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Abstract

Several recent wavelet denoising methods use priors that are mixtures of two
truncated Laplacian-shaped distributions, where a Bernoulli random variable
controls switching between the central part of the distribution (describing the
“insignificant” data) and its tails (describing the so-called “signal of interest”).
The existing works combine this prior with heuristic shrinkage rules, and in this
paper we derive the minimum mean squared error (MMSE) estimator. The de-
rived expressions generalize previous related MMSE estimators under Laplacian
priors and point out a new relationship between the asymptotic behavior of these
estimators and the soft-thresholding. The new results also enable a comparison
and demonstrate potentials of Bernoulli-Laplacian priors with respect to more
common Bernoulli-Gaussian (normal-mixture) priors.

1 Introduction

A Bayesian estimator assumes a prior distribution for the quantity being estimated.
For sparse signal representations, like the wavelet domain, effective priors include mix-
tures of two distributions where one distribution models the statistics of “significant”
coefficients and the other distribution models the statistics of “non-significant” coeffi-
cients [1–7], with a Bernoulli random variable mixing the two distributions. Examples
are the mixture of two normals [1], the mixture of a normal and point mass at zero [2–5]
and the mixture of a Laplacian and point mass at zero [6, 7]. We address related, but
somewhat different priors that are mixtures of two truncated (Laplacian) densities and
that appear in several recent multiresolution denoising papers and books, like [8–11].
In this approach, the distribution of significant coefficients is defined by tails of a (gen-
eralized) Laplacian and the distribution of nonsignificant coefficients by the remaining
central part of the distribution (scaled to integrate one). We call this prior Bernoulli-
Laplacian (B-L). The existing works used B-L prior within a heuristic shrinkage rule
only, which prevented its fair comparison to other, more common priors in Bayesian
denoising.

This paper derives the minimum mean squared error (MMSE) solution under the
B-L prior, and it also generalizes some of the previous results on MMSE estimation
under Laplacian priors and Laplacian mixture priors from [6, 7]. The paper has two
main objectives. First, it searches a justification for rather heuristical shrinkage rules
adopted in [8–11] and also gives the expressions which enable direct upgrading (re-
stating) these methods within the MMSE criterion. Secondly, this paper also shows
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that the B-L model leads to a wavelet shrinkage rule which behaves as a sort of soft
thresholding for large coefficients. From a practical point of view in image denoising,
we show experimentally that the B-L mixture prior yields a better mean squared error
performance than more common normal mixtures [1] and mixtures of a Laplacian and
point mass at zero [7].

2 Problem outline

Consider a classical problem of estimating the unknown digital signal βi (i = 1...n)
from the measurement noise εi, where the observations are

yi = βi + εi, i = 1, ..., n (1)

and the noise samples εi are independent identically distributed normal random vari-
ables εi ∼ N(0, σ2). We assume the unknown noise-free signal is sparse and well
modelled by a Laplacian distribution, which is a typical problem in wavelet domain
image denoising [12]. If the input noise is additive white Gaussian, then (1) holds in
each wavelet subband provided that the wavelet transform [13,14] is orthogonal.

Let φ(ε; σ2) denote the zero-mean normal density of variance σ2. The MMSE solu-
tion of (1), which minimizes the squared risk function, is the conditional mean [15]

E(β|y) =

∫ ∞
−∞ βf(y|β)f(β)dβ
∫ ∞
−∞ f(y|β)f(β)dβ

=

∫ ∞
−∞ βφ(y − β; σ2)f(β)dβ
∫ ∞
−∞ φ(y − β; σ2)f(β)dβ

(2)

where f(β) is the probability density function of β (to be called hereafter density
and also prior for β) and f(y|β) is the conditional density of y given β. Denote
the hypothesis “signal component appears in the observed coefficient with significant
energy” by H1 and the opposite hypothesis by H0. This unifies different mixture priors
from [1–11] as f(β) = P (H0)f(β|H0) + P (H1)f(β|H1) and the corresponding MMSE
estimate of β is

E(β|y) = E(β|y,H0)P (H0|y) + E(β|y,H1)P (H1|y). (3)

