) are illustrated
in Fig. 5.30. The proposed pdf models involve only one parameter each;
the maximum likelihood estimates (MLE) of these parameters are com-
puted quickly from the observed data: if we denote, S0 = {l : x̂l = 0}
and S1 = {l : x̂l = 1}, one can show (see the Appendix B) that the MLE
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estimates of the parameters of the proposed pdf models are

â = (1/N0)
∑
i∈S0

ωi, N0 = #S0, (5.6.8)

b̂ = (1/3N1)
∑
i∈S1

ωi, N1 = #S1, (5.6.9)

where #S is the cardinality of the set S.
For the preliminary coefficient classification, from which the required

parameters and the local spatial activity indicator (L.S.A.I.) are esti-
mated, we use the coarse-to-fine procedure from Eq (5.4.5), with K = 1.
For the simplicity of implementation, σ̂dn,j in Eq (5.4.5) is now estimated
as (or strictly speaking, is replaced by) the median absolute deviation
of the wavelet coefficients in the orientation subband d at the resolution
scale 2j . Examples of the estimated masks for two different SAR images
are shown in Fig. 5.29. Even though the employed classification is rather
simple, the edges and the heterogeneous regions are detected well.

From the detected masks in each subband, we estimate for each
spatial position the prior probability ratio µl from Eq (5.4.4) using the
same reasoning as in Section 3.5.2 leading to

µ̂l = exp
(∑
k∈∂l

γ(2x̂k − 1)
)
, x̂k ∈ {0, 1}. (5.6.10)

Since the estimates x̂l rely on interscale coefficient correlations, µl
exploits both the inter- and the intrascale dependencies between the
wavelet coefficients.

To summarize, the proposed method estimates the wavelet coeffi-
cients as ŷl = ξ̂lµ̂l/(1 + ξ̂lµ̂l)wl, where

ξ̂l = (a/2b)(ωl/b)2 exp(ωl/a− ωl/b), (5.6.11)

and the parameters a and b are estimated using (5.6.8) and (5.6.9).
Fig. 5.31(a) illustrates the resulting shrinkage factor ξ̂lµ̂l/(1 + ξ̂lµ̂l)

without the influence of the local spatial neighborhood (i.e., for µl = 0)
in comparison with the standard hard and soft thresholding functions.
For the two standard thresholding functions, the threshold T was deter-
mined as the value T for which pΩ|X(T |0) = pΩ|X(T |1). In Fig. 5.31(a),
one can see that the proposed shrinkage function suppresses high mag-
nitude coefficients less than the classical soft-thresholding. This is very
important for high-resolution SAR images, where strong scatterers need
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to be preserved. Fig. 5.31(b), Fig. 5.31(c) illustrate the resulting fami-
lies of shrinkage functions, when different relative importance γ is given
to the local spatial context. One can deduce from these figures that a
larger value of γ smooths the homogeneous areas better but also atten-
uates isolated strong targets in the homogeneous areas more. In all the
subsequent results the value γ = 0.2 was used.

5.6.4 A practical SAR despeckling algorithm

Based on the description from the previous Section, now we can sum-
marize the new algorithm as

Compute the non decimated wavelet transform

Specify the value of γ that controls the influence of the local spatial
context (we use γ = 0.2)

– For each scale and orientation

Compute nj = Median(|wj −Median(wj)|)/0.6745
For all the spatial positions l = 1, ..., n
If |wl,j ŷl,j+1| > (nj)2, set x̂l = 1; otherwise set x̂l = 0
Estimate the parameters of the conditional pdf models:
a = (1/N0)

∑
i∈S0
|wi|, N0 = #S0, S0 = {l : x̂l = 0}

b = (1/3N1)
∑

i∈S1
|wi|, N1 = #S1, S1 = {l : x̂l = 1}

For l = 1, ..., n :
Estimate ξ̂l = (a/b)(|wl|/b)2 exp(|wl|/a− |wl|/b)
Estimate µ̂l = exp

(
γ

∑
k∈∂l x̂k

)
Estimate the coefficient: ŷl = ξ̂lµ̂l/(1 + ξ̂lµ̂l)wl

Apply the inverse wavelet transform
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Figure 5.29: Examples of the detected masks for two original SAR images
(from Fig. 5.27 and Fig. 5.34) in the proposed SAR denoising algorithm. From
top to bottom, the resolution scales are 23, 22 and 21.
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Figure 5.30: An illustration of the proposed functional forms pΩl|Xl
(ω|0)

(left) and pΩl|Xl
(ω|1) (right) in comparison with the corresponding coefficient

histograms. The diagrams correspond to the SAR image from Fig. 5.34 and to
the three corresponding masks from Fig. 5.29.
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(a) (b) (c)

Figure 5.31: (a) The resulting shrinkage function for γ = 0, in comparison
with standard hard- and soft-thresholding functions. (b) and (c) Families of
resulting shrinkage functions, depending on the local spatial context, for γ = 0.2
and γ = 0.4, respectively.

5.6.5 Results and Discussion

First we demonstrate the performance of the proposed method on sev-
eral representative SAR images and then compare the results with the
Gamma MAP filter of [Lopes90] from Section 5.6.2.

The original image in Fig. 5.32 (800x600 pixels) was acquired by
the German space agency (DLR)2. The image is highly corrupted by
noise. The proposed method strongly suppresses noise, while preserving
details well; the image contrast has also improved after denoising. Strong
reflectors are well preserved and they are even enhanced. For example,
the four points arranged in the corners of a rectangle in the lower left
part of the image are better recognized after denoising.

The SAR images of urban areas shown in Fig. 5.33 and Fig. 5.34 are
provided by the Sandia National Laboratories. Both images are 400x600
pixels and are not as much corrupted by noise as compared to the pre-
vious case. The results in these figures confirm also the ability of the
proposed method to preserve point-like targets while suppressing noise
in the homogeneous areas. The SAR image from Fig. 5.35 (350x600
pixels, source Sandia) shows agricultural fields and is rich with natural
texture. The result of denoising in this figure demonstrates that the pro-
posed method preserves natural image texture rather well, even though
it is not specifically designed to deal with textures.

2We processed this image at the Signal and Image Centre (SIC) of the Belgian
Royal Military Academy. We thank the DLR and the SIC centre for kindly providing
us this image for experiments.
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Figure 5.32: Original single-look SAR image (left) and the result of the
proposed method (right).

In Fig. 5.36, another type of a SAR image is shown. The image
(450x600 pixels) shows a river network with a lot of thin lines and tiny
details. After denoising the tiny lines and other image details seem
remarkably well preserved.

As a reference method for comparison, we use the Gamma MAP fil-
ter, which was explained briefly in Section 5.6.2. Fig. 5.37 shows parts of
different SAR images and the results of the proposed filter in comparison
with the corresponding results of the Gamma filter. The results demon-
strate clearly that the proposed method preserves the image sharpness
and point-like reflectors significantly better.

An objective evaluation of the results is not completed at this mo-
ment. Also, it would be interesting to investigate the use of the proposed
method as a preprocesing tool for edge detection, segmentation or tex-
ture analysis in SAR images. Speckle noise complicates such procedures
and their operation is expected to be largely facilitated after denoising.
Another practical benefit from denoising SAR images is image compres-
sion. These subjects are left for further research.



182 A Generalized Likelihood Ratio in Denoising

Figure 5.33: Original SAR image (top) and the result of the proposed method
(bottom).
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Figure 5.34: Original SAR image (top) and the result of the proposed method
(bottom).
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Figure 5.35: Original SAR image (top) and the result of the proposed method
(bottom).
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Figure 5.36: Original SAR image (top) and the result of the proposed method
(bottom).
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Figure 5.37: Parts of original SAR images (left), denoised images using the
new method (middle) and the corresponding results using the Gamma MAP
filter (right).
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5.7 Summary and conclusions

In this Chapter, we proposed a new class of locally adaptive, denoising
methods. In these developments, we started by upgrading our method
from Section 3.5 and recognized a broader framework of the joint detec-
tion and estimation principles.

In Section 5.3, we proposed a new approach to estimating the prob-
ability of signal presence in a given wavelet coefficient, relying on the
global and on the local statistical properties of image wavelet coeffi-
cients; its essence is expressed in Eqs (5.3.6) and (5.3.14). We integrate
the underlying pdf of the noise free coefficients to estimate the global
probabilities (of signal presence) and combine these in a Bayesian frame-
work with the conditional pdf’s of the local spatial activity indicator.
We derived the analytic expressions for the proposed global prior proba-
bility ratio and for two common prior models (Section 5.3.3). In Section
5.3.4, we proposed a simple analytic model for the conditional densities
of the locally averaged coefficient magnitudes, that we used as the lo-
cal spatial activity indicators. In this way, we derived a practical, low
complexity algorithm for Gaussian noise suppression; its characteristic
parts are depicted in Fig. 5.7. The new algorithm compares well with
the best state of the art methods of similar and of higher complexity.
The advantage over related methods was demonstrated both in terms of
PSNR and visually.

In Section 5.4, we proposed a framework for various empirical ex-
tensions of the new approach, which may lead to an increased flexibility
in practice and adaptability to different noise types; our ideas in this
respect were summarized in Fig. 5.16 and Fig. 5.17. Within this frame-
work, we developed two other algorithms, described in Sections 5.5 and
5.6. The first one is versatile and applicable to various noise types; we
demonstrated its applications to medical ultrasound and MRI images
and its use in image deblurring, showing the advantages over some stan-
dard filtering techniques in these applications. The algorithm that we
developed in Section 5.6 is aimed for speckle suppression in SAR im-
ages. We proposed functional forms for the conditional densities of the
coefficient magnitudes in SAR images. The main advantage of the new
method over the majority of existing techniques is that it preserves point
reflectors well, while adapting automatically to the local homogeneity in
the image.

