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Tracking vehicles using a network of cameras with non-overlapping views is a challenging problem of great
importance in traffic surveillance. One of the main challenges is accurate vehicle matching across the cameras.
Even if the cameras have similar views on vehicles, vehicle matching remains a difficult task due to changes of
their appearance between observations, and inaccurate detections and occlusions, which often occur in real
scenarios. To be executed on smart cameras the matching has also to be efficient in terms of needed data and
computations. To address these challenges we present a low complexity method for vehicle matching robust
against appearance changes and inaccuracies in vehicle detection. We efficiently represent vehicle appearances
using signature vectors composed of Radon transform like projections of the vehicle images and compare them
in a coarse-to-fine fashion using a simple combination of 1-D correlations. To deal with appearance changes we
includemultiple observations in each vehicle appearancemodel. These observations are automatically collected
along the vehicle trajectory. The proposed signature vectors can be calculated in low-complexity smart cameras,
by a simple scan-line algorithm of the camera software itself, and transmitted to the other smart cameras or to
the central server. Extensive experiments based on real traffic surveillance videos recorded in a tunnel validate
our approach.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

For the purpose of traffic management and fast reaction in cases of
traffic accidents it is important to timely detect potential incidents or
disturbances in the traffic flow. Therefore, surveillance cameras are
typically mounted along roads, for commercial reasons often with
non-overlapping fields of view. As an aid to human operators, com-
puter vision algorithms can then be used for automatic detection
and tracking of vehicles in the acquired videos. Such algorithms con-
sist of three parts: vehicle detection, tracking of vehicles in a field of
view of one camera (single-camera tracking) and vehicle matching,
which is used for a “handover” of vehicles between cameras, i.e., for
multi-camera tracking. Typically, results of vehicle detections and
single-camera tracking are bounding boxes with vehicle images being
regions of interest inside the bounding boxes. Such vehicle images are
referred to as vehicle detections. Vehicle detections are input to the
vehicle matching.

In traditional camera networks the cameras send all acquired data
to the central server that performs video analysis. However, networks
of smart cameras open a possibility to process the acquired video data
by the cameras themselves and transfer only the obtained metadata
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to the other cameras and to the central server. In this context, this
paper addresses the problem of matching vehicles as they are imaged
by a network of stationary smart cameras with non-overlapping
views. We focus on the problem of finding a computationally and
data efficient, but still discriminative and robust representation of
vehicle appearances that can be computed by cameras themselves
and sent between cameras without sending the whole images. We
also focus on finding a computationally efficient algorithm formatching
such vehicle representations, suitable for execution on cameras them-
selves. Although the framework proposed in this paper is developed
in the context of a vehicle tracking application in tunnels, where the
cameras are placed to view the vehicles from relatively similar view-
points, the basic idea and the associated techniques can be applied to
vehicle tracking and matching in general, as well as to matching of
other types of rigid objects.

In traffic surveillance such placement of cameras is achieved in
many cases: in tunnels, along roads, or even at intersections of roads
by placing more cameras at the crossroads. Still, vehicle matching
remains challenging due to significant appearance changes in between
cameras, observation differences and inaccurate and false vehicle detec-
tions, which are all common in real-world applications. The vehicle
appearance changes are due to various reasons: illumination changes
in the environment (e.g., a different lighting in different areas of the
environment, shadows, light reflections), changes of the vehicle pose
as it moves through themulti-camera environment and turning vehicle

http://crossmark.crossref.org/dialog/?doi=10.1016/j.imavis.2013.06.007&domain=pdf
http://dx.doi.org/10.1016/j.imavis.2013.06.007
mailto:vedran.jelaca@telin.ugent.be
http://dx.doi.org/10.1016/j.imavis.2013.06.007
http://www.sciencedirect.com/science/journal/02628856


674 V. Jelača et al. / Image and Vision Computing 31 (2013) 673–685
lights on or off. The observation changes result from differences in
camera settings (e.g., a scale difference due to different zoom settings).
Inaccurate vehicle detections are detections of vehicles or their parts
together with a part of the background. They cause misalignment of
vehicle images. False detections, i.e., detections of the background as
vehicle, detections of multiple vehicles as one and multiple detections
of one vehicle can cause significant problems to matching algorithms,
if not discarded.

In our test application there are also some challenges due to a
tunnel environment. Firstly, tunnels are often partly dark, artificially
illuminated, which makes color unreliable information (the same
holds for outdoor environments in general in cases of poor lighting
conditions). Secondly, tunnels are tubular environments, so strong
light reflections from the walls and ceiling can disturb cameras and
“pollute” the images. Fig. 1 shows images of six vehicles, acquired in
a tunnel by three cameras and automatically detected using the detec-
tor proposed by Rios Cabrera et al. [1]. We used this detector in
our work because it is a state-of-the-art vehicle detector suitable for
tunnels, as demonstrated in [1]. It uses rectangular Haar features
(similar to those proposed by Viola and Jones for face detection [2])
and a cascade of strong classifiers, which are combinations of weak
classifiers selected using the Ada-Boost algorithm. The detection accu-
racy is increased by introducing a confidence score accumulated and
normalized over all cascade stages. However, evenwith these improved
detections there is still a significant variety of vehicle appearance and
observation changes across cameras, illustrated in Fig. 1. Moreover, if
vehicle images are of low to medium resolution, which is common in
video surveillance, the motion blur and noise in the images are also
significant. This imposes an additional challenge for extraction of robust
features from vehicle images.