The Bayes’ rule yields P (H1|y) = µη/(1 + µη) where µ = P (H1)/P (H0) is the prior
ratio (i.e., prior odds) and η = f(y|H1)/f(y|H0) is the likelihood ratio, also called Bayes
factor. The mixture prior of [8–11] states

H0 : |β| ≤ T and H1 : |β| > T (4)

where T is a threshold that defines the signal of interest. The corresponding mixture
densities f(β|H0) and f(β|H1) are truncated Laplacians (rescaled in order to integral

one). This prior appeared previously with a heuristic estimator β̂ = P (H1|y)y and its
spatially adaptive extensions. In [9, p.154], this rule that we call ProbShrink, has been
described as posterior expected hard thresholding.

In this paper, we show that the ProbShrink rule can be interpreted as an approxi-
mative MMSE and we also derive the exact MMSE estimator under the corresponding
prior. The noise standard deviation will be, as is conventional, estimated from the
median of the absolute values of the coefficients at the highest level [7, 16]. We shall
not consider the specification of the the threshold T and the prior probability P (H1)
because these issues have already been addressed elsewhere. In particular, the thresh-
old T was in [8–11] chosen as T = σ motivated by the oracle reasoning by Donoho and
collaborators. The prior probabilities of the two hypotheses, have been analyzed in
different forms: fixed per subband [1,11] or spatially varying, based on hidden Markov



modelling (HMM) [17], Markov Random Field (MRF) modelling [8–10, 18] or local
spatial/spectral activity indicators [11]. We shall present here denoising results for the
case where P (H1) is fixed per subband, but notice that the derived expressions can
be in the same way combined with more complex, spatially adaptive prior probabili-
ties. For example, the expressions we derive here can be “plugged” into the spatially
adaptive MRF-based approaches of [8,10] and spatially adaptive denoiser based on the
same prior from [11] to restate these methods within the MMSE criterion.

3 The least squares estimator under B-L prior

As discussed above, our estimator is determined by the conditional means E(β|y,H0)
and E(β|y,H1) and the Bayes factor η under the B-L prior. First, we normalize the
noise standard deviation to σ = 1.

Proposition 1 Assume the wavelet coefficients in a given subband follow model
(1) with σ2 = 1, i.e., yi = βi + εi, i = 1, ..., n, where εi are i.i.d. N(0, 1). Also,
assume that the noise-free coefficients βi are i.i.d. Laplacian random variables f(β) =
(λ/2) exp(−λ|β|) and define the hypotheses H0 and H1 as in (4): H0 : |β| ≤ T and H1 :
|β| > T . Let φ(y) and Φ(y) denote the probability density function and the cumulative
distributions of the standard normal distribution N(0, 1) and define Ψ(a; t) = Φ(a +
t) − Φ(t).

The conditional mean of β given y under H1 (the signal of interest is present) is

E(β|y,H1) = y − λr−(y; λ; T ) − e−(T 2/2+λT )(eTy − e−Ty)/
√

2π

r+(y; λ; T )
(5)

where
r+(y; λ; T ) = e(y−λ)2/2Φ(y − λ − T ) + e(y+λ)2/2Φ(−y − λ − T )

r−(y; λ; T ) = e(y−λ)2/2Φ(y − λ − T ) − e(y+λ)2/2Φ(−y − λ − T ).

The conditional mean of β given y under H0 (the signal of interest is not present) is

E(β|y,H0) = y − λρ−(y; λ; T ) + e−(T 2/2+λT )(eTy − e−Ty)/
√

2π

ρ+(y; λ; T )
(6)

where
ρ+(y; λ; T ) = e(y−λ)2/2Ψ(λ − y; T ) + e(y+λ)2/2Ψ(λ + y; T )

ρ−(y; λ; T ) = e(y−λ)2/2Ψ(λ − y; T ) − e(y+λ)2/2Ψ(λ + y; T ).

The conditional densities of noisy coefficients are f(y|H0) = A0

√
2πφ(y)ρ+(y; λ; T ) and

f(y|H1) = A1

√
2πφ(y)r+(y; λ; T ), with A0 = (λ/2)eλT /(eλT − 1) and A1 = (λ/2)eλT ,

and the likelihood ratio is

η =
f(y|H1)

f(y|H0)
= (eλT − 1)

r+(y; λ, T )

ρ+(y; λ, T )
. (7)

Proof: See Appendix.