Different parts of this Chapter are published in [Pizurica01a] and in
[Pizurica01b] and submitted for publication [Pizurica02b, Pizurica02c].
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Chapter 6

Application to humanitarian
demining

This Chapter covers a particular application area: humanitarian dem-
ining. Mine detection is a challenging framework for developing and
validating advanced sensor technologies and accompanying signal and
image processing methods. Here we tackle a small segment of this com-
plex problem, focusing on enhancement of images of landmines. In this
respect, we consider techniques developed in the previous Chapters and
also propose and discuss some other, simpler solutions. In less detail, we
illustrate some other important aspects of humanitarian mine detection.

6.1 Introduction

When accessing a humanitarian demining problem, even from an im-
age processing point of view, one cannot forget its human dimension.
Currently, approximately 60 million antipersonnel mines are polluting
and endangering the environment in some 60 countries [Verlinde01]. A
number of specialized studies, e.g., [Brooks97, Bruschini96, Bruschini97,
Daniels97, Nicoud97, Milisavljevic01, VanKempen98], is devoted to ad-
vanced technical solutions of the land mine problem.

Two basic types of landmines are: anti-tank mines and anti-
personnel mines. Anti-tank mines are designed to destroy heavy vehicles
and are usually laid to form regular patterns. The anti-personnel mines,
designed to maim or kill people, are small (e.g., 5-6 centimeters in diame-
ter) and light (often less than 50 g), and appear in many different shapes
(see Fig. 6.1). A detailed description is in [Milisavljevic01]. The anti-
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Figure 6.1: Examples of anti-personnel mines.

personnel mines are often scattered at random on purpose; apart from
that, since they are small and light, erosion or floods can carry them over
quite large distances, which makes their localization extremely difficult.

An important aspect of the humanitarian demining is the require-
ment that every single mine is located and destroyed. Most of such
mine clearance procedures are in practice still carried out manually: the
“detection” process relies on sticks for prodding the ground or at most
on basic metal detectors. Since the metal detector cannot distinguish
the metallic content of a landmine and other metallic pieces, like e.g.,
metallic debris, a number of false alarms is created; each of those needs
to be carefully checked, which is time consuming. A special problem
are the so-called plastic mines, which have minimum amounts of metal.
Needless to say, a deminers’ work is extremely dangerous, current demi-
ning procedures are extremely slow, and new more efficient technological
solutions are needed. In this respect, for locating minefields and individ-
ual landmines, advanced sensor technologies [Bruschini97, Nicoud97] are
in (experimental) use or under development. A reliable interpretation
of the acquired data and automatized mine detection techniques require
various signal and image processing [Brooks97, VanKempen98] and data
fusion [Milisavljevic99c, Milisavljevic01] techniques.

Our contribution in the scope of this topic is wavelet domain noise
reduction. The goals are enhancing the image quality for visual in-
spection as well as facilitating subsequent steps in an automatic mine
detection procedure. In particular, our research has been carried out
within the Belgian joint research program on humanitarian demining
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(HUDEM)[Acheroy98b], which has determined the choice of sensors for
which we consider noise reduction. These sensors are: infrared cam-
eras [Acheroy98a, Klein97] and ground (or surface) penetrating radar
[Daniels96].

The Chapter is organized as follows. In Section 6.2, we first give a
brief overview of the sensors that are considered among the most use-
ful or promising ones for humanitarian mine detection. Then we de-
scribe briefly the Belgian joint humanitarian research program HUDEM
[Acheroy98b, Verlinde01], of which our work is a part. In Section 6.3,
we address the processing of infrared (IR) images of landmines. First,
we describe in some detail the IR sensors and images available for our
experiments. Then we propose a new, simple wavelet domain filter-
ing technique for these images, and also apply one of the previously
developed spatially adaptive methods from this thesis. Section 6.4 is
structured similarly, but devoted to ground penetrating radar. First, we
describe the sensor and the available images; then we apply a simple
pyramidal filtering technique and spatially adaptive wavelet denoising
to different types of GPR images. Section 6.5 concludes the Chapter.

6.2 Humanitarian demining technologies

Here we address some standard and emerging technologies in humanitar-
ian mine detection. The aim is to give a reader a quick insight into this
problem; for a deeper analysis we refer rather to a number of related,
specialized publications.

6.2.1 Sensor technologies in humanitarian demining

A possible rough categorization of different sensor technologies in hu-
manitarian demining is according to their range:

remote and close range

sensors, as depicted in Fig. 6.2. Remote sensing plays an important
role in planning demining operations (acquiring information about the
terrains, infrastructure and roads) and in the detection of minefields;
in this category, Synthetic Aperture Radar (SAR), (polarimetric) in-
frared, multispectral and hyperspectral imaging are among the most
often considered technologies [Bishop98]. In this respect, noise reduc-
tion techniques for SAR, including the one that we have developed in
Section 5.6 can be seen as helpful in humanitarian demining as well.
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Figure 6.2: Various sensor technologies in humanitarian demining.

Close range sensors are employed for the detection of individual land-
mines. Since in humanitarian mine detection a great importance is given
to the detection of each single landmine, the close range sensors are of
particular importance in this application. A variety of such sensors are
in use or under development. A concise review can be found, e.g., in
[Bruschini97], and a detailed technical study is in [Milisavljevic01]. The
description that follows here is far from being complete and remains at
an introductory level. Two types of sensors, for which we develop noise
reduction techniques, are described in more detail in Sections 6.3.1 and
6.4.1. We start with a brief overview of the sensors that are, according
to recent studies the most promising ones.

Magnetometers and metal detectors

Magnetometers are frequently used for detection of unexploded ordnance
(UXO) [Milisavljevic01]. These sensors are passive (i.e., do not radiate
any energy) and measure the disturbance of the Earth’s natural elec-
tromagnetic field. To increase the sensitivity of a magnetometer, a gra-
diometer is used. This apparatus measures the gradient variation of
the disturbed magnetic field. Both magnetometer and gradiometer can
detect only ferrous objects but no other metallic object. Metal detec-
tors (MD) [Nicoud97] (or coil induction sensors) are among the oldest,
simplest and best known mine detection sensors. The principle of oper-
ation is: the current through the primary (transmitter) coil generates a
magnetic field, that induces a secondary electrical current in a metallic
object; the induced current generates a secondary magnetic field that
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is detected by the receiving coil of the detector. Usually, metal detec-
tors produce numerous false alarms (due to various metallic pieces in the
ground). Conventional metal detectors produce an acoustic signal. More
advanced ones are aimed for use in combination with imaging devices
[Bruschini99]; specific image processing techniques are there required,
among which deconvolution [Druyts00, Verlinde01].

Trace explosive detectors

The sensors from this category are far out of the scope of this thesis,
but are indeed considered among the most important ones in humani-
tarian mine detection. Actually, one of the most effective “sensors” of
explosives are the dogs, thanks to their great olfactory power. Some of
the obstacles faced in practice are an expensive and long training, and
an inclination of dogs to tire quickly (after 15 to 30 minutes of work).
Other biological sensors that are currently under research for explosive
detection are rodents. The first results of such studies [Weetjens99] show
that rodents are at least as sensitive as dogs, with the advantage of being
lighter and much longer concentrated (8 hours). Alternatives are artifi-
cial vapor sensors, [Jankowski92, Rouhi97] which are already in use in
chemical industry and in airports.

Bulk explosive detectors

Interest is growing in sensors that can detect explosives in bulk form,
in any environment. Such sensor technologies include nuclear (thermal
neutron activation, neutron backscatter, and X- ray backscatter) and
NMR/NQR techniques [Bruschini97]. These techniques are used, e.g.,
in screening airport luggage and mail [Novakoff92]. Their application in
mine detection is quite recent and appears promising [Engelbeen98], but
expensive.

Thermal infrared sensors

Mines retain or release heat at a different rate than the surrounding
environment. Consequently, a temperature difference exists between
the soil above a mine and the soil close to it. Sensitive infrared (IR)
cameras [Acheroy98a] detect thermal differences that are less than 0.1K.
Maximum burial depth at which mines can still be detected by means
of IR sensors is estimated between 10 and 15cm [Bruschini97], but is
in practice often much smaller. Infrared cameras are mainly aimed at
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detecting surface laid and shallow buried mines. We address this sensor
in some more detail in Section 6.3.1.

Multi- and hyperspectral visible/infrared sensors

Hyperspectral stands for a sensor with more than twenty bands, while
multispectral describes a sensor with twenty or less spectral bands.
These sensors are aimed at detecting not just surface-laid, but buried
mines as well. The underlying principle is detecting localized spectral
differences in the scene, caused by the presence of mines. Immediately
after the mine placement, there exist textural differences of the soil that
can be detected with a broad band infrared (or visible during the day)
instrument. In time, the surface textural differences dissipate. There
are still likely to be compositional differences between the soil above the
mine and the surrounding area (e.g., due to the fact that a mine prevents
the vertical flow of soil moisture). These compositional differences of the
soil result in a local difference in the spectral signature [DePersia95].

Ground penetrating radar

Ground penetrating radar (GPR) [Daniels96] is considered to be among
the best sensors for detecting buried plastic and low-metal content mines
[Milisavljevic01]. GPR emits electromagnetic waves into the soil and de-
tects their reflections. The GPR technology is used in civil engineering,
geology and archeology for detecting buried objects and studying soil
[Peters94]. For mine detection, time domain ultra wide band (UWB)
radars are used (some more technical details are given in Section 6.4.1).
By moving the antenna it is possible to reconstruct an image representa-
tion of a vertical slice of the soil; further data processing makes it possible
to also visualize the horizontal soil slices or to build 3-D representations
[Scheers00]. The main problems are: the choice of the frequency band
is a trade-off between resolution and penetration depth (higher frequen-
cies do not propagate well through ground); shallow buried objects are
not reliably detected due to strong surface-air reflections; discrimination
between mines and other objects of minelike shape is difficult.

