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ABSTRACT

We develop a sequential wavelet domain and temporal filtering scheme, with jointly optimized parameters,
which results in high-quality video denoising over a large range of noise levels. In this scheme, spatial filtering
is performed by a spatially adaptive Bayesian wavelet shrinkage in a redundant wavelet representation. In the
next filtering stage, a motion detector controls selective, recursive averaging of pixel intensities over time. The
results demonstrate that the proposed filter outperforms recent single-resolution representatives as well as some
recent motion-compensated wavelet based video filters.

We also analyze important practical issues for possible industrial applications. In particular, we investigate
the performance degradations that result from making the wavelet domain filtering part less complex, by removing
the redundancy of the representation and/or by replacing a sophisticated spatially adaptive shrinkage method
by soft-thresholding.
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1. INTRODUCTION

Numerous applications, including multimedia services, teleconferencing, surveillance, object tracking, medical
and astronomical imaging..., utilize digital video. Usually, noise reduction can significantly improve visual quality
of a video. Also, noise reduction is often crucial for the effectiveness of the subsequent processing tasks, like
video coding. Among various noise sources, the more prevalent ones are the noise introduced by the camera, shot
noise (caused by the electronic hardware) and the channel (thermal) noise [1]. Most noise sources are modelled
well by additive white Gaussian noise model, which is also treated in this paper.

Noise filters for video, which make use of both spatial and time correlations among pixel intensities are
in general called spatio-temporal or three-dimensional (3-D) filters. Numerous existing approaches range from
lower complexity solutions like 3-D weighted mean [2], 3-D rational [3] and 3-D order-statistic algorithms [4, 5]
to sophisticated Bayesian methods based on 3-D Markov models [6,7]. Approaches that attempt at taking full
advantage of the time-redundancy incorporate motion detection and compensation [8] or at least use motion
detection and some special operations in case of detected motion [3,9]. An effective way to minimize the number
of frames to be stored is recursive filtering [9-11]. A common approach is also to apply a 2-D spatial filter and
1-D temporal filter separately [11] and most often sequentially [9,10]. The motivation is: after spatial denoising,
detection and estimation of motion are facilitated and thus the temporal filtering is more effective. A systematic
overview of 3-D filters is in [1].

Above listed video filters are single-resolution solutions. In contrast to still image denoising literature, rel-
atively few publications have addressed so far multiresolution video denoising. Roosmalen et al [12] proposed
video denoising by thresholding the coefficients of a specific 3D multiresolution representation, which combines
2-D steerable pyramid [13] decomposition (of the spatial content) and a 1-D wavelet decomposition (in time).
Related to this, Selesnick and Li [14] investigated wavelet thresholding in a non-separable 3-D dual-tree complex
wavelet representation [15]. A motion adaptive filtering scheme, which uses 2-D wavelet transform of several
successive video frames is proposed in [16]. We proposed recently [17] a filtering scheme where 2-D wavelet
denoising is followed by selective, recursive temporal filtering.

Send correspondence to Aleksandra.Pizurica@telin.ugent.be.



SPATIAL FILTER TEMPORAL FILTER

2D denoising inverse 2D pixel based selective
> wavelet [ by wavelet |p!  wavelet motion »| recursive
transform shrinkage transform detector filter

?

y

A 4

-orthogonal or -classical soft-thresholding or
- non-decimated - spatially adaptive shrinkage

Figure 1. The analyzed denoising scheme.

The main motivation for the sequential wavelet domain and temporal filtering approach is the following. Since
the pioneering thresholding works [18,19], many sophisticated, spatially adaptive wavelet shrinkage techniques
were developed and led to impressive results in still image denoising (see e.g., [20-24]). The extension of such
approaches to 3-D in the wavelet domain (being undoubtedly an interesting research topic) imposes also a
significant increase in complexity, which seems less attractive for (near) real-time applications. An alternative
solution that we proposed in [17], where 2-D wavelet denoising is followed by a motion adaptive temporal filter,
brings practically negligent increase in complexity over 2-D wavelet filtering, while it improves significantly the
resulting visual quality. Moreover, as compared to other existing wavelet domain filters for video [12,14,16], the
scheme of [17] minimizes the frame storage.