Previous work on object appearance matching has mainly focused
on extracting robust features from acquired images, so that those fea-
tures remain invariant to appearance changes [3–13]. Many different
features have been proposed, based on color, local features, edges,
image eigenvectors or entropy, all with limited success in achieving
the goal of invariance. Calculation and matching of such features is
also often computationally demanding, so object comparison in real-
time is typically done using only one image per camera for each object.
Therefore, the accuracy of these approaches strongly depends on the
quality of observations and the matching is much more challenging if
observations contain disturbances like light reflections, strong shadows
or occlusions.
Fig. 1. Each column contains vehicle images (detections) of the same vehicle observed
by three cameras along a tunnel pipe. The cameras are mounted roughly in the middle
of the tunnel pipe ceiling and oriented in the direction of the traffic flow. From left to
right the images illustrate a vehicle appearance change due to different levels of visible
details when the detections are taken at different distances from the camera, turning
on/off the rear lights, change of the scene illumination, change of pose as vehicle
moves away from the camera or changes lane, and inaccurate detections.
In our work we try to overcome these problems by a conceptually
different approach, based on two novelties in vehicle matching. Firstly,
we use simple descriptors of vehicle appearances that are easy to com-
pute and compare, yet highly informative in low resolution images. For
this purpose we model vehicle appearances using signatures that are
Radon transform like projection profiles of the acquired vehicle images.
Matching of the appearancemodels is then obtained by a simple combi-
nation of 1-D correlations in a coarse-to-fine procedure. The signatures
are also used to learn scale differences between the observations from
different cameras, which is important for their alignment. The second
novelty is to use signatures frommultiple images for creating amultiple
observation appearance model and for automatic selection of good
observations for matching (i.e., informative observations with few
disturbances), as shown in Fig. 2. Such an appearance model enables
representation of vehicles from multiple views, collected online as
they move through the multi-camera environment. This is especially
beneficial when vehicles change pose (e.g., by changing lane or moving
away from the camera). Finally, since each vehicle has one and only
one corresponding vehicle in other cameras, we employ the Hungarian
algorithm to resolve ambiguities and to optimize the matching.

The remainder of the paper is organized as follows. Section 2 gives
related work on multi-camera tracking, object representation and
matching. Section 3 briefly formulates the problem of vehicle
matching. In Section 4 we propose a novel appearance model based
on the vehicle signatures, together with the procedure for collection
of good observations along the vehicle trajectory. Matching of vehicle
appearances using the proposed appearance model is explained in
Section 5. The complete matching algorithm that optimizes the asso-
ciation of vehicle correspondences is given in Section 6. In Section 7
we present and discuss the experimental results and finally, we con-
clude the paper in Section 8.

2. Related work

Most of the work on multi-camera tracking by cameras with
non-overlapping views, e.g., [10–12,14–18], uses object appearance
representations based on color information (e.g., mean, histogram
or correlogram of the color). Color alone is, however, not reliable as a
feature in many traffic surveillance applications, especially in tunnels.
To address such a problem [11,12,19] present a method for matching
object appearances by calculation of a brightness transfer function for
every pair of non-overlapping cameras. They map an observed color
value in one camera to the corresponding observation in the other
camera. Once such mapping is known, the correspondence problem is
reduced to matching of the transformed appearance models. However,
real illumination often varies between frames and scenes depending on
a large number of parameters, which is very difficult to model. More-
over, colors of artificial lights in tunnels or in artificially illuminated
environments in general can supersede vehicle colors, which make
the mapping of vehicle colors even more challenging (especially in
the presence of variable road signs, rotating and emergency lights, etc.).

Appearance representations that do not need color information
are often based on eigenimages (often used for face recognition)
[3,4], local invariant features (e.g., SIFT [6], SURF [7] or ASIFT [8]) or
edge maps [9,10,20].

Methods based on eigenimages require offline training and their
accuracy highly depends on variations of objects and their appearances
present in the training set. Therefore, adaptation of these methods to
appearance changes is limited. These methods also require alignment
of objects before matching, which is an additional challenge in real
world scenarios.

The accuracy of methods based on local features depends on the
number of corresponding key points found in images and on the dimen-
sion of the local descriptors calculated for each key point. In our exper-
iments with vehicle images acquired by surveillance cameras, too few
reliable and unique features were found and thus many features were
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changes. The key idea of our approach is to reduce this problem by preselecting good observations before performing the inter-camera matching itself. We use multiple good
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wrongly matched. Similar findings have been reported in previous
works [10,9]. Also, calculation of high dimensional local descriptors is
computationally demanding, which creates additional difficulties to
use local features for real-time vehicle matching.

In the context of edge based methods [9] has proposed a measure-
ment vector and an unsupervised approach to learn edge measures
formatching vehicle edgemaps. The edgemaps are compared after spa-
tial alignment. A solution for the alignment has been proposed in [10].
The reported results show that the learned edge matching measures
can be relatively invariant to changes in illumination and vehicle pose.
This invariance is further increased [20], bymatching embedded vehicle
descriptors instead of direct vehiclematching between different camera
views. The embedded descriptors were obtained by matching vehicles
with exemplar vehicles from the same camera view. However, auto-
matic selection of good exemplars has remained a problem. Also, the
learned edge measure weights indicate the illumination and aspect
differences between two scenes, but not the quality of compared obser-
vations themselves (some observations can be influenced more than
others by certain changes, especially if changes are temporary and
only in some parts of a scene).

Beside the mentioned features and approaches, recently there are
proposals to use Haar-like features for vehicle matching [1]. These fea-
tures are often successfully used for object detection [1,2], so reusing
the same features for matching reduces the computational cost of the
matching itself. Rios Cabrera et al. [1] recently introduced a whole
framework for vehicle detection, tracking and matching, in which all
these three blocks use rectangular Haar features. Integral images
speed up the calculation of Haar features so it is possible to reach a
near real-time performance throughout the framework. Themost infor-
mative Haar features are selected by a supervised Ada-Boost training in
several cascades. Binary vehicle fingerprints embedded from those
same Haar features are used to match vehicles, as well as to track
vehicles in a tracking-by-identification fashion. The matching in a
real multi-camera setup is further optimized using the Hungarian
algorithm and vehicle kinematics.

The work of [1] shows that reusing Haar-features for vehicle
matching is possible and can be highly accurate if the training set of
vehicle images is acquired under similar environmental conditions
as the testing vehicle images. This condition is, however, difficult to
meet in real world applications, which is a limitation of this approach,
demonstrated also in the experiments of [1]. The training set needs to
be large enough to include vehicle images from various environments
(e.g., different tunnels, different cameras) and various environmental
conditions (e.g., different lighting, wet/dry road, different aspect of
vehicles, etc.). This further increases complexity of the training pro-
cess. Therefore, in our work we are focused on finding a vehicle
matching approach that does not require supervised training and
has a built-in procedure for collecting various vehicle appearances
to create more informative appearance models.