Acoustic sensors

Conventional ultrasound sensors [Donskoy98] emit a sound wave, with
a frequency higher than 20 kHz, into a medium. This sound wave is re-
flected on boundaries between materials with different acoustical prop-
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erties. Such systems penetrate well through very wet and heavy ground
such as clay, and that makes them complementary to GPR (although
they are also likely to experience problems at the air-ground interface
[Bruschini97]). Accordingly, most of the work in this area is oriented
towards underwater mine detection [Goo98].

Multisensor systems

Each of the sensors mentioned above works well under certain conditions
but is less or not at all reliable under the others. An improved detection
probability as well as a reduced false alarm rate should result from a
multisensor data fusion [Milisavljevic99c]. In this respect, one of the
most often analyzed combination of sensors is:

infrared camera(s) (IR),

ground penetrating radar (GPR) and

metal detector (MD)

Within this framework, noise reduction techniques are primarily aimed
for the IR and GPR.

6.2.2 A practical research program

Among numerous others, the Belgian joint research program on hu-
manitarian demining (HUDEM) [Acheroy98b] has merged some of the
sensor technologies mentioned above and accompanying signal and im-
age processing and mechanization/robotization techniques. This re-
search has been carried out at several Universities and laboratories:
the Royal Military Academy (RMA), the “Vrije Universiteit Brussel”
(VUB), the “Université libre de Bruxelles (ULB), the “Universitaire
Instelling Antwerpen” (UIA), the “Université catholique de Louvain”
(UCL), the “Katholieke Universiteit Leuven” (KUL), the “Université de
Liège” (ULg), the “Universiteit Gent” (RUG), and the “Facultés univer-
sitaires Notre-Dame de la Paix” (FUNDP). Different segments and some
of the practical contributions of this research are summarized below:

Sensor development and modeling : modeling thermal radia-
tions, detected by IR sensors [Schachne98]; modeling the elec-
trical properties of soils [Storme98]; development of new small
sized UWB GPR antennas for the detection of minelike ob-
jects [Scheers98, Scheers00]; applying new sensor technologies,
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(a) (b

Figure 6.3: Acquisition of a data set of IR images of landmines. (a) Dummy
minefields and (b) a test setup with two IR cameras.

like Nuclear Quadrupole Resonance (NQR) to mine detection
[Engelbeen98].

Signal processing and data fusion: specific techniques for metal de-
tector imaging [Druyts00]; noise reduction techniques for infrared
images [Pizurica99c] and GPR images [Pizurica99a] of landmines;
the analysis of IR image sequences by means of Karhoenen Loève
transform [Schachne98]; feature extraction and pattern recogni-
tion methods for GPR [Milisavljevic01, VanKempen98]; shape
analysis applied to IR images of landmines [Milisavljevic99a];
fusion of the data acquired by IR, GPR and metal detector
[Milisavljevic99c, Milisavljevic01].

Robotics: design of small platforms for sensors and development of
navigation techniques, including the localization of sensors in the
minefield [Verlinde01].

Within the framework defined above, our focus is on noise reduction
and enhancement of IR and GPR images, on which we concentrate now.

6.3 Infrared image processing

Before describing the noise reduction methods for IR images, we explain
briefly their formation and especially the type of images used in our
experiments.



6.3. Infrared image processing 197

(a) (b) (c)

Figure 6.4: Examples of infrared images of the same landmine (in the lower
left part) acquired at different hours of the day: (a) in the morning (around
11h), (b) in the afternoon (around 15h) and (c) in the evening (around 21h).
Soil: sand, camera: 3µm - 5µm.

6.3.1 Infrared images of landmines

Infrared sensors [Acheroy98a, Klein97] detect thermal radiation of ob-
jects. The thermal contrast of an object with respect to its environment
is a function of two parameters: the temperature of the object and the
emittance of its radiating surface. Within the infrared (0.7µm -1 mm)
part of the spectrum, the IR sensors most often operate in one of the
following windows where the IR transmittance of the atmosphere is high
[Klein97]:

short-wavelength infrared: 0.87µm - 1.5µm

mid-wavelength infrared: 3µm - 5µm

long-wavelength infrared: 8µm - 12µm

The choice of the band depends on the situation at hand, depending
where a strong target signature exists, but also taking into account back-
ground characteristics, i.e., type of terrain (soil), spectral signatures, etc.

Normally, mines become hotter and colder faster than their sur-
roundings, meaning that the daily evolution (so- called “diurnal cycle”)
of IR mine signature exists: there are parts of the day when a mine
appears on an IR image as lighter (warmer) than the surroundings, and
other parts when it is darker (colder). In between the two extremes,
there are times of the day when a mine cannot be noticed because it
is in thermal equilibrium with its surrounding. Important factors that
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(a) (b)

Figure 6.5: Two infrared images of the same landmine (buried in gravel) and
acquired with (a) a 3µm - 5µm camera and (b) an 8µm - 12µm camera.

influence the thermal contrast, like the time of year, position of sun,
humidity of air, etc. are discussed in detail in [Milisavljevic01].

A data set acquisition

The data set of IR images of landmines that was at our disposal was ac-
quired by the researchers of the HUDEM project (including ourselves).
The data acquisition was performed on realistic dummy minefields in
Meerdaal, Belgium, which were installed for research purposes by the
Belgian Bomb Removal Unit and by the Royal Military Academy. Those
dummy minefields, a part of which is shown in the Fig. 6.3(a), cover four
different types of soil: natural, sand, gravel and a mixture of sand and
gravel. In each type of soil, we were taking infrared images of one par-
ticular mine with two infrared cameras (Fig. 6.3 (b)): a mid- and a long
wavelength one, each 15 min during 24 hours. The data are available on
http://www.tdp.sai.jrc.it/APL-Database/Home/sigdata.htm.

Images shown in Fig. 6.4 were taken by the 3µm - 5µm IR camera
at different hours during the day: in the morning (left), in the afternoon
(middle) and in the evening (right). The landmine was buried in sand
at the depth of 5 cm. One can recognize in these images the “diurnal
cycle” that was mentioned above: before noon (Fig. 6.4(a)) the highest
pixel intensities correspond to the buried mine. In the early afternoon,
the temperature of the surrounding soil equalizes with the landmine
temperature; this is the so called “blind period” for IR cameras: one
can no longer recognize the presence of the mine in Fig. 6.4(b). In the
evening image from Fig. 6.4(c), the landmine that is cooling faster than
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Figure 6.6: An original infrared image and the result of a simple contrast
enhancement.

the surrounding is represented by the darkest pixel intensities. During
the night, the second “blind period” occurs.

Fig. 6.5 shows examples of the IR images acquired in the gravel field
with the two cameras. The position of the landmine (denoted by an
arrow) appears different in the two images due to different positions of
the cameras (see Fig. 6.3 (b)).

One can conclude from the above examples that the infrared cameras
should be used during those periods of the day when the thermal contrast
between mines and surrounding is expected to be the greatest. The
acquired images during those periods need to be further enhanced in
order to facilitate the interpretation of the data.

Contrast enhancement

A great step in improving the visual quality of an infrared image is often
a simple contrast enhancement. Even though the results of our noise re-
duction/enhancement techniques would seem much more impressive as
compared to the raw data visualized in Fig. 6.4, we first optimize the vi-
sualization of the data themselves. Namely, the acquisition system used
in our experiments was introducing a systematic error: border pixels
were falsely assigned extremely large values preventing a proper use of
the available dynamic range for visualization. By removing this error
and rescaling the pixel intensities linearly within the available grey scale
range, one already obtains a great improvement in the visual appearance
of the data, as demonstrated in Fig. 6.6. From here on, we proceed with
demonstrating noise reduction techniques.
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Figure 6.7: An illustration of a filtering step in the proposed multiscale edge
reconstruction technique.

6.3.2 A new nonlinear wavelet denoising technique

Here we propose one simple wavelet domain noise reduction technique
for IR images of landmines. The proposed approach exploits the low-
pass images (scaling coefficients) in order to detect the positions of sig-
nificant edges in noisy details. A related method of Sattar [Sattar97]
(Section 6.4.2) uses a decimated representation with quincunx wavelets
[Feilner01, Kovacevic92, Starck98], applies an edge detector to each low-
pass image and selects simply those wavelet coefficients at the positions
of the detected edges. Here we apply a slightly more sophisticated ap-
proach. We use a specific non decimated wavelet transform and intro-
duce a new nonlinear filtering scheme. Firstly, a wavelet coefficient is
selected based on two criteria: its magnitude and the closeness to the
estimated edge positions. Secondly, in order to suppress the artifacts,
the selected coefficients are filtered along the edges. Practically, we first
remove the smallest wavelet coefficients and integrate the subsequent se-
lection/filtering into one step. The basic concept is illustrated in Fig. 6.7.
The details are outlined below.
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A one-subband non decimated wavelet representation

To obtain a non decimated wavelet representation with one detail im-
age at each scale, we simply rearrange the decomposition and the re-
construction stages of the two-subband decomposition [Mallat92b] from
Fig. 2.11.