In this paper, we further develop and improve our initial filtering scheme from [17] and we perform an extensive
experimental evaluation for video sequences corrupted by different noise levels. The main improvement consists
in optimizing the temporal filtering part, the parameters of which were earlier chosen ad-hoc. We also analyze
two important practical issues, which are of particular interest for industrial applications. Firstly, there is a
question of choosing the wavelet domain filtering method. Many different approaches exist. The question is how
important is it to use a sophisticated estimation method (like in [17]) instead of a simple thresholding (given
the fact that the imperfections of the wavelet filter are partly compensated by the temporal filter)? Secondly,
our initial filtering scheme was previously tested with the non-decimated wavelet transform only. Real-time
applications would preferably use the orthogonal transform. It is interesting to investigate how significant are
the performance degradations in this case. Well known comparisons between redundant and orthogonal denoising
schemes for still images do not hold here, because the temporal filter reduces the denoising artifacts of the 2-D
wavelet filter.

The main novelties and contributions of this paper can be summarized as follows. We develop a sequential
wavelet domain and temporal filtering scheme, with jointly optimized parameters, which results in high-quality
video denoising over a large range of tested noise levels. Moreover, we analyze the proposed sequential filtering
scheme with two types of wavelet based denoising

e denoising by soft-thresholding with the uniform threshold

e spatially adaptive Bayesian wavelet shrinkage
and we analyze the use of

e orthogonal and

e non-decimated

wavelet transform. The video denoising scheme is depicted in Fig. 1. We test the method on four different video
sequences corrupted by different amounts of additive white Gausian noise. The results demonstrate that the
proposed filter outperforms not only recent single-resolution representatives [3,5] but it also compares favorably
with some recent motion-compensated wavelet based video filters, like [16].



The paper is organized as follows. Section 2 reviews the wavelet transform and explains two considered wavelet
based denoising approaches. Section 3 addresses temporal filtering part and the joint parameter optimization.
The results are presented and discussed in Section 4. Section 5 concudes the paper.

2. 2-D WAVELET DOMAIN NOISE FILTERING

Here we review briefly the wavelet decomposition and the denoising approaches that are considered in our method.
For a comprehensive treatment of wavelets see, e.g., [25-27].

2.1. The Discrete Wavelet Transform (DWT)

From the signal processing point of view, the discrete wavelet transform is a filter bank algorithm iterated on the
low-pass output [26]. A filter bank is a pair of lowpass and highpass filters followed by downsampling by two.
The lowpass filtering produces an approximation of the signal, which is expressed by the scaling coefficients,
while the highpass filtering reveals the details (i.e., the differences between two successive approximations) that
are expressed by the wavelet coefficients. At the reconstruction, the scaling and the wavelet coefficients are first
up-sampled (by introducing a zero between each two samples) and then filtered with a lowpass and a highpass
filter, respectively, followed by summation of the filtered outputs. If the wavelet transform is orthogonal, the
reconstruction highpass and the lowpass filter coefficients are simply the mirrored versions of their counterparts
at the decomposition stage. The conventional separable two-dimensional (2D) DWT follows from applying the
filter bank algorithm successively to the rows and to the columns of an image.

The above described DWT is critically sampled (non-redundant). It is well known that noise suppression
improves in a redundant representation. In this respect, two approaches are common: (1) Cycle spinning [28]:
apply the orthogonal DWT to several cyclically shifted image versions and average over unshifted denoising
results and (2) Denoising in a non-decimated (stationary) wavelet representation, which is computed with the
algorithm & trous [26].

Here we consider the following options: non-decimated or orthogonal wavelet transform. In both cases
the experiments were done with the Daubechies least asymmetrical wavelet (symmlet) with eight vanishing
moments [25].

2.2. On marginal statistics of image wavelet coefficients

For natural noise-free images, the wavelet coefficient histograms in each subband are typically long-tailed and
sharply peaked at zero. A common marginal prior is generalized Laplacian (also called generalized Gaussian)
density [26]
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where T'(z) = fooo t*~le~tdt is the Gamma function. For natural images, the shape parameter v is typically
v € [0,1]. The variance and the courtosis of a generalized Laplacian signal are [29]
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In case of additive white Gaussian noise, the model parameters v and A are estimated from the noisy coefficient
histogram using the following equations [29, 30]
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where o2 and M4, denote the variance and the fourth moment of the noisy histogram, respectively. A special

case in the family (1) with v = 1, called Laplacian density, is often used due to analytical tractability. The scale

parameter is then estimated as
A =[0.5(02 — 0?)]71/2 (4)

In denoising experiments, this simplification usually does not produce a significant degradation in performance.



2.3. Denoising by wavelet shrinkage

We assume that each input video frame f = [f1, ..., f,] is contaminated with additive white Gaussian noise of
zero mean and variance o2. Due to linearity of the wavelet transform, the noise remains additive in the transform
domain as well

wi:yiqtei, 1= ].,...,77, (5)

where y; are unknown noise-free wavelet coeflicients and ¢; are noise contributions. If the wavelet transform is
orthogonal, ¢; are independent identically distributed (i.i.d.) normal random variables ¢; ~ N(0,0?). In case
where the input standard deviation o is not known, one usually estimates it as the median absolute deviation of
the highest-frequency subband coefficients divided by 0.6745 [18].