Ourmethod for vehicle appearancematching is inspired by thework
of [21], which used vertical and horizontal projections of a vehicle edge
map for accurate positioning of the bounding box in tracking. Similar
projections have also been used for human gait recognition [22]. Com-
pared to these works we go a step further, showing that it is possible
to use projections for vehicle appearance representation and matching.
Instead of using projections of the vehicle edge map, we represent
vehicle appearances by projections of the vehicle images themselves.
Such projections we call vehicle signatures. Using the signatures for
automatic selection of good observations for matching is another step
forward of ourmethod compared to previousworks. Such an automatic

image of Fig.�2
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selection could also be useful for selection of vehicle exemplars in
[20,1].

3. Problem formulation

We define the vehicle matching problem as the problem of classi-
fying pairs of vehicles observed by cameras with non-overlapping
views in the categories “the same vehicle” or “different vehicle”.
Without losing generality we can assume that these cameras are con-
secutive in a predefined sequence of cameras, so we denote two of
them as Cn and Cn − 1 (camera Cn − 1 being the one that vehicles pass
before reaching camera Cn). The match score between vehicle appear-
ances, μ, is defined as

μ ¼ f An−1
i ;An

j

� �
; ð1Þ

where f is a similarity measure between two appearance models Ain − 1

and Aj
n corresponding to the i-th and j-th observations Oi

n − 1 and Oj
n in

cameras Cn − 1 and Cn, respectively. We call the model Ajn the template
and the model Ain − 1 the candidate. In the context of online multi-
camera tracking, vehicle observations are responses of vehicle detection
and single-camera tracking. For each template a set of possible candi-
dates (a temporal matching window) is defined according to road
constrains, inter-camera distances and vehicle kinematics, see Fig. 3. A
template–candidate association is then obtained according to the
matching score μ, assuming that each template inside its matching
window has one and only one corresponding candidate.

4. Signature based appearance model

4.1. Signatures and signature vectors

Let I be the vehicle image of size M × N. We define the signatures
of the image I as Radon transform like projection profiles along a certain
direction. The vertical signature vI consists of the arithmetic means of
the pixel intensities in each image row,

vI mð Þ ¼ 1
N

XN
n¼1

I m;nð Þ; m ¼ 1; :::;M; ð2Þ

where I(m,n) is an intensity value of the image pixel at the position
(m,n). Analogously, the components of the horizontal signature hI are
the arithmetic means of the pixel intensities in each image column,

hI nð Þ ¼ 1
M

XM
m¼1

I m;nð Þ; n ¼ 1; :::;N: ð3Þ

In Fig. 4 we see three images of the same vehicle observed by two
gray scale cameras. The images are represented by horizontal and
vertical signatures. The vehicle's bright areas, captured by the signa-
tures, are marked with arrows. The bright areas correspond to the
local maxima in the signatures. Analogously, the dark patterns are
view of camera Cn-1

unobserved
area

templatecandidates
(matching window) 

view of camera Cn

non-appearance
information  

Appearance matching

Fig. 3. The problem illustration. For each vehicle (a template) fromcameraCnwefind a set
of possible matching candidates from camera Cn − 1 using non-appearance information
(road constraints, inter-camera distances and vehicle kinematics). A template-candidate
matching is then obtained based on similarity of vehicle appearances.
represented by the local minima. If two horizontal signatures
are plotted one over the other (the signatures at the bottom left of
Fig. 4), we see that they have similar behavior (shape). The back-
ground, a road, has almost uniform brightness so it does not change
significantly the behavior of the signatures. Also in the vertical direc-
tion, the signature parts that correspond to the vehicle are similar,
both when the detection includes the background or only a part of
the vehicle. An advantage of the proposed signature based represen-
tation compared to an edge based representation, which also has
responses in the areas of brightness changes, is in the fact that there
is no thresholding in the calculation of the signatures. The signatures
are independent of the intensity gradient values within the image and
thus are more robust against lighting changes.

Since vehicles are rigid objects, the signatures are similar in different
observations, except for translation and scale. If the vehicle appears
rotated between observations, parts of the corresponding signatures
shrink or stretch, but overall the shape of the signatures remains simi-
lar. Having noticed this, we propose using the signatures for the appear-
ance modeling. Note that by using more precise vehicle masks instead
of bounding boxes, as proposed in [10] for example, it is possible to
reduce the influence of the background on vehicle signatures. However,
since obtaining such masks in harsh tunnel conditions is a challenging
problem on its own, in this paper we do not assume that such vehicle
masks are obtained. This also increases generality of our approach.

Next to the vertical and horizontal signatures, defined by Eqs. (2)
and (3), it is possible to use additional projections. We define the
n-dimensional signature vector sI calculated from the vehicle image
I as an n-tuple of n projections (signatures) on different lines. In this
paper we explicitly treat 2-dimensional (2-D) and 4-dimensional
(4-D) signature vectors defined as the following. The 2-D signature
vector is a pair of the vertical and horizontal signature,

sI ¼ vI ;hIð Þ; ð4Þ

while the 4-D signature vector contains also two diagonal signatures
(see Fig. 4, bottom right),

sI ¼ vI ;hI;dI; aIð Þ; ð5Þ

where dI and aI are signatures on the main-diagonal and anti-diagonal,
respectively. The signature vectors represent an image as multiple 1-D
vectors, which significantly reduce the amount of the vehicle appear-
ance representation data. In the experiments we measured the benefit
of adding two diagonal projections for the appearance matching (see
Section 7.5).

4.2. A robust multi-observation appearance model

During the movement through the multi-camera environment the
appearance of vehicles between observations (detections) can change
due to many reasons. For robust appearancematching it is essential to
create an appearance model of each vehicle using a diversity of good
observations. In this Section we analyze observations in tunnels and
explain how signatures can be used for automatic selection of good
observations.