Let us denote the two dimensional convolution as

(a ∗ b)m,n �
∑
k

∑
l

ak,l · bn−k,m−l, (6.3.1)

a separable filter as abm,n � ambn and a discrete Dirac function by δn.
Like in Section 2.2.7, aj denotes inserting 2j − 1 zeros between each two
coefficients of the filter a. Now we can represent in a compact form the
decomposition stage from Fig. 2.11 as:

w1
j+1,m,n = (sj ∗ gjδ)m,n

w2
j+1,m,n = (sj ∗ δgj)m,n (6.3.2)

sj+1,m,n = (sj ∗ hjhj)m,n
and the reconstruction stage as

sj,m,n = (w1
j+1 ∗ qjrj)m,n + (w2

j+1 ∗ rjqj)m,n + (sj+1 ∗ h̃j h̃j)m,n. (6.3.3)

The wavelet coefficients w1
j+1,m,n and w2

j+1,m,n represent the horizontal
and the vertical edge components at the position (m,n). To obtain the
representation with one detail image, that is appropriate for our noise
reduction algorithm, we actually treat the total bandpass content from
(6.3.3) as detail coefficients, denoting

dj+1,m,n = (w1
j+1 ∗ qjrj)m,n + (w2

j+1 ∗ rjqj)m,n. (6.3.4)

Accordingly, the new decomposition and reconstruction stages are

sj+1,m,n = (sj ∗ hjhj)m,n, (6.3.5)

dj+1,m,n = (sj ∗ kjrj)m,n + (sj ∗ rjkj)m,n, (6.3.6)
sj,m,n = wj+1,m,n + (sj+1 ∗ h̃j h̃j)m,n, (6.3.7)

where the new filter kn is

kn = (g ∗ q)n. (6.3.8)

A decomposition and a reconstruction step in this scheme are depicted
in Fig. 6.8.
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Algorithm

Like in other algorithms from this thesis, we now denote the spatial
position with a single index l � (m,n). The new algorithm removes
noise according to the scheme in Fig. 6.8 in a coarse-to-fine manner.
A specific nonlinear filter is introduced to suppress the noise-induced
coefficient variation along the edges. The complete algorithm is:

Decompose an original image into lowpass and detail images at
N successive resolution scales applying recursively Eq. (6.3.5) and
Eq. (6.3.6)

For all resolution levels j = N to j = 1:

– Apply the Canny edge detector [Canny86] to the lowpass
image ŝj ; it yields a binary edge map ej = {ej,1, ..., ej,n},
ej,l ∈ {0, 1}

For all spatial positions l = 1, ..., n (where l � (m,n))
Set to zero dj,l if dj,l < σ̂j , where σ̂j is an estimate of the
noise standard deviation
Apply a nonlinear filter:

d̂j,l = xj,l ·
∑

k∈Nl
xj,k · dj,k∑

k∈Nl
xj,k

(6.3.9)

where Nl is a square window centered at l and xj,l = 1
if the pixel l is located in the specified neighborhood of
the estimated edges and xj,l = 0, otherwise. Practically:

xj,l = 1 if
∑
k∈Nl

ej,l > 1, and xj,l = 0, otherwise.

The filter (6.3.9) removes those detail coefficients that are
not located in the vicinity of the detected edges, while
the remaining coefficients are filtered along the edge seg-
ments.

– Reconstruct ŝj−1 at the next finer resolution scale from ŝj
and d̂j using Eq. (6.3.7).

The image ŝ0 reconstructed from the processed detail ŵ1 and the
lowpass image ŝ1 is the final result of this denoising algorithm.
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Figure 6.8: A schematic representation of the proposed multiscale edge re-
construction technique.

In [Pizurica99d], we demonstrated the advantage of this algorithm
over standard soft thresholding (implemented with the same wavelet
representation) on images with artificial Gaussian noise. On infrared
images of landmines from our data set, this simple technique offers a
significant improvement, as it is illustrated in Fig. 6.9. The background
noise is strongly suppressed and the presence of the object of interest is
enhanced.

One should note that noise suppression is achieved here by a “severe”
suppression of all the coefficients that are not located in the vicinity of
the edges detected from the lowpass images. This is useful for images
where a uniform-intensity object needs to be distinguished from a back-
ground, but this method is not as favorable in cases where fine image
details need to be preserved.

6.3.3 Wavelet denoising with spatial priors

In some cases (e.g., a surface laid or shallow buried mine and/or use of
some more sophisticated sensors) it is possible to reveal more relevant
details from the infrared image; those details can be important, e.g.,
to determine the type of the landmine. Also, infrared cameras can be
used to scan larger areas, often covered by different types of vegetation.
In these cases, a more sophisticated denoising approach is needed to
reconstruct the available information from noisy data, without loosing
relevant details.

In the previous Chapters, we developed several new spatially adap-
tive denoising techniques; here we demonstrate the results of one of those
methods on the available IR images from our data set. In particular,
we apply a wavelet denoising method that combines the prior models
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Figure 6.9: Left: preprocessed IR images. Right: results of the proposed
nonlinear wavelet filtering technique.

for spatial clustering from Section 3.5.2, with the heuristic shrinkage
families from Section 3.5.3. The significance measure is the coefficient
magnitude and the parameters are α = 1, γ = 0.2 and δ = 0.5. The
results are demonstrated in Fig. 6.10. The original IR images in this
figure were acquired in gravel and preprocessed in order to enhance the
contrast. Noise suppression enhances the presence of the buried mine;
structural information in the background is well preserved.

6.4 Processing of GPR images

Here we first briefly explain the principles of Ground Penetrating Radar
imaging and the GPR images used in our experiments. Then we demon-
strate the application of noise reduction techniques to GPR scans taken
with a commercial and an experimental radar in different soils.
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Figure 6.10: Left: preprocessed IR images. Right: results of the wavelet
denoising using spatial priors.

6.4.1 GPR images of landmines

Ground Penetrating Radar (GPR) [Daniels96, Peters94] transmits short
radar pulses, which propagate through the ground and are partially
reflected at permitivity discontinuities. The amplitude of a reflected
wave is recorded as a function of time at the receiving antenna. The
one dimensional signal representing the reflected wave amplitude versus
time (or, with a good approximation, versus depth inside the ground) is
usually called an A-scan. The collection of A-scans taken at equidistant
points along a given direction on the surface forms a two dimensional sig-
nal called a B scan, while horizontal slices are denoted as C-scans. Most
often B-scans are visualized and used for object recognition. Buried
mines or mine-like targets may produce multiple reflections resulting in
characteristic, nested hyperbole signatures [Capineri98] in the B-scans
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(a) (b)

Figure 6.11: (a) A GPR image of a mine buried in natural soil and (b) the
result after the “background removal”.

(see Fig. 6.11 and Fig. 6.12).
In estimating the depth of the object one usually neglects the prop-

agation of the wave through air (since the GPR antenna is placed near
to the ground). The depth to the top of the object is estimated by
dividing the two-way travel time to the object by twice the velocity of
the electromagnetic wave through the ground vg [Peters94]. In practice,
one estimates the travel time from the number of samples acquired be-
tween the signal emission and the first reflection peak from the object
[VanKempen99]. The propagation (phase) velocity of a wave in ground
is estimated as v = c/

√
εr, where c is the speed of light in vacuum and

εr is the relative permitivity of the material.

Data set in our experiments

For our experiments, we have used two types of GPR B-scans, the exam-
ples of which are shown in Fig. 6.11(a) and Fig. 6.12(a), respectively. A
collection of scans as in Fig. 6.11(a), was provided by the Belgian Royal
Military Academy and acquired by an experimental UWB GPR system
developed by Scheers et al [Scheers98], which transmits ultra-short elec-
tromagnetic pulses (< 200 ps) at a 2.5 GHz central frequency. Images
were acquired in natural soil in the test minefields from Fig. 6.3, and are
256x109 pixels. The second type of scans (Fig. 6.12(a)) was provided by
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(a) (b)

Figure 6.12: (a) A GPR image of mines and mine-like objects buried in pure
sand (b) and the result after the “background removal”.

the Vrije Universiteit Brussels and was acquired by a commercial GPR
system; in this case, several objects were buried in a sand box, and each
scan is 512x232 pixels.

The horizontal lines in the original GPR scans are a consequence of
strong surface reflections. To enhance the data of interest one needs to
remove this non useful signal. The corresponding procedure is commonly
called background removal, and can be based on different filtering tech-
niques. We used a common and simple horizontal filtering [Fritzche95],
which consists of subtracting the average trace from each row. The re-
sults of such background removal procedure for the two scans are shown
in Fig. 6.11(b) and Fig. 6.12(b). In these pre-filtered images one can
recognize the hyperbole signatures of the buried objects.

The GPR scans from the natural soil (Fig. 6.11(b)) are quite noisy;
in Section 6.4.2, we propose one simple noise reduction technique. The
GPR scans taken in the sand box (Fig. 6.11(b)) do not contain a lot of
noise. In Section 6.4.3, we illustrate a suppression of the background
clutter in these scans by means of spatially adaptive wavelet denoising.

Signal and image processing methods

Different signal and image processing techniques for GPR scans of land-
mines are reviewed, e.g., in [Brooks97, Verlinde01], and here we mention
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a few. In [VanKempen98] a method was developed for signal detec-
tion in GPR A-scans using feature extraction techniques and binary
hypothesis testing. Other types of GPR A-scan processing include the
envelope detection using Hilbert transform [Milisavljevic01] (aimed for
visual enhancement of horizontal slices), and use of the fast Fourier
transform [Witten98] or wavelet transform [Scheers00] for object detec-
tion. The extraction of the hyperbole signatures of mines and minelike
objects from GPR B-scans using randomized Hough transform (RHT)
are treated, e.g., in [Capineri98, Milisavljevic01]. A 3D visualisation
method was presented in [Milisavljevic99b] and 3D segmentation was
discussed in [VanKempen99]. We focus here on applying wavelet based
noise reduction techniques to GPR B-scans.

6.4.2 A nonlinear pyramidal filtering technique

For noise reduction in highly corrupted GPR scans from Fig. 6.11 we
adapted a nonlinear filtering method of Sattar [Sattar97]. A pyramidal
multiresolution representation used in this approach is a specific type
of the non separable 2D representation, often denoted as the quincunx
scheme [Kovacevic92, Starck98].