Regardless of the type of the employed discrete wavelet transform (e.g., critically sampled or non-decimated),
noise reduction is commonly done by wavelet shrinkage: the magnitude of each coeflicient is reduced by a given
amount depending on the noise level and depending on how likely it is that a given coefficient represents an actual
discontinuity. A common shrinkage approach is thresholding [18,19], which sets the wavelet coefficients with
“small” magnitudes to zero while keeping (“hard-thresholding”) or shrinking in magnitude (“soft-thresholding”)
the remaining ones. Thresholding with a uniform per subband threshold is attractive due to its simplicity. Of
course, the performance is limited and the denoising quality is often not satisfactory. Many spatially adaptive
wavelet shrinkage methods (e.g., [20-24]) have been developed over recent years.

In this paper we consider two approaches:

e Soft-thresholding with a uniform threshold in each subband - as a representative of this approach we use
the threshold selection of [31] which is, for natural images, optimal in terms of mean squared error.

o Spatially adaptive wavelet shrinkage - we use here our recently proposed approach from [17,32].

Both of the here considered denoising methods are Bayesian - they make use of prior distributions of noise-free
wavelet coefficients. The two methods are reviewed briefly below.

2.3.1. A Bayesian thresholding approach

The classical soft-thresholding [18,19] estimates the noise-free coefficient value as

(6)

o osgn(w;)(Jwg| = T), if |Jw;| > T
Yi=1 o, otherwise.

Chang et al [31] found experimentally that under the prior (1), the threshold value that minimizes the minimum
mean squared error is
T=o0,/0" (7)

For the classical soft-thresholding with a uniform threshold per subband, the above threshold selection yields for
natural images the best results both in terms of mean squared error and visually (for details, see [31]).
2.3.2. A Bayesian spatially adaptive shrinkage approach

For spatially adaptive shrinkage, we use here our recent method from [17,32], which shrinks each wavelet co-
efficient according to probability that it represents a “signal of interest”. We define this signal of interest as a
significant noise-free coeflicient component, the magnitude of which is above a certain threshold. The estimate
how probable it is that a coefficient represents a “signal of interest” we rely on three sources:

e the coeflicient value wy,

e a local spatial activity indicator (LSAI) defined as the locally averaged coefficient magnitude in a small
window 6(1): 21 = > jc50) lwi| and

e the global statistical distribution of the coefficients in a given subband.



If we define two hypotheses H; - “signal of interest is present: |y| > T ” and Hj - “signal of interest is absent:
ly| <T7, our shrinkage estimator from [17] is
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and where p(w;|Hy) and p(w;|H;) denote the conditional probability density functions of the noisy coefficients
given the absence and given the presence of a signal of interst. Similarly, p(z;|Hp) and p(z;|H;) denote the
corresponding conditional probability density functions of the local spatial activity indicator.

We estimate the required ratios p, & and 7; directly from the observed image coefficients. In particular, for
the prior (1), with v = 1, the conditional densities of noise-free coefficients are

Agexp(=Aly|¥) if y <T,
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where it is straightforward to show that Ay = (A/2)e*T/(e’T — 1) and A; = (A/2)e*. Since the additive
white noise model w = y + ¢, with € ~ N(0,0?) is assumed, the densities of noisy coefficients p(w|Hy) and
p(w|Hy) result from convolving the normal density N(0,02) with p(y|Hg) and with p(y|H;), respectively. One
can carry out the above described procedure numerically. We derived analytical expressions in [32]. Further on,
we simplify the statistical characterization of z; considerably assuming that all the coefficients within the small
window are equally distributed and conditionally independent. With these simplifications, and if we denote the
coefficient magnitude by m; = |w;|, we have that f(Nz|H;) is given by N convolutions of f(my;|H;) with itself
and f(Nz|Hp) is given by N convolutions of f(my|Hy) with itself, where p(m;|Ho 1) = 2p(wi|Ho.1), my > 0.

Finally, we estimate the prior ratio p = P(Hy)/P(Hy) as follows. Starting from P(H;) = f__i p(y)dy +
J1 p(y)dy, for the prior (1) we derive [30,32]

Py ! ~Tine (AT, 1)
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where T'jpe(z,a) = F(la) fow t*le~tdt is the incomplete gamma function. For the Laplacian prior, with v = 1, the

previous expression reduces to

P(H))  exp(-AT)
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An extensive analysis of the proposed method is in [30,32], where we show that the optimal value of the threshold
in terms of the mean squared error is T' = ¢, and we also show that on standard test images the proposed method
yields results that are currently among the best reported.