The images in Fig. 5 are typical examples of vehicle observations in
tunnels (the images are rescaled to the same size for easier visual
comparison). Their signatures are also presented. Fig. 5a shows obser-
vations of the same vehicle, acquired by one camera. They illustrate
the appearance change caused by a different camera viewing angle
when the vehicle moves away from the camera. As the vehicle moves
away from the camera it appears smaller and its lights and license
plate appear bigger due to the light dissipation effect. Some parts of
the vehicle are even not visible any more (e.g., the roof) and some
other parts become more visible (e.g., the back window). As certain
vehicle parts appear bigger or smaller, the corresponding signature
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parts stretch or shrink. Hence, these observations contain different, but
complementary information and representing possible variations in
appearance increases informativeness of the appearance model. This
is especially important because vehicles are observed at various
distances and from various angles.

A second example, in Fig. 5b, shows vehicle appearance change
due to the actions taken by the driver, in this case turning on the
rear lights. If we compare the signatures that represent the cases
when the lights are off and on, we see that there is a corresponding
change in values and behavior of the signatures. As in the first example,
having the observations with lights off and on in the appearancemodel
increases its robustness, because the vehicle can be captured in both
states in other cameras.

Conversely, some observations should not be included in the
appearance model, particularly false and inaccurate detections, clutters
and occlusions. For detecting them we exploit the fact that the signa-
tures in such observations change differently than in the two aforemen-
tioned situations. When occlusions occur, a new object in the image
causes a significant change of the observations (see Fig. 5c). This change
is gradual as the vehicle gets more or less occluded, until it reaches the
unoccluded state again or the state in which the occlusion is constant.
This behavior is present in the signatures as well. Also, strong illumina-
tion sources can blind the cameras or significantly disturb observations,
e.g., when vehicles with rotating lights enter the scene those lights are
periodically disturbing the camera and “polluting” the observations.
In consecutive frames this effect is again visible as gradual change
in vehicle images. Analogous phenomena outside of tunnels can be
observed due to reflection of sunlight from vehicles or cast shadows
from objects alongside the road.

False and inaccurate detections can also be detected by analyzing
signatures. False and inaccurate detections occur in real scenarios
regardless of a vehicle detector that is used,mostly due to lack of visible
features, intensive illumination changes in some parts of the scene or
light reflections on the road. Our experiments showed that such detec-
tions are typically unstable, i.e., they change quickly, capturing different
vehicle parts in consecutive frames (see Fig. 5d). As a consequence, the
signatures of false and inaccurate detections also change quickly and
not gradually.

The stated signature characteristics allow us to use them for selec-
tion and representation of good appearance states that should be
included in the appearancemodel. The selection procedure is presented
in Fig. 6. Let A be the appearancemodel and st the signature vector of the
appearance state observed at the time instance t. We consider that the
appearance state is stable if the appearance remains similar enough in
a predefined number of successive frames T. In terms of signatures
this condition is satisfied if a similarity measure μs between the
stst-T1
… st+T

… …st-T1+1 st+T2

A

st

μs                         τ 

µs(st ,sn) < Mvar,∀n ∈[1,N] 

Appearance model

Stable appearance state

Appearance states
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Fig. 6. A procedure for collection of good observations for modeling the appearance of
vehicles as they move in a multi-camera environment; the stability and variability condi-
tions for including appearance states into an appearancemodel are given. All appearances
are represented by signature vectors.
signature vectors of these T successive observations remains above
some predefined similarity valueMst,

μs st ; stþτ
� �

NMst;∀τ∈ 1; T½ �: ð6Þ

We call this condition the stability criterion, with Mst and T being
the stability parameters. A method for calculating the similarity μs
between the signature vectors is given in detail in Section 5. If the
appearance state at the time instant t is stable, its signature vector
should be included in the appearance model A ≡ {s1, s2,..., sN} only if it
brings additional information to the model, i.e., if it is different enough
from other, previously observed states already included in the model,

μs st ; snð Þ bMvar;∀n∈ 1;N½ �: ð7Þ

This condition represents variability criterion and Mvar is the
variability threshold.

By using the proposed appearance collection procedure, most
occlusions, clutters and inaccurate and false detections can be excluded
from the appearance model (due to the stability condition). However,
the model can still include persistent inaccurate detections for which
both a vehicle detector and a single-camera tracker constantly return
a stable, positive response. Such persistent inaccurate detections typi-
cally occur when bigger vehicles (e.g., trucks or buses) are partly
detected or when the detections of smaller vehicles (e.g., cars) contain
parts of the background or other vehicles. We noticed also that for
some vehicles all stable detections were inaccurate, so our intention
in this work was to develop a signature matching procedure robust to
such detection inaccuracies.

5. Vehicle appearance matching

5.1. Signature matching

The challenges for robust matching of the signatures come from
scale, shift and rotation variations between the vehicle observations
that are compared. Scale differences result from different camera
zoom settings or different distances between the observed vehicles
and the camera. Shift results from differences in the bounding box
location with respect to vehicles. Rotation is caused by vehicle pose
changes together with camera viewing angle changes. All these effects
are present in the example of Fig. 7. Due to the scale difference the
lengths of the corresponding parts of the signatures differ. A conse-
quence of the bounding box shift is the signature shift along the shift
direction while the vehicle rotation results in shrinking and stretching
of the signature parts. Thus, we propose a coarse-to-fine signature
matching procedure composed of four parts: signature rescaling, and
global and local alignment, followed by calculation of the final similarity
measure.

5.1.1. Learning of rescaling factors
To achieve the scale invariance necessary for signaturematching,we

rescale the signatures by estimated factors using cubic interpolation. In
the following we present a method to estimate these rescaling factors.
They depend on the camera zoom settings and the position of the vehi-
cle in the scene (further from the camera the smaller the vehicle image,
i.e., the shorter the vehicle signatures and vice versa).We represent the
vehicle position by the y-coordinate of its bounding box bottom line
(see Fig. 7a). Suppose we want to determine the rescaling factors
between the vertical signatures of two vehicle images Oi

n − 1 and Oj
n,

extracted at positions yin − 1 and yj
n. We define the rescaling factor for

vertical signatures as the following:

rjiv ynj ; y
n−1
i

� �
¼

lnv j

ln−1
vi

; ð8Þ
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Fig. 7. The signature matching procedure: a) two observations of the same vehicle captured by two cameras (the same as in Fig. 4); y-coordinates of the bounding box bottom lines
represent the positions of vehicles in the scenes; images are divided in regions (marked with numbers) so that vehicle scale difference within each region remains less than 15%;
b) vertical signature of the observation Oi