A decomposition step is depicted in Fig. 6.13(a). The image um−1 at
the resolution scale m − 1, is decomposed into a coarser image um and
a detail image dm. The coarser image is obtained by applying a lowpass
filter, and subsampling the output by the factor 2 in each dimension.
The subsampling is performed by removing every second pixel in the
image. In order to make the pixels fit a cartesian grid, the image is not
only subsampled but also rotated by 45◦. The detail image dm has the
same dimension as um−1, and is obtained by subtracting an interpolated
version of um from um−1. The produced sequence of lowpass and detail
images is illustrated in Fig. 6.14.

Algorithm

Noise removal in this algorithm is a simplified form of the approach
from Section 6.3.2, with the additional difference that it is performed
in a decimated representation. One stage of the reconstruction process
is represented in Fig. 6.13(b). The lowpass image at the resolution
scale m is interpolated to match the dimension of the detail image dm.
To determine the positions of meaningful edges in the noisy detail, an
edge detector is applied to the interpolated lowpass image, producing a
binary mask xm. The binary mask at a given position has value 1 or
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Figure 6.13: Pyramidal multiresolution technique [Sattar97]. (a) One decom-
position stage and (b) one reconstruction stage.

0 depending on whether the corresponding pixel belongs to an edge or
not. The detail image is multiplied by this mask, in order to remove
the noise. The reconstruction consists of combining this modified detail
image with the interpolated lowpass image.

The lowpass filter used in [Sattar97] was nonseparable, and in
[Pizurica99a] we use a separable filter, which is much faster in a real
implementation. The spectral characteristic of the filter is

Gs(ω1, ω2) = G(ω1)G(ω2), G(ω) =




1, |ω| < Bs,
1/2, |ω| = Bs
0, otherwise,

(6.4.1)

with Bs = 2π/(3
√

2). The actual filter is approximated using a two
dimensional Hamming window of size 11x11.

For the edge detection we use the LoG approach as in [Sattar97].
The LoG filter corresponds to a bandpass filter, whose passband is de-
termined by the spatial dispersion σG of the underlying Gaussian pulse.
After filtering with the LoG filter, the zero crossings of the output are
declared to be edges only when the brightness gradient exceeds a given
threshold T . In [Pizurica99a], we investigated the influence of the LoG
filter bandwidth as well as the threshold: for the considered GPR im-
ages, highly corrupted by speckle noise, the best results were obtained
for σG = 3. For σG ≥ 3, the change of this parameter in a wide range of
values made no significant difference on the output image. Also, in this
range the threshold selection did not appear to be critical. For σG < 3,
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Figure 6.14: An illustration of the multiresolution pyramidal decomposition.

the edge detector overreacted to noisy regions without any real edges.

Results

As the input image for this multiscale denoising technique, we use a
preprocessed (horizontally filtered) GPR scan. An input image (the
same one as in Fig. 6.11(b)) is shown in Fig. 6.15(a). The result of
the above described denoising technique is given in Fig. 6.15(b). One
can see that noise is completely suppressed, and that the characteristic
“hyperbole” signature of a landmine can be recognized.

The results of several other standard techniques are shown in
Fig. 6.15 as well. Simple median filtering (Fig. 6.15(c)) does not provide
satisfactory results on this type of images. The Lee filter (Fig. 6.15(d))
performs slightly worse than the proposed multiresolution technique. We
also show the result of the classical wavelet thresholding [Donoho95a] ap-
plied to the image logarithm as in [Gagnon96, Odegard95]. Fig. 6.15(e)
illustrates that in case of GPR images, this technique is not applicable.

6.4.3 Application of wavelet denoising with spatial priors

In images of commercial ground penetrating radars, especially if they
are taken in sand (Fig. 6.12) there is not much noise present; the main
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(a) (b) (c) (d) (e)

Figure 6.15: (a) An original GPR image after horizontal filtering. (b) The
result of the nonlinear pyramidal filtering technique. (c) Median filter 3x3. (d)
The Lee filter 7x7. (e) Soft thresholding of the wavelet coefficients applied to
the logarithmically transformed input image.

goal of preprocessing techniques here is the removal of the “background
clutter” (reflections that are not produced by the object of interest) in
order to enhance the hyperbole signatures. Wavelet domain filtering
techniques are sometimes seen as a solution to this problem [Brooks97].
We note here that removal of the background clutter from GPR images
is not a typical noise reduction problem: in our opinion, most of the
sophisticated noise reduction techniques should actually preserve this
pronounced textural structure.

In our experiments, the simple nonlinear filtering techniques from
Sections 6.4.2 and 6.3.2 suppress the background clutter at the expense
of oversmoothed edges; these methods are less appropriate for enhancing
relatively clean GPR scans. Among the methods that we developed in
the previous Chapters, for this application seems suitable the method
which uses spatial priors and heuristic shrinkage families (Section 3.5.3)
and the method from Section 5.5.1, where the notion of a “signal of
interest” is user defined. We did not test the latter one yet.

The algorithm of Section 3.5.3 was applied with the same parameters
as in the case of infrared images in Section 6.3.3 (α = 1, γ = 0.2 and
δ = 0.5). The results are shown in Fig. 6.16. From these and similar
results on other GPR scans, we conclude that the proposed wavelet
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Figure 6.16: Top: scans of a commercial GPR from a sand box, after hori-
zontal filtering. Bottom: the results of wavelet denoising with spatial priors.

denoising method enhances the characteristic target signatures. The
validity of these results in practice needs to be further investigated.

6.5 Summary and conclusions

Different image processing techniques are needed in different steps of
humanitarian mine detection. The algorithm that we developed in Sec-
tion 5.6 fits in this framework, since SAR is one of the most frequently
considered sensors for minefield detection. Our interest in this Chap-
ter was denoising and enhancement of images of individual landmines,
acquired by close range sensors that are often used in advanced demi-
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ning concepts: IR cameras and GPR. Noise reduction techniques should
provide images that are more suitable for visual inspection and for fur-
ther processing steps, in case of an automatic detection procedure. At
the moment we do not have actual validation of results in the sense of
preprocessing for automatic detection procedures. The achieved visual
enhancement of images is in most cases evident.

The application of nonlinear filtering techniques to infrared (Sec-
tion 6.3.2) and to GPR images (Section 6.4.2) and the corresponding
results presented in this Chapter resulted from our early research in this
field [Pizurica98a, Pizurica98b, Pizurica99a, Pizurica99e]. Even though
less advanced with respect to recent methods that we developed in the
previous Chapters, these techniques provide a significant enhancement
of certain types of images that are of interest in this application. We
demonstrated also the application of the proposed methods that use
spatial context information; the results of this research on various land-
mine images were published in [Pizurica99b, Pizurica99c, Pizurica99f].
These techniques suppress well noise in infrared images retaining well
details; also this approach seems promising for the background clutter
suppression in GPR scans. Further efforts are needed towards validation
of these results in practical demining procedures.
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Chapter 7

Conclusions

“In research, the horizon recedes as we advance, and is no nearer at
60 than it was at 20. As the power of endurance weakens with age,
the urgency of pursuit grows more intense... and research is always
incomplete.” Mark Pattison (1875)

In this thesis, we addressed wavelet domain image denoising adapting
to the local and to the global image context. Throughout the text, we
tried to present numerous original interpretations, pictorial explanations
and discussions broadening our viewpoints on this topic.

In our original contributions, we paid a great deal of attention to
accurate statistical modeling of the wavelet coefficients and their signif-
icance measures; also, we addressed deeply the statistical modeling of
spatial interactions and of local spatial activity indicators. In making
our way through this research field, we were inspired and almost excited
by the concepts of uncertainty of signal presence and the correspond-
ing joint detection and estimation (JDE) principles. We admired the
pioneering work of Middleton and Esposito in this field. Despite their
great potentials, the JDE concepts are not explored enough in wavelet
based denoising. In this sense we contributed here a new class of low
complexity locally adaptive methods which employ such concepts.

We tried to motivate the proposed algorithms in terms of specific op-
timization criteria, e.g., minimizing the mean squared error or maximiz-
ing the posterior probability of a solution given unknown uncorrupted
data. From time to time, while bridging theory and applications, we
employed heuristics too. In doing so, we were not abandoning our theo-
retical principles, but rather bringing them to practice. For example, the
simple coarse-to-fine mask detection method from Section 5.4.1 helped
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us to empirically estimate marginal densities of the coefficients and of
local spatial activity indicators in cases where prior knowledge about
their true functional forms was not or only partially accessible.

The main novelties and contributions presented in this thesis are
the following. In Chapter 2, we systematized different wavelet denois-
ing methods; with new pictorial interpretations, we tried to summarize
the main ideas, similarities and differences between some representa-
tive methods. In Chapter 3, we described a more general framework
of the wavelet based denoising using MRF priors, where the existing
methods appear as one possibility. We then proposed a new approach
in Section 3.5; the main idea of this approach is to compute from the
MAP mask estimate a local spatial activity indicator; its value dictates
the choice of a particular curve in a family of shrinkage characteristics;
in this way, local spatial context information refines a wavelet shrink-
age estimator. A practical algorithm developed from this concept was
found useful in hydrologic applications. In Chapter 4, we presented our
main contributions to Bayesian denoising using MRF priors: statistical
characterization of different significance measures of wavelet coefficients;
their objective performance evaluation; new, joint inter and intrascale
significance measures and new anisotropic MRF prior model. Those de-
velopments led to generalizing and to improving previous methods from
this branch. In Chapter 5, we developed a new locally adaptive de-
noising approach, upgrading further our concept of using local spatial
activity indicators, from Section 3.5. First, we proposed an original idea
to estimate the probability of the presence of a signal of interest from the
global coefficient histogram and from a local spatial activity indicator;
the resulting method is among the best state of the art ones. Further
on, we introduced empirical extensions of the proposed approach, open-
ing possibilities for various flexible algorithms that adapt to different
noise types. Within this empirical framework, we developed other two
practical algorithms and demonstrated their usefulness in practical ap-
plications.