Our method is implemented with the generalized Laplacian prior. The Laplacian prior (v = 1), yields on still
images minor performance degradation. Usually, the peak signal to noise ratio (PSNR) drops for 0.1 to 0.3dB..

3. TEMPORAL FILTERING

In video denoising literature it is well known that spatial denoising alone produces annoying artifacts and
unsatisfactory video quality [1]. This holds even in case where a sophisticated wavelet domain denoising method
is used for spatial filtering [17]. The main reason is that the residual noise and denoising artifacts differ from
frame to frame causing in this way an unpleasant “flickering” effect. In the proposed video denoising scheme
(Fig. 1), a temporal filter suppresses the residual noise and artifacts produced by the 2-D wavelet domain filter.



3.1. A selective recursive temporal filter

In the sequential spatio-temporal denoising scheme from Fig. 1, motion detection and temporal filtering are
performed over spatially denoised frames. The realization of a motion adaptive temporal filter here benefits
from the use of a high-quality spatial denoising. After 2-D wavelet denoising, the inter-frame differences due to
remaining noise (and due to artifacts and degradations) are relatively small as compared to the actual inter-frame
differences produced by motion and by changes of the video content in time. Due to this, the motion detector
in the analyzed scheme can be quite simple, yet efficient.

We use a pixel-based motion detector and we switch off the recursive filtering at those positions (in space
and time) where motion is detected. A formal description follows.

Let f* denote the k-th frame of a noise-free video sequence and d* = f* + n* the corresponding noisy frame,
where n* is the noise field. Further on, let

P20k = [fEDF, . fiPh (14)

denote the k-th 2-D denoised frame. Define the motion field m* = [m%, ..., m¥] of the k-th frame with respect
to the previous frame as follows

° mf = 0 if there is no (significant) motion from the frame k — 1 to the frame k at the spatial position I,
meaning that ff ~ flkfl.

° mf = 1 if there is motion from the frame k — 1 to the frame k at the spatial position [/, meaning that fl’c
and fffl differ significantly.

We estimate this motion field from the denoised frames as

e 1 2Dk £3Dk—1
mk _ { 07 if |fl = | < Ta (15)
! 1, otherwise,

where T is the motion threshold. At the spatial positions where no motion was detected (méC = 0), we apply
recursive time averaging fl?’D’k =« Z2D’k +(1—-a) ZSD’kfl, with 0 < a < 1. At positions where motion is
detected, the temporal filtering is switched off and the spatially filtered value is kept: fl?’D’k = fZQD’k. Thus the

3-D filtered pixel intensity is:
3D,k 22D,k 3D, k—1 22D,k
1 = (1-m})la 1 + (1 —a)f; |+ my P (16)

Note that this recursive filter accumulates and averages the pixel intensities at a given position from all the
previous frames if the motion was not present at that position. The detection of a motion resets the filter.

3.2. Experimental parameter optimization

The above described motion-adaptive recursive temporal filter involves two parameters: the motion threshold
T and the weighting factor « for the recursive filtering. To keep the method simple, here we shall use fixed
parameter values. We optimize jointly («,T) to provide a robust and good denoising performance for a range of
noise levels and for different types of sequences.

As the optimization criterion, we choose here to maximize the mean PSNR gain that the complete filter
achieves over 2-D spatial filtering alone. According to this criterion, we optimize the parameters experimentally.
We used four representative sequences (flower, miss America, salesman and tennis) and each of these was
corrupted with three different noise levels (standard deviations ¢ = 10, 15 and 20). For each of these 12 noisy
sequences we ran simulations with 2-D filtering only and with the spatio-temporal filtering for different («, T)
pairs. The range of o values was 0 to 1 with the step 0.1 and the range of T values was 5 to 25 with the step
5. For each pair (a,T) and for each of the 12 sequences we calculate the mean PSNR gain of the temporal
filter with respect to spatial filtering alone. Several examples illustrating the mean PSNR gain as a function of
a and T are shown in Fig. 2. By averaging («,T) values which yielded the maximum PSNR gain on different
sequences, we got the following values: o = 0.6 and T = 23. We used these values for all the subsequent results
in this paper.
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Figure 2. Examples showing mean PSNR gain of the temporal filtering part, as a function of the parameters o and T

4. RESULTS AND DISCUSSION
4.1. Implementation with a non-decimated wavelet transform

Here we present the results of the proposed method implemented with a non-decimated wavelet transform with
4 decomposition levels. The wavelet used is symmlet [25,26] with eight vanishing moments. We abbreviate
the proposed sequential wavelet domain and temporal filtering as seqwt. Its implementation with the spatially
adaptive wavelet shrinkage (Section 2.3.2) is abbreviated by seqwt-sas and the implementation with the simple
wavelet thresholding (Section 2.3.1) is abbreviated by seqwt-thr.