n − 1 (good detection); c) vertical signature of the observation Oj
n (inaccurate detection); d) signatures are rescaled using the reference

length lr = 100 using the rescaling factor rvji = 1.48, estimated between the positions yj
n and yi

n − 1 in images from cameras Cn and Cn − 1, respectively; after rescaling, the global
alignment is found in the position ag; e–f) the local alignment: unstable extrema are removed by smoothing the signatures; the remaining local extrema (some of which are marked
with arrows) are aligned by interpolating the signatures; after local alignment the final matching measure between the signatures is calculated.
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where lnv j
and ln−1

vi
are the lengths of the vertical signatures of images Oj

n

and Oi
n − 1, respectively. We rescale the signatures to the same refer-

ence length lr and compare using 1-D correlation. If the obtained corre-
lation coefficient is high enough, i.e., above a predefined threshold
(0.9 in our experiments), the reference rescaling factors r jv ¼ lnv j

=lr
and riv ¼ ln−1

vi
=lr properly estimate the scale difference between the

vehicles at positions yin − 1 and yj
n. Then, the rescaling factor rvji is cal-

culated as rvji = rv
j /rvi and we use it as an estimate of the scale differ-

ence between observations at positions yin − 1 and yj
n. If the obtained

correlation coefficient is below the threshold, such a signature pair
is considered unreliable, so it is not used for the rescaling factor
learning.

In this way we estimate the rescaling factors for different pairs of
positions in two fields of view. Taking into account that vehicles get
detected at multiple positions along their trajectory in each camera
view, the estimation of the rescaling factors can be done fairly quickly
for many position pairs. If there is no rescaling factor for a certain po-
sition pair, we use the factor for the nearest position pair. If there are
multiple factors for the same position pair, the arithmetic mean of the
latest n is used (n = 3 in our experiments). This enables automatic
adaptation to the change of the camera zoom parameters. The
rescaling factors for horizontal and diagonal signatures are estimated
analogously.

Note that by dividing the images in regions, see Fig. 7a, it is possible
to group vehicle positions and to learn rescaling factors for pairs of
image regions instead for position pairs. This enables faster learning,
but the estimated rescaling factors are less precise. However, if the
scale differences within the same regions are relatively small (in our
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experiments 15%), the global and local alignment can still be properly
obtained.

5.1.2. Global alignment by correlation with shifting
Due to the possible signature shift, it is necessary to align the signa-

tures before comparing them (see Figs. 4 and 7d). The alignment we
perform is twofold. First, after rescaling the signatures by the estimated
factor we align them globally. Then, a finer, local alignment is obtained.
The global alignment is done by shifting one signature along the other
one, finding the position with the highest correlation coefficient be-
tween the two signatures. Suppose x is the signature with M elements
and y the signaturewithN N M elements. The signature x is then shifted
along y and the correlation coefficient ρs, obtained in each shift position
s ∈ [0, N − M] is defined as

ρs ¼
XM

i¼1
x ið Þ−xð Þ y iþ sð Þ−ysð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1
x ið Þ−xð Þ2 y iþ sð Þ−ysð Þ2

q ; ð9Þ

where ys is the part of the signature y, which in shift position s overlaps
with the signature x. The signatures are aligned in a position ag, in
which the correlation coefficient ρs has a maximal value ρg,

ρg ¼ max
s

ρs: ð10Þ

This is a coarse, global matching measure of two signatures.

5.1.3. Local alignment and signature matching measure
Perspective changes of the vehicle observation, subtle appearance

changes and imprecise rescaling cause shrinking and stretching of
signature parts (see Figs. 4 and 7d). Hence, a local alignment of signa-
tures is needed before calculating their correlation. For that purpose
we propose a method similar to Iterative Closest Point (ICP) [23].
Our method aligns corresponding local extrema. Local extrema are
robust features of the signatures, preserved even if vehicles change
pose or if they are observed in different illumination conditions.
This is because they correspond to different parts/patterns of the
vehicle. As long as those parts/patterns remain visible in two observa-
tions, the local extrema remain present in the signatures (see Fig. 4).
Therefore, we propose the following local alignment method.

Step 1 The signatures are iteratively smoothed until the same number
of extrema is found in two consecutive iterations. Smoothing
removes most of the extrema that originate from noise and
camera interlacing. Fine appearance details can also be lost,
but due to the low resolution of vehicle images they are mostly
not present.

Step 2 The signatures are iteratively interpolated to align the closest
local extrema of the same kind (maximum or minimum), see
Fig. 7e–f. Suppose x and y are two signatures. For each local
maximum x(m) we find its closest maximum y(n), i.e., the
one for which the absolute difference in their position |m − n|
is minimal. In the same way the closest minimum is found for
each local minimum of the signal x.

Ambiguities occur if multiple extrema from the signature y have the
same closest extrema in the signature x. Therefore, the local alignment
is performed in iterations. Firstly, the signatures are interpolated so all
extrema with a unique correspondence are aligned. We used cubic
interpolation for this purpose. After interpolation some of the ambigui-
ties might be resolved. Then, the whole procedure of finding the closest
extrema and aligning them repeats until all extremawith unique corre-
spondence are aligned. Note that the requirement for extrema to be
non-ambiguous before their alignment prevents local aligning of
non-similar signatures.
Note also that other possible curve alignment approach is dynamic
time warping (DTW), e.g., the method of [24]. DTW automatically
handles both scale and translation effects globally and locally. It
can be implemented in dynamic programming so it is also efficient.
However, in real scenarios the signatures can be significantly
misaligned so for a proper initialization of DTW (selection of the
starting and ending point) a coarse global alignment is still an
advantage. Moreover, the vehicle signatures taken at different lighting
conditions can vary significantly in intensities and gradients, both
globally and locally, which further can lead to inaccuracies of DTW if it
aligns points with similar intensities or derivatives. DTW also does not
intrinsically take into account whether the aligned extrema are non-
ambiguous, as we do in our ICP-like approach. Therefore, we found
that using the proposed iterative ICP-like approach is a better option
in our matching method.