We covered a range of application domains, image and noise types.
Some of these were treated in more detail while others were not, be-
cause we merely wanted to illustrate the versatility of the developed
algorithms. An extensive performance evaluation was performed for
the suppression of artificially added Gaussian noise on various repre-
sentative test images. In this respect, we proposed two new advanced
algorithms: one employing Markov Random Fields for spatial cluster-
ing (Section 4.4) and the other employing a low complexity generalized
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likelihood approach (Section 5.3). The first one usually yields a better
performance on images that are highly corrupted by noise and/or dom-
inated by large areas of uniform intensity intercepted by sharp edges
and thin lines. The second approach usually offers advantages in case of
low to moderate noise levels and images rich with natural textures. The
versatile noise suppression algorithm that we developed in Section 5.5,
was shown to be effective in denoising medical ultrasound and magnetic
resonance images; also, preliminary results have shown that this method
can be useful as a regularization step in image deblurring. The algorithm
for speckle noise suppression in Synthetic Aperture Radar images that
we developed in Section 5.6 was shown to preserve tiny details and point-
like reflectors in these high-resolution images remarkably well, especially
given the simplicity of the method both in its concept and realization.
The enhancement of SAR images is important in humanitarian mine
detection, which is the application that motivated our research in this
field. We demonstrated the application of the developed noise suppres-
sion methods on some close-range sensors in humanitarian demining as
well. In particular, we addressed in Chapter 6 denoising infrared and
Ground Penetrating Radar images of landmines.

Apart from that, there is much room for further developments and
new applications of the algorithms presented in this thesis. The anisotro-
pic MRF model that we developed in Section 4.3 can be used in appli-
cations other than denoising as well; in particular, it seems suitable for
detecting edges in (noisy) images and we intend to investigate its use
for an automatic road detection in SAR images. It would be also in-
teresting to apply this anisotropic MRF model with other and possibly
larger subneighborhoods than those illustrated in Fig. 4.12. Also, the
proposed generalized likelihood ratio denoising approach from Chapter
5, calls for further research. For example, in the analytical method from
Section 5.3 use of more complex indicators of the local spatial activ-
ity, which take into account the inter-scale correlations as well, is likely
to further improve the noise suppression performance. For such exten-
sions, appropriate conditional pdf models should be developed. Next,
from the proposed empirical approach that was summarized in Fig. 5.17,
we have drawn two practical algorithms which are only special cases in
this framework. We shall also analyze in more detail some application
areas, like, e.g., image deblurring, that was here only briefly illustrated.
It would be also interesting to investigate use of the proposed noise sup-
pression algorithm for SAR images, as a tool for a lossy compression of
those large images.
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Appendix A

Deriving the global prior
probability ratio

This appendix explains in detail how we derive the global ratio of prior
probabilities ρ = P (H1)/P (H0) in Section 5.3.3, for the Laplacian
and for the generalized Laplacian prior pY (y) distributions of noise free
wavelet coefficients Y .

Our starting point was depicted in Fig. 5.3: the global probability
of the presence of the signal of interest P (H1) is

P (H1) =
∫ −T

−∞
pY (y)dy +

∫ ∞

T
pY (y)dy, (A.0.1)

where T specifies the notion of a signal of interest. The ratio ρ =
P (H1)/P (H0) then becomes

ρ =
1− ∫ T

−T pY (y)dy∫ T
−T pY (y)dy

. (A.0.2)

Now we proceed deriving this expression for the two prior models pY (y)
mentioned above.

Deriving ρ for the Laplacian prior

For the Laplacian prior

pY (y) =
1
2s

exp(−|y/s|), (A.0.3)
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we have∫ T

−T
pY (y)dy =

1
s

∫ T

0
exp(−(y/s))dy = 1− exp

(T
s

)
. (A.0.4)

By substituting the previous expression into Eq (A.0.2), we obtain

ρ =
exp

(
T
s

)
1− exp

(
T
s

) , (A.0.5)

as was given in Eq (5.3.17).

Deriving ρ for the Generalized Laplacian prior

For the generalized Laplacian prior

pY (y) =
ν

2sΓ( 1
ν )

exp(−|y/s|ν), (A.0.6)

the integral in Eq (A.0.2) becomes∫ T

−T
p(y)dy =

ν

2sΓ( 1
ν )

∫ T

−T
exp(−|y/s|ν)dy =

ν

sΓ( 1
ν )

∫ T

0
exp(−(y/s)ν)dy.

By introducing the change of variables:

t =
(y
s

)ν
,

it follows

dt =
ν

s

(y
s

)ν−1
dy =

ν

s
t

ν−1
ν dy, i.e. dy =

s

ν
t

1
ν
−1 dt.

From this, it follows that

∫ T

−T
pY (y)dy =

1

Γ
(

1
ν

) ∫ (
T
s

)ν

0
t

1
ν
−1e−tdt = Γinc

((T
s

)ν
,
1
ν

)
,

where
Γinc(x, a) =

1
a

∫ x

0
ta−1e−tdt (A.0.7)

is the incomplete gamma function. The global probability ratio ρ from
Eq (A.0.2) now becomes

ρ =
1− Γinc

((
T
s

)ν
, 1
ν

)
Γinc

((
T
s

)ν
, 1
ν

) , (A.0.8)

as was given in Eq (5.3.15).



Appendix B

MLE parameter estimation

This Appendix provides details of the mathematical derivation in the
proposed SAR despeckling algorithm from Section 5.6.3. In that
method, we assume functional forms of the conditional densities of the
coefficient magnitudes, given noise and given noisy edges, respectively.
To estimate the parameters of those densities directly from the observed
noisy image, we first detect binary masks and accordingly compute the
histograms of the magnitudes of the coefficients representing noise and
noisy edges, respectively. From the corresponding histograms, we then
compute the maximum likelihood estimates (MLE) of the required pa-
rameters. In particular, the functional form of the densities are given
by Eqs (5.6.6) and (5.6.7) and the MLE estimates of their parameters
by Eqs (5.6.8) and (5.6.9), respectively. Here we show how we derived
those MLE parameter estimates.

General considerations

In explaining the concept of the MLE parameter estimation, we closely
follow [Duda73]. Let ω denote a realization of a continuous random
variable with the probability density function

p(ω; θ1, ..., θk), (B.0.1)

where θ1, ..., θk are the parameters. Suppose that ω1, ω2, ..., ωn are n
independent observations drawn from the corresponding distribution.
The likelihood function of the parameters with respect to the set of
observations (samples) is

p(ω1, ..., ωn; θ1, ..., θk) =
n∏
i=1

pΩ(ωi; θ1, ..., θk). (B.0.2)
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The maximum likelihood estimate of θ = [θ1, ..., θk] is by definition that
value θ̂ that maximizes Eq (B.0.2). In practical calculations, it is usu-
ally easier to work with the logarithm of the likelihood function (log-
likelihood):

L(ω1, ..., ωn; θ1, ..., θk) = ln p(ω1, ..., ωn; θ1, ..., θk). (B.0.3)

The parameter vector θ̂ that maximizes the log-likelihood also maxi-
mizes the likelihood. The MLE estimates of the parameters θ1,...,θk are
thus obtained by solving the following k equations

∂L(ω1, ..., ωn; θ1, ..., θk)
∂θj

= 0, j = 1, ..., k. (B.0.4)

Now we turn to our practical problem, i.e., to deriving the parameters
of the two pdf models from Section 5.6.3.

B.1 Exponential distribution

In Section 5.6.3, we model the conditional pdf of the coefficient mag-
nitudes dominated by speckle noise as pΩl|Xl

(ω|0) � (1/a) exp(−ω/a).
Here we start from an equivalent model, with the parameter θ = 1/a,
which simplifies the following derivation.

For the exponential density

p(ω; θ) = θ exp(−θω), (B.1.1)

the likelihood of the parameter θ with respect to the set of samples
ω1, ..., ωn is

p(ω1, ..., ωn; θ) =
n∏
i=1

θ exp(−θωi) = θn exp
(
−θ

n∑
i=1

ωi

)
. (B.1.2)

Taking the logarithm of the above expression, we obtain the log-
likelihood

L(ω1, ..., ωn; θ) = n ln(θ)− θ
n∑
i=1

ωi. (B.1.3)

The MLE estimate of the parameter θ follows from

(∂L(ω1, ..., ωn; θ)
∂θ

=
n

θ
−

n∑
i=1

ωi

)
θ=θ̂

= 0, (B.1.4)
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which leads to
θ̂ =

n∑n
i=1 ωi

. (B.1.5)

Now, if instead of {ω1, ..., ωn}, our set of observations is {ωl : l ∈ S0},
and if N0 = #S0 is the cardinality of the set S0, then the MLE estimate
of the parameter a = 1/θ follows from (B.1.5) as

â = (1/N0)
∑
i∈S0

ωi, N0 = #S0, (B.1.6)

which is the expression given in Eq (5.6.8).

B.2 Generalized Gamma distribution

In Section 5.6.3, we model the conditional pdf of the coeffi-
cient magnitudes dominated by useful signal as p̂Ωl|Xl

(ω|1) =
(1/2b)(ω/b)2 exp(−ω/b). We start again from an equivalent model, with
the parameter θ = 1/b, which simplifies the following derivation.