We used four test sequences Miss America, salesman, tennis and flower, each of which was corrupted by
additive white Gaussian noise with standard deviations o = 10, 15 and 20. Fig. 3 illustrates resulting PSNR, of
the proposed method in comparison with three recent filters: 3-D rational filter (3D rational) [3] , 3-D K-Nearest
Neighbors filter (3D knn) [5] and the Motion Compensated Wavelet based filter (mcw) of [16]. The results
demonstrate a significant improvement of the new filter over all the other tested ones. In terms of visual quality,
the proposed filter also outperforms the reference filters from [3,5,16] on all test sequences. This is illustrated
with three examples in Fig. 4, Fig. 5 and Fig. 6. The advantage of the new filter is even more evident when
viewing video.

Fig. 3 compares also the performance of two versions of the analyzed sequential scheme: (1) with spatially
adaptive wavelet shrinkage (sequt-sas) and (2) with soft-thresholding (sequwt-thr). The performance degradations
that result from replacing spatially adaptive wavelet shrinkage by simple wavelet thresholding depend on the
sequence content. On some sequences, the PSNR decrease is less than 0.3dB (see flower in Fig. 3(a)). On other
sequences, the PSNR drops even more than 1.5dB (e.g., last 50 frames of tennis in Fig. 3(b)). Our experiments
showed that the corresponding degradations of visual quality are significant.

4.2. Implementation with orthogonal transform

Now we apply 2-D wavelet denoising in the orthogonal wavelet representation instead of using the non-decimated
one and we investigate the resulting performance degradations of the proposed 3-D filter. In case of 2-D wavelet
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Figure 3. Quantitative performance of the proposed sequential wavelet domain and temporal filtering in comparison
with other recent video filters. sequwt-sas: the proposed method with spatially adaptive wavelet shrinkage; sequt-thr: a
simplification of the proposed method using wavelet thresholding; mcw [16]; 3D knn [5] and 3D rational [3]. Sequences
(a) flower, o = 20, (b) tennis, o = 15, (¢) salesman, o = 15 and (d) miss America, o = 10.

domain filtering alone the performance degradations that result from using an orthogonal transform instead of a
non-decimated one are usually ~1dB (see e.g., [22,30]). In the proposed 3-D denoising scheme the corresponding
degradations are smaller because the temporal filtering part reduces the artifacts of the wavelet domain filter.

In order to use the classical orthogonal wavelet transform, we cropped the frame sizes in each direction to
the closest size that is a power of two. We used spatially adaptive shrinkage from Section 2.3.2. PSNR values
for three test sequences are shown in Fig. 7. The results demonstrate that degradations imposed by using the
orthogonal wavelet transform range from 0.25dB to 0.8dB on different test sequences. Visual differences in case
of temnis and flower sequences are difficult to notice. For the salesman sequence the differences are clearly
visible only when viewing the video sequence. Our experiments also showed that visual quality degrades less by



Figure 4. (a) A noise-free frame of the flower sequence. (b) Noisy frame, o = 20. (c) The result of the 3-D rational filter
of [3]. (d) The result of the proposed sequt-sas filter.

removing the redundancy of the wavelet representation than in the case where spatially adaptive shrinkage is
replaced by thresholding in a redundant representation.

5. CONCLUSION

We developed a sequential spatio-temporal scheme for video denoising, where 2-D wavelet denoising is followed
by selective recursive temporal filtering. To achieve a high-quality video denoising, we used a non-decimated
wavelet transform and a spatially adaptive wavelet shrinkage method. The parameters of the temporal filter were
optimized to maximize the mean PSNR gain for different test sequences. The proposed scheme outperforms tested
single-resolution and wavelet domain spatio-temporal filters both in terms of PSNR and visually.

We also investigated performance degradations that result from making the wavelet domain filtering part less
complex, by removing the redundancy of the representation and by replacing spatially adaptive shrinkage method
by soft-thresholding. The latter simplification degrades the performance significantly on some test sequences. We
conclude that the use of a sophisticated spatially adaptive wavelet denosing is essential in the analyzed scheme.

Further improvements are expected from using a more sophisticated recursive temporal filter. One possibility
in this respect is Kalman filtering, like in [11]. Further research will be done towards integrating the recursive
temporal filter in the wavelet domain.
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