Finally, after the local alignment, 1-D correlation coefficient ρl
between the signatures is calculated. We define the final matching
measure between the signatures x and y as

ρ x; yð Þ ¼ ρl x; yð Þ; ρl x; yð Þ N 0
0 ; ρl x; yð Þ≤0:

�
ð11Þ

Negative values of the correlation coefficient ρl are set to zero in
the signature similarity measure ρ. This is because vehicles are different
both when significant parts of the signatures are mutually inverse as
well as when the signatures do not correlate at all.

5.2. Matching of the appearance models

As explained in Section 4, the appearance of each vehicle is
modeled by multiple appearance states of which each is represented
by a signature vector. In this work we used signature vectors that con-
sist of two and four signatures. Therefore, if A is the vehicle appearance
model, it is a set ofN signature vectors,A ≡ {s1, s2,..., sN}, of which each is
represented by one vertical and one horizontal signature, sn = (vn,hn)
or with diagonal signatures added, sn = (vn,hn,dn,an), n ∈ [1,N].
The correlation between signatures is calculated as presented in
Section 5.1. Comparison of the appearance states requires then combin-
ing the correlation coefficients between signatures into one matching
measure between signature vectors.

Fig. 8 shows 2-D and 3-D scatter plots of the correlation coefficients
ρl for the pairs of vertical, horizontal and main diagonal signatures of
the 300 vehicles in our database (each compared with 21 candidates).
Red circles represent the correlation values between the signatures of
the same vehicles (according to the manually annotated ground
truth) and cyan crosses represent the values for different vehicles. As
expected, the values for the same vehicles are clustered in the area
with high correlation coefficients for the each signature pair, i.e., the
area furthest from the zero correlation point (point (0,0) for 2-D plot
or (0,0,0) for 3-D plot). Also, even if in some cases the correlation values
of true matches are not in the cluster of red circles their distance from
the zero correlation point is mostly still higher than the distance for
false matches, as in the example at the bottom in Fig. 8. Therefore, we
define a similarity measure μs between two signature vectors as the
Euclidean norm of an n-D vector, where each dimension represents
the similaritymeasure ρ between the signatures along the same projec-
tion direction, i.e.,

μs sn; smð Þ ¼ ρ vn; vmð Þ;ρ hn;hmð Þð Þk k ð12Þ

for the appearance representation by 2-D signature vectors, or analo-
gously the Euclidean norm of a 4-D vector when the appearance states
are represented by 4-D signature vectors.
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Finally, the matching measure μ between two appearance models
Ap ≡ {s1

p
, s2

p
,..., sM

p
} and Aq ≡ {s1

q
, s2

q
,..., sN

q
} is the maximal similarity

measure obtained when comparing all their states,

μ Ap;Aq

� �
¼ max

m;n
μs spm; s

q
n

� �
; m∈ 1;M½ �;n∈ 1;N½ �: ð13Þ

This means that the vehicle matching is done according to the
most similar appearances in the vehicle appearance models.

6. Vehicle matching algorithm

Given the problem of matching vehicles observed by two cameras
with non-overlapping views, Cn and Cn − 1, formulated in Section 3,
our matching algorithm consists of the following four steps.

Step 1 During the movement of the j-th vehicle through the field of
view of camera Cn its appearancemodel (template Tj) is created
using the procedure explained in Section 4.2. The vehicle obser-
vations are responses of vehicle detection and single-camera
tracking.

Step 2 The matching window (the set of candidates) for the template
Tj is determined. It is done according to the distance Dn,n − 1

between the cameras Cn and Cn − 1, taking into accountminimal
andmaximal possible velocities of the template vehicle. Let vmin

and vmax be the minimal and maximal allowable vehicle veloci-
ties (taking into account possible over and down speeding).
Then, all vehicles that disappeared from the field of view of

camera Cn − 1 between time instances t−Dn;n−1

νmin
and t−Dn;n−1

νmax

are considered as matching candidates for the template Tj, if
being in the same or adjacent lane as the template (this is
howwedetermined thematchingwindow in our experiments).
Thematchingwindow could also bedeterminedmore precisely,
using the estimated velocity and the trajectories of the template
vehicle as observed by camera Cn − 1. The velocity can be esti-
mated according to the lane marks on the road, from responses
of the single-camera tracking. The distance between the lane
marks is known (complies with the known standards) so the
velocity can be estimated by measuring the time vehicles need
to move between the lane marks, while the lane marks in the
images could be automatically detected or marked manually.

Step 3 A template-candidate association is computed using the Hun-
garian algorithm with voting, as proposed in [1].

Step 4 After the template-candidate assignments, we update all candi-
date appearance models with new states. These are the appear-
ance states that are collected in the field of view of camera Cn
and are different enough from the states collected in previous
cameras, C1,..., Cn − 1. The appearance states are different
enough if they fulfill the condition in Eq. (7). This updating pro-
cedure enables learning of vehicle appearances online, along
the multi-camera track.
7. Experimental evaluation

We composed two databases of vehicle images from three security
cameras with non-overlapping views, mounted roughly in the center
of a tunnel pipe ceiling and oriented in the direction of the traffic
flow. The databases contain 300 different vehicles, manually annotated
for evaluation purposes. Each vehicle is represented by 20 images per
camera, extracted from successive video frames along their tracks,
starting from the frame in which the vehicles are observed completely.
For the first database, denoted as DBM, vehicle images were manually
extracted from the videos resulting in similar detections between the
frames and the cameras. The second database, denoted as DBA, contains
real (automatic) vehicle detections, which are less accurate, thus less
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stable along the single-camera tracks and different between the
cameras. Figs. 1, 2 and 5 show some examples of vehicle images in
DBA database. The automatic detections are obtained using the detector
of Rios Cabrera et al. [1].