For a generalized Gamma density of the form

p(ω; θ) =
θ

2
(θω)2 exp(−θω), (B.2.1)

the likelihood of the parameter θ with respect to the set of observations
{ω1, ..., ωn} is

p(ω1, ..., ωn; θ) =
n∏
i=1

θ

2
(θωi)2 exp(−θωi). (B.2.2)

The logarithm of the above expression leads to the log-likelihood

L(ω1, ..., ωn; θ) = n ln
(θ

2

)
+ 2n ln(θ) + 2n ln(ωi)− θ

n∑
i=1

ωi. (B.2.3)

The MLE estimate of the parameter θ follows from

(∂L(ω1, ..., ωn; θ)
∂θ

=
3n
θ
−

n∑
i=1

ωi

)
θ=θ̂

= 0, (B.2.4)

leading to

θ̂ =
3n∑n
i=1 ωi

. (B.2.5)
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In Section 5.6.3, instead of {ω1, ..., ωn}, our set of observations drawn
from the corresponding density is {ωl : l ∈ S1}, and we are seeking the
estimate of b = 1/θ. If N1 = #S1 is the cardinality of the set S1, then
the MLE estimate of the parameter b = 1/θ follows from (B.2.5) as

b̂ = (1/3N1)
∑
i∈S1

ωi, N1 = #S1, (B.2.6)

which is the expression given in Eq (5.6.9).
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[Jalobeanu01] A. Jalobeanu, “Modèles, estimation bayésienne et algo-
rithmes pour la déconvolution d’images satellitaries et aériennes,”
Ph.D. thesis, INRIA Sophia-Antipolis, France, 2001.



BIBLIOGRAPHY 235

[Jankowski92] P.Z. Jankowski, A.G. Mercado, and S.F. Hallowell, “FAA
explosive vapor/particle detection technology,” in Proc. SPIE, vol.
1824, pp. 13–24, 1992.

[Jansen97] M. Jansen, M. Malfait, A. Bultheel, “Generalized Cross Vali-
dation for Wavelet Thresholding,”, Signal Processing, 56:33–44, Jan
1997.

[Jansen99] M. Jansen and A. Bultheel, “Geometrical Priors for Noise-
free Wavelet Coefficient Configurations in Image De-noising,” in
Bayesian inference in wavelet based models, P. Müller and B. Vi-
dakovic, editors, Springer Verlag 1999, pp. 223–242.

[Jansen01a] M. Jansen and A. Bultheel, “Empirical Bayes approach to
improve wavelet thresholding for image noise reduction,” J. of the
Amer. Statist. Assoc., 96(454):629-639, June 2001

[Jansen01b] M. Jansen, Noise Reduction by Wavelet Thresholding,
Springer-Verlag, New York, 2001.

[Johnstone96] I. Johnstone, B. W. Silverman, “Wavelet threshold es-
timators for data with correlated noise,” J. of the Royal. Statist.
Society B, 59:319–351.

[Kalifa99] J. Kalifa and S. Mallat, “Thresholding Estimators for Inverse
Problems and Deconvolutions,” submitted to Annals of Statistics,
1999.

[Kashiap83] R. L. Kashiap and R. Chellappa, “Estimation and choice
of neighbors in spatial-interaction models of images,” IEEE Trans.
Inform. Theory, 29(1):60–72, Jan 1983.

[Kato93] Z. Kato, M. Berthod, and J. Zerubia, “A hierarchical Markov
random field model and multi-temperature annealing for parallel
image classification,” Rapport de recherche No 1938, Institut Na-
tional de Recherche en Informatique, Robotique, image et vision,
1994.

[Khotanzad99] A. Khotanzad and J. Bennett, “A spatial correlation
based method for neighbor set selection in random field image mod-
els,” IEEE Trans. Image Proc., 8:734–740, 1999.

[Kitchen81] L. Kitchen and A. Rosenfeld, “Edge evaluation using local
edge coherence,” IEEE Trans. SMC, 94:597–605, Sep 1981.



236 BIBLIOGRAPHY

[Klein97] L.A. Klein, Millimeter-Wave and Infrared Multisensor Design
and Signal Processing, Artech House, Inc.Norwood, USA, 1997.

[Kossoff76] G. Kossof, W.J. Garret, D. A. Carpenter, J. Jellins, and M.
J. Dadd, “Principles and classification of soft tissues by gray scale
echography,” Ultrasound Med. Biol., 2:89–105, 1976.

[Kovacevic92] J. Kovacevic and M. Vetterli, “Nonseparable multidimen-
sional perfect reconstruction filter banks and wavelet for Rn,” IEEE
Trans. Inform. Theory, 38(2):533–556, Mar 1992.

[Krishnamachari97] S. Krishnamachari and R. Chelappa, “Multiresolu-
tion Gauss-Markov random field models for texture segmentation,”
IEEE Trans. Image Proc., 6:251–267, 1997.

[Kuan85] D. T. Kuan, A. A.Sawchuk, T. C. Strand, P. Chavel, “Adap-
tive Noise Smoothing Filter for Images with Signal-Dependent
Noise,” IEEE Trans. Pattern Anal. and Machine Intel., 7(2):165–
177, Mar 1985.

[Kuan87] D. T. Kuan, A. A.Sawchuk, T. C. Strand, P. Chavel, “Adap-
tive restoration of images with speckle,” IEEE Trans. Acoust.,
Speech, Signal Proc., 35:373–383, Mar 1987.

[Lee80] J. S. Lee, “Digital image enhancement and noise filtering by use
of local statistics,” IEEE Trans. Pattern Anal. and Machine Intel.,
2(2):165-168, Mar 1980.

[Lee86] J. -S. Lee, “Speckle suppression and analysis for synthetic aper-
ture radar images,” Opt. Engineering, 25(5):636–643, May 1986.

[Lee89] J. -S. Lee and I. Jurkevich, “Segmentation of SAR Images,”
IEEE Trans. Geosc. Remote Sens., 27(6):674–680.
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algèbres d’opérateurs,” Bourbaki seminar, no. 662, 1985-1986.

[Meyer93] Y. Meyer, Wavelets: Agoritms and Applications, SIAM, 1993.

[Middleton68] D. Middleton and R. Esposito, “Simultaneous optimum
detection and estimation of signals in noise,” IEEE Trans. Inform.
Theory, 14(3):434–443, May 1968.

[Mihcak99] M.K. Mihcak, I. Kozintsev, K. Ramchandran, and P.
Moulin, “Low-complexity image denoising based on statistical mod-
eling of wavelet coefficients,” IEEE Signal Proc. Lett., 6(12):300–
303, Dec 1999.



BIBLIOGRAPHY 239

[Milisavljevic99a] N. Milisavljevic, “Comparison of three methods for
shape recognition in the case of mine detection,” Pattern Recogni-
tion Lett., 20:1079–1083, 1999.

[Milisavljevic99b] N. Milisavljevic, B. Scheers, Y. Yvinec, and M.
Acheroy, “3D Visualization of Data Acquired by Laboratory UWB
GPR in the Scope of Mine Detection,” in Proc. of Mine Identifi-
cation Novelties Euroconference MINE’99, pp. 149–154, Florence,
Italy, 1999.

[Milisavljevic99c] N. Milisavljevic, I. Bloch, and M. Acheroy, ”Mod-
eling, combining and discounting mine detection sensors within
Dempster-Shafer framework,” in Proc. SPIE Conf. on Detection
Technologies for Mines and Minelike Targets, vol. 4038, pp. 1461–
1472, Orlando, USA, 2000.

[Milisavljevic01] N. Milisavljevic, Analysis and Fusion Using Belief
Function Theory of Multisensor Data for Close-Range Humanitar-
ian Mine Detection, Ph.D. thesis, ENST, Paris, 2001.

[Moulin99] P. Moulin and J. Liu, “Analysis of multiresolution image de-
noising schemes using generalized gaussian and complexity priors,”
IEEE Trans. Inform. Theory, 45:909–919, Apr 1999.

[Nason94] G. P. Nason, “Wavelet regression by cross-validation,” Tech-
nical Report 447, Department of Statistics, Stanford, 1994.

[Nason96] G. Nason, “Wavelet shrinkage using cross-validation,” J. Roy.
Stat. Soc. B., 58:463–479, 1996.

[Neelamani99] R. Neelamani, H. Choi, and R. G. Baraniuk,
“Wavelet-based deconvolution for ill-conditioned systems,” sub-
mitted to IEEE Trans. Image Proc., available at http:\\www-
dsp.rice.edu\software\WaRD\

[Neelamani99a] R. Neelamani, “Software for Image Deconvolution using
Wavelet-based Regularized Deconvolution (WaRD)”, available at
http:\\www-dsp.rice.edu\software\WaRD\

[Nicoud97] J.D. Nicoud, “Validation of anti-personnel mine sensors,”
in Sustainable Humanitarian Demining: Trends, Techniques, and
Technologies, E. Pass, editor, Mid Valley Press, Verona, Virginia,
1997, pp. 206–212.



240 BIBLIOGRAPHY

[Nielsen96] N. H. Nielsen and M. V. Wickerhauser, “Wavelets and time-
frequency analysis,” Proc. IEEE, 84(4):523–541, Apr 1996.

[Novakoff92] A. K. Novakoff, “FAA bulk technology overwiev for explo-
sive detection,” in Proc. SPIE, vol. 1824, pp. 2–12, 1992.

[Nowak97] R. D. Nowak, “Optimal signal estimation using cross-
validation,” IEEE Signal Proc. Lett., 4:23–25, Jan 1997.

[Nowak99] R. D. Nowak, “Wavelet-based Rician noise removal for mag-
netic imaging,” IEEE Trans. Image Proc., 8(10):1408–1419, Oct
1999.

[Novak99a] R. D. Nowak, R. G. Baranuik, “Wavelet-domain filtering for
photon imaging systems,” IEEE Trans. Image Proc., 8(5):666:678,
May 1999.