A subband-adaptive formulation for P (H1) from [11] is P (H1) = 1−
∫ T

−T
f(β)dβ =

exp(−λT ). In this case, for T = 0 our estimator reduces to E(β|y) = E(β|y,H1) =
y − λr−(y; λ, 0)/r+(y; λ, 0), which is the MMSE estimate under the Laplacian prior
from [6].

For arbitrary σ (see the bottom of Appendix) we have

E(β|y,H1) = y − σ2λr−(y/σ; σλ; T ) − σe−(T 2/2+σλT )(eTy/σ − e−Ty/σ)/
√

2π

r+(y/σ; σλ; T )
. (8)

and the conditional mean is E(β|y) = y − σ2λr−(y/σ; σλ, 0)/r+(y/σ; σλ, 0).



4 Results and Discussion

The following analysis of the derived estimator yields two interesting results: (1) we es-
tablish a new relationship between the MMSE estimators under (Bernoulli-)Laplacian
priors and the classical soft-thresholding and (2) we explicitly expose the approxima-
tions that relate the intuitive probabilistic shrinkers of [8–11] to the MMSE estimator
under the same prior.

The conditional means E(β|y,H1) and E(β|y,H1) are illustrated in Fig. 1. For
large |y|, E(β|y,H0) approaches +T (when y > 0) or −T (when y < 0). We observe
that the values of E(β|y,H1) for large |y| do not depend on the value of T and that
E(β|y,H1) tends to the soft-thresholding estimates. It has been shown before that
the maximum a posteriori (MAP) estimator under the Laplacian prior is equivalent to
soft-thresholding with the threshold σ2λ [12, 19]. The following proposition describes
a similar result for the MMSE estimator of large magnitude coefficients.

Proposition 2 For large |y|, E(β|y,H1) and E(β|y) approach the MAP estimate of
β, i.e.,

lim
|y|→∞

E(β|y,H1) = lim
|y|→∞

E(β|y) = sgn(y)(|y| − σ2λ) (9)

Proof : This follows from (8) if we note that limy→∞ Φ(y−λ−T ) = limy→−∞ Φ(−y−
λ − T ) = 1, and limy→−∞ Φ(y − λ − T ) = limy→∞ Φ(−y − λ − T ) = −1, which yields
limy→±∞ r−(y; λ; T )/r+(y; λ; T ) = ±1 and limy→±∞(eTy−e−Ty)/r+(y; λ; T ) = 0. Notice
that this asymptotic behavior has a practical importance because it is achieved already
at moderately high coefficient values (see Fig. 1).

The derived MMSE solution and the illustration of the conditional means in Fig. 1
allow also a new interpretation of the so-called ProbShrink rule from [11]: β̂ = P (H1|y)y
and the related shrinkers of [8–10]. Obviously, the ProbShrink estimator can be inter-
preted as an approximation of the MMSE estimate, which follows from the simplifi-
cations: P (H0|y)E(β|H0, y) ∼= 0 and E(β|H1, y) ∼= y. Fig. 1) shows that E(β|H0, y)
is close to zero for relatively small y. For large y, the product P (H0|y)E(β|H0, y)
again tends to zero because E(β|H0, y) is confined to finite values ±T , while (7) yields
lim|y|→∞ P (H0|y) = lim|y|→∞ 1/(1 + µη) = 0 for any non-zero prior ratio µ. Fig. 1
also illustrates that the simplification, E(β|H1, y) ∼= y is reasonable for relatively small
y, while for larger magnitudes (|y| > σ2λ) a more accurate linear approximation is
E(β|H1, y) ∼= sgn(y)(|y| − σ2λ).

The proposed prior has two parameters: threshold T and the scale parameter λ of
the underlying Laplacian model. As explained in Section 2 we use T = σ and the scale
parameter is estimated in each subband [10]: λ = [0.5(σ2

y − σ2)]−1/2, where σ2
y is the

variance of the noisy coefficients.
Table 1 lists experimental peak-signal-to-noise ratio (PSNR) results for several

shrinkers