Five major results are presented in this section. Firstly, we give
the results of our matching method for two camera pairs (C2,C1)
and (C3,C2), with and without using multiple templates (observations)
of each vehicle. We demonstrate that our proposed method yields a
better matching accuracy than the reference matching techniques
(2-D image correlation, SIFT, eigenimages, and Haar feature based
matching). Secondly, we prove that our method performs well if
vehicles are visually distinctive, i.e., if there is enough information in
the images based on which they can be recognized. For that purpose
we present separately the matching results for big vehicles (trucks,
buses, etc.) and cars. Our third result shows that the signatures can be
downsampled without losing the essential information, which signifi-
cantly increases the computational efficiency of ourmethod. The fourth
result illustrates the gain from adding two diagonal signatures to the
appearance representation based on only horizontal and vertical signa-
tures. Finally, the fifth result demonstrates the performance of the
whole matching algorithm in a tunnel application, including non-
visual information derived from physical constraints of vehicle motion.

7.1. Results for different camera pairs

We have compared the matching score for two different camera
pairs, (C2,C1) and (C3,C2) using our method with and without collection
of multiple observations (templates) along the vehicle trajectories, see
Fig. 9. Thematching rate is significantly higherwhenmultiple templates
are used formatching. Note that havingmultiple templates also reduces
the difference in performance between different environments (if a
single template is used, the matching rate drops in a more challenging
environment of the camera pair (C3,C2) while this is not the case
when multiple templates are used).

7.2. Comparison with other methods

We have compared the matching score computed between the
vehicles in DBM and DBA databases using our matching algorithm
with four other appearancematchingmethods based on 2-D image cor-
relation, SIFT [6], eigenimages [3] and Haar features [1]. In our method
we used 2-D signature vectors, which contain horizontal and vertical
signatures. 2-D image correlation was obtained using vehicle images
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Fig. 9. Comparison of the results of our matching method with a single and multiple templa
and automatic (DBA, right column) vehicle detections. Each curve depicts the percentage o
matching window size) on the x-axis.
normalized to the same size. In the SIFT-based method, vehicle
matching was done using the kd-tree and nearest neighbor search
between SIFT features found in vehicle images (as in [6]). For the
eigenimage method the datasets were divided in two disjunct parts,
the training and testing subsets (in both databases 100 images were
taken for training and tests were then performed on the other 200
images). Finally, for the comparison with the matching method of
Rios Cabrera et al. we refer to their results reported in [1] since those re-
sults were obtained using the images from the same tunnel recordings
we used in this paper. To evaluate how discriminative the signature
based appearancemodel is, we didmultiple experiments with different
numbers of candidates in the matching window. The Hungarian algo-
rithm with voting, as proposed by Rios Cabrera et al. [1], was used to
optimize the assignment in all methods.

The results are given in Fig. 10a–b, separately for DBM and DBA
dataset and the matching window size in the range from 3 to 101
with the step of 2, taken to include the corresponding vehicle and 2 to
100 other vehicles. The graphs show percentages of correct matches
obtained using different methods. We see that selecting good observa-
tions suitable for matching increases the matching accuracy, especially
when vehicle detections are done automatically. In our experiments
the stability and variability parameters for our method (defined in
Section 4.2) have been set to values Mst = 0.9, T = 4 and Mvar =0.75,
selecting on average 1.7 good observations per single-camera vehicle
track in DBM set and 2.4 in DBA set. These numbers mean that the
majority of vehicles change in appearance along the track and that
many disturbing observations in DBA set get disqualified. This preselec-
tion of observations good for matching is a key advantage comparing to
the other methods, which create the resulting difference in the
matching accuracy. The methods without this functionality fail when
the input from the detector and/or tracker is not accurate enough or
the observations used for matching contain some disturbances. The
methods that require registration of images before matching, like 2-D
correlation and eigenimage based methods, are especially sensitive to
inaccurate detections, which explain the rapid drop of their perfor-
mance on DBA images (see Fig. 10b). In this sense, the results of 2-D
correlation and eigenimage based methods are given here also to illus-
trate the difference between detection accuracies in DBM and DBA sets.

7.3. Results for different vehicle categories

On inspection we found that many of the wrong matches could be
attributed to a visual similarity of vehicles. This especially holds for
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smaller vehicles (cars), see Fig. 1. On the other hand, big vehicles like
trucks, buses and vans usually have characteristic patterns (different
design, company logos, commercials and so on), which are visually
distinctive and big enough to be visible in low resolution videos. To
evaluate the influence of this constraint on performance of our
matching method, we have divided our database of vehicles in two
categories, denoted as cars and trucks. Category cars contains 185
vehicles, while other 115 vehicles in the database are categorized as
trucks. The matching results, obtained using our signature based
method with collection of good observations, are in Fig. 10c–d
presented separately per each category.

These results clearly show that the proposed method is highly
accurate for matching vehicles from the trucks category. Even when
the templates are compared with as much as 101 candidates, more
than 96% of trucks in the DBM set and above 70% in the DBA set are
correctly matched. This is beneficial for applications where tracking
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trucks is more important, e.g., for tracking of vehicles that transport
dangerous goods. The accuracy in the car category is much lower
and it shows that the success of appearance matching is highly
limited by the quality of images from surveillance cameras and the
distinctiveness of vehicles themselves. One way to increase vehicle
distinctiveness could be using the color information in the environ-
ments where it is available.

7.4. Results for different reference lengths

As explained in Section 5.1, the signatures are rescaled using the
reference length lr before performing the matching operations. Thus,
the reference length has amajor impact on the amount of computations
needed for signature matching. In Fig. 10e–f we present the matching
results obtained using different reference lengths, to evaluate their
influence on the performance of the method.

We see that similar results are obtained for reference lengths in
the range from 30 to 150 and that the performance drop is noticeable
when the lengths are below 30 points (the curves for 20 and 10 are
shown). This shows that the signatures can be highly downsampled
between the local extrema, without affecting the performance signif-
icantly. It is due to the fact that the local extrema of the signatures
capture most of the information, so most of the points between the
extrema can be discarded. However, discarding all points except the
local extrema leads to a performance drop because the shape of the sig-
nature between the extrema captures subtle appearance differences,
which are important to distinguish similar vehicles (signatures of the
vehicles in our database have 12 local extrema on average while the
performance drop is noticeable when the signatures contain less than
30 points).