[Oddy83] C.J. Oddy and A. J. Rye, “Segmentation of SAR images us-
ing a local similarity rule,” Pattern Recognition Lett., 1:1457–1462,
1987.

[Odegard95] J. E. Odegard, H. Guo, M. Lang, C. S. Burrus,R. O. Wells,
“Wavelet based SAR speckle reduction and image compression”, in
Proc. SPIE Symposium on OE/Aerospace Sensing and Dual Use
Photonics, pp. 17–21 April 1995, Orlando, Florida.

[Papoulis84] A. Papoulis, Probability, random variables, and stochastic
processes , McGraw-Hill, 1984.

[Pennec00] E. Le Pennec and S. Mallat, “Image compression with ge-
ometrical wavelets,” in Proc. IEEE International Conf. on Image
Proc. ICIP, Vancouver, BC, Canada, 2000.

[Pentland84] A. P. Pentland, “Fractal-based description of natural
scenes,” IEEE Trans. Pattern Anal. and Machine Intel., 6:661–674,
Nov 1984.

[Peters94] L. Peters Jr, J.L. Daniels, and J.D Young, “Ground penetrat-
ing radar as a subsurface environmental sensing tool,” Proc. IEEE,
8(12):1802–1822, Dec 1994.

[Pizurica98a] A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy,
“The application of a nonlinear multiscale method to GPR image
processing,” in Proc. International Conf. on Signal and Image Pro-
cessing SIP98, pp. 332–335, Las Vegas, Nevada, USA, Oct. 1998.



BIBLIOGRAPHY 241

[Pizurica98b] A. Pizurica, “Multiresolution techniques for image
restoration in mine detection problems,” in Proc. Internat. Symp.
on Mobile, Climbing and Walking Robots CLAWAR’98, pp. 225–
229, Brussels, Belgium, Nov. 1998.

[Pizurica99a] A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy,
“Speckle noise reduction in GPR images,” in Proc. Internat. Symp.
on Pattern Recognition, “In Memoriam Pierre Devijver”, pp. 162–
165, Brussels, Belgium, Feb. 1999.

[Pizurica99b] A. Pizurica and W. Philips, “Enhancement of GPR in in-
frared images of landmines,” in Proc. Internat. Symp. on Humani-
tarian Demining, HUDEM, Brussels, Belgium, Apr. 1999.

[Pizurica99c] A. Pizurica, W. Philips, I. Lemahieu, M. Acheroy, “Image
de-noising in the wavelet domain using prior spatial constraints,”
Proc. IEE Conf. on Image Proc. and its Applications IPA, pp. 216–
219, Manchester, UK, 1999.

[Pizurica99d] A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy,
“Image denoising using a multiscale nonlinear filtering technique,”
in Proc. Internat. Symp. on Intelligent Vision Systems ACIVS, pp.
9–13, Baden-Baden, Germany, 5-6 Aug 1999.

[Pizurica99e] A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy, “En-
hancement of noisy images using a multiscale edge reconstruction
technique,” in Proc. Internat. Conf. on Signal and Image Process-
ing SIP, pp. 144–148, Nassau, Bahamas, Oct. 1999.

[Pizurica99f] A. Pizurica, “An application of a wavelet-based denoising
method to infrared images of landmines,” in Proc. European Work-
shop PHOTOMEC’99 - ETE’99, pp. 75-79, Liege, Belgium, Nov.
1999.

[Pizurica00a] A. Pizurica, N. E. C. Verhoest, W. Philips, and F. P.
De Troch, “Detecting variable source areas from temporal radar
imagery using advanced image enhancement techniques,” in Proc.
IEEE International Geosc. and Remote Sens. Symp. IGARSS, Hon-
olulu, Hawaii, July 2000.

[Pizurica00b] A. Pizurica, N. E. C. Verhoest, W. Philips, F. P. De Troch,
I. Duskunovic and M. Acheroy, “An Application of a wavelet-based
denoising method to temporal radar imagery,” in Proc. Internat.



242 BIBLIOGRAPHY

Symp. on Intelligent Vision Systems ACIVS, pp. 36-40, Baden-
Baden, Germany, Aug 2000.

[Pizurica00c] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy,
“A wavelet-based image denoising technique using spatial priors,”
in Proc. IEEE Internat. Conf. on Image Proc. ICIP, pp. 296–299,
Vancouver, BC, Canada, 2000.

[Pizurica00d] A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy, “An
image denoising technique using wavelets and spatial priors,” in
Proc. 2nd IEEE Benelux Signal Processing Symposium SPS, Hil-
varenbeek, The Netherlands, 2000.

[Pizurica00e] A. Pizurica, “Wavelets in image denoising,” Invited pre-
sentation, Wavelet Seminar, sponsored by the Dutch science foun-
dation NWO, University of Groningen, Groningen, The Nether-
lands, 17 Nov 2000.

[Pizurica01a] A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy, “De-
speckling SAR images using wavelets and a new class of adaptive
shrinkage estimators,” in Proc. IEEE Internat. Conf. on Image Pro-
cessing ICIP, Thessaloniki, Greece, Oct. 2001.

[Pizurica01b] A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy,
“Multiresolution image restoration: a filtering technique adapt-
ing to unknown type of noise,” in Proc. PRORISC IEEE Benelux
Workshop on Circuits, Systems and Signal Processing,, STW Tech-
nology Foundation, Veldhoven, the Netherlands, 28-30 Nov 2001.

[Pizurica01c] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy,
“The application of Markov random field models to wavelet-based
image denoising,” in Imaging and Vision Systems: Theory, Assess-
ment and Applications, J. Blanc-Talon and D. Popescu, editors,
NOVA Science Books, Huntington, USA, 2001.

[Pizurica02a] A. Pizurica, W. Philips, I. Lemahieu and M. Acheroy,
“A joint inter- and intrascale statistical model for wavelet based
Bayesian image denoising ”, IEEE Trans. Image Proc, May 2002,
in print.

[Pizurica02b] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, “A
wavelet domain joint detection and estimation method for image
denoising,” submitted to Signal processing, Oct 2001, available at
http:\\telin.rug.ac.be\ ∼sanja



BIBLIOGRAPHY 243

[Pizurica02c] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy,
“A versatile wavelet domain noise filtration technique for medical
imaging,” submitted to IEEE Trans. Medical Imaging, Nov 2001,
available at http:\\telin.rug.ac.be\ ∼sanja

[Portilla01] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simon-
celli, “Adaptive Wiener denoising using a Gaussian scale mixture
model in the wavelet domain,” in Proc. IEEE Internat. Conf. on
Image Proc. ICIP, Thessaloniki, Greece, October 7-10, 2001.

[Ramchandran96] K. Ramchandran, M. Vetterli, and C. Herley,
“Wavelets, subband coding, and best bases,” Proc. IEEE,
84(4):541–560, Apr 1996.

[Romberg99] J. K. Romberg, H. Choi, and R. G. Baraniuk, “Bayesian
tree structured image modeling using wavelet-domain hidden
Markov model,” in Proc. SPIE, vol. 3816, pp. 31-44, Denver, CO,
July 1999.

[Romberg00] J. Romberg, H. Choi, R. Baraniuk, and N. Kings-
bury, “Multiscale classification using complex wavelets and hidden
Markov tree models,” in Proc. IEEE Internat. Conf. on Image Proc.
ICIP, Vancouver, BC, Canada, 2000.

[Romberg01] J. K. Romberg, H. Choi, and R. G. Baraniuk, “Bayesian
tree structured image modeling using wavelet-domain hidden
Markov models,” IEEE Trans. Image Proc., 10(7): 1056–1068, July
2001.

[Rooms01] F. Rooms, A. Pizurica, W. Philips, “Estimating image blur
in the wavelet domain,” in Proc. PRORISC IEEE Benelux Work-
shop on Circuits, Systems and Signal Processing,, STW Technology
Foundation, Veldhoven, the Netherlands, 28-30 Nov, 2000.

[Rosenfeld70] A. Rosenfeld, “A nonlinear edge detection technique,”
Proc. IEEE, 58:814-816, May 1970.

[Rosenfeld71] A. Rosenfeld and M. Thurston, “Edge and curve detection
for visual scene analysis,” IEEE Trans. Comput., 20(5):562–569,
May 1971.

[Rouhi97] A.M. Rouhi, “Land mines: horrors begging for solutions,”
Chem. & Eng. News, 75(10):14–22, Mar 1997. Available at
http://pubs.acs.org/hotartcl/cenear/970310/land.html



244 BIBLIOGRAPHY

[Ruggeri99] F. Ruggeri and B. Vidakovic, “A Bayesian decision theoretic
approach to wavelet thresholding,” Statist. Sinica, 9(1):183–197,
1999.

[Sattar97] F. Sattar, L. Floreby, G. Salomonsson, B. Lvstrm, “Image en-
hancement based on a nonlinear multiscale method,” IEEE Trans.
Image Proc., 6(6):888-895, June 1997.

[Schachne98] M. Schachne, L. Van Kempen, D. Milojevic, H. Sahli, Ph.
Van Ham, M. Acheroy, and J. Cornelis, “Mine detection by means
of dynamic thermography,” in Proc. IEE Internat. Conf. on the
Detection of Abandoned Land Mines, pp. 124–127, Edinburgh, UK,
1998.

[Scheers98] B. Scheers, M. Piette, and A. Vander Vorst, “The detection
of AP mines using UWB GPR,” in Proc. IEE Internat. Conf. on
the Detection of Abandoned Land Mines, pp. 50–54, Edinburgh,
UK, 1998.

[Scheers00] B. Scheers, M. Piette, M. Acheroy, and A. Vander Vorst, “A
laboratory UWB GPR system for landmine detection,” in Proc. In-
ternat. Conf. on Ground-penetrating radar GPR2000, Sydney, Aus-
tralia, June 2001.
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