The possibility of downsampling the signatures for the reference
length lr = 30 before their matching, enables very efficient perfor-
mance of vehicle matching, both in terms of data and computations.
In our implementation of the proposed algorithm, matching of two
appearance states was achieved in 1.02 ms on a single-core 1.86 GHz
CPU. Such efficiency allowed us to compare in 11.5 s all 300 vehicles
viewed by two cameras in a period of 8 min. Also, each signature vector
was computed in less than 1 ms, which enabled calculation of signa-
tures and collection of good observations online, during tracking of
vehicles in a single camera view.

7.5. Comparison of 2-D and 4-D signature vectors

In Section 4.1 we have defined the appearance representation using
two and four signatures. The previous results are all obtained using the
appearance model based on two signatures (vertical and horizontal),
while in this Section we analyze the gain from adding two additional
signatures. A comparison of the results obtained using the two appear-
ancemodels is given in Fig. 11. We see that for manual detections there
is a slight increase of accuracy (approx. 5 to 10%) when the diagonal
signatures are added, but it is negligible for automatic detections. This
suggests that most of vehicle parts and patterns can be distinguished
in vertical or horizontal projections. Also, the diagonal signatures are
more sensitive to the detection misalignment and the vehicle pose
change. Taking into account that the diagonal signatures triple the
amount of data needed for appearance representation and matching,
we propose using the appearance model based on only vertical and
horizontal signatures.

7.6. Results in a tunnel application

In the previous sections the results of the vehicle appearance
matching have been shown for different sizes of thematching window.
However, in most traffic environments it is possible to reduce the
number of candidates for each template. For this purpose we use the
information based on space-time consistency of vehicle motion, as
explained in Section 6. In this way, taking 30 kmph for the minimal
and 160 kmph for the maximal velocity of vehicles in a tunnel applica-
tion with medium traffic density, we have been able to reduce the
matching window size to on average 9 candidates for each template
(each vehicle was compared with 9 other vehicles). In this setting the
accuracy of our 2-signature based vehicle matching between two
successive cameras along the tunnel was 97% on the DBM set and 95%
on the DBA set, see Fig. 10a–b. Classified per vehicle categories, as
shown in Fig. 10c–d, correct matching was achieved for 100% of trucks
and 95% of cars on the DBM set, while 98% of trucks and 94% of
cars on the DBA set. In Fig. 10a–b we also see that our method
outperforms the state-of-the-art vehicle matching method of Rios
Cabrera et al. [1] by 9% on the DBA set, while they perform similarly
on the DBM set. In our method there is also no need for supervised
training, which is an additional advantage compared to the method
of [1].

7.7. Discussion

In this Section we discuss reasons for possible failures of vehicle
matching using the proposed framework and we propose some solu-
tions to prevent these failures.

1. If multiple vehicles from the samematching group (vehicles that appear
at approximately the same time in the scene) appear in poses signifi-
cantly different from the poses observed in previous cameras. When a
vehicle appears in a camera in a pose significantly different from
the poses observed in previous cameras, the multi-observation
appearance model of the vehicle would not contain a descriptor of
the vehicle in such a pose, and this could likely lead to a failure in
vehicle matching. To reduce the chance of such a failure, the pro-
posed framework has a matching optimization step, which results
in the optimal assignment for each vehicle in the corresponding
matching group. Consequently, this means that the failure would
possibly happen if multiple vehicles, not only one, from the same
matching group change pose to a previously not observed pose,
which is less likely. By extending the proposed framework with a
multi-hypotheses alike approach it would be further possible to
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recover from incorrect assignments over time, as there are more ob-
servations of each vehicle from multiple cameras.

2. If a vehicle is very similar or the same in appearance with some other
vehicle or vehicles from the same matching group. There are a lot
of vehicles, especially cars, of the same make or with similar
appearance, which is a significant challenge for any appearance
based vehicle matching method. Oftentimes, it is not possible to
re-identify vehicles based on their appearance only. In the pro-
posed framework it is, therefore, possible to add additional infor-
mation to select matching candidates for each vehicle based on
vehicle kinematics, and this is what we exploit in this paper. The
proposed framework also supports a more precise selection of
the matching candidates by using the contextual information
such as vehicle constellations, and probabilities and evidences of
changes in these constellations (e.g., probabilities or evidences
that a vehicle overtook another vehicle, changed the lane, etc.),
but in this paper we did not use this additional information.

3. If a vehicle is occluded or inaccurately detected so that significant or
distinctive parts of the vehicle are not captured. To correctly match
two vehicles using any appearance based matching method it is
important that there is enough visual information to do the
matching. If some vehicles are occluded or inaccurately detected,
a significant amount of information might be lost. Therefore, in
the proposed framework we introduced a method to automatically
detect such cases and select good observations to perform
matching. As shown in our experiments (see Fig. 10a–b) there is
a significant improvement in the matching performance due to
the selecting of good observations. However, if a vehicle is signifi-
cantly occluded or detected with high inaccuracy in a whole scene,
its re-identification would likely fail due to absence of good obser-
vations. This is in some cases solved by matching optimization
in the proposed framework, but it could be further improved by
the previously mentioned approaches of multi-hypotheses and
contextual alike matching.
8. Conclusion

In this paper we proposed a novel method for vehicle appearance
modeling and matching. We proposed using image projection profiles
to obtain vehicle signatures that significantly reduce the amount of
data needed for vehicle matching. We showed that in low resolution
images such signatures capture well the spatial distribution of vehicle
parts and patterns, which was used for their matching. We showed
also that by selecting a set of good observations along the multi-
camera track, it was possible to overcome many matching problems
that occur due to inaccurate detections, intensive illumination changes,
clutters and occlusions, as well as changes of the vehicle appearance. As
a consequence, object matching itself was significantly simplified and
yet outperformed more complex methods. The presented results also
show that it is possible to highly downsample the signatures without
affecting the performance significantly, which further reduces the
amount of computations needed for their matching. Thus, the proposed
appearance matching method can be used to obtain vehicle matching
on embedded systems (e.g., smart cameras) or by a low-complexity
central server without a need for sending the images between the
cameras or to the server.
An interesting future direction is to extend this approach towards
matching of vehicles in traffic environments in which camera views
are significantly different, e.g., along city roads or crossroads. In this
case it is important to add automatic detection of good appearance
states for matching depending on the cameras' view. Also, in the
environments where color information is available, it can be incorpo-
rated to further increase matching accuracy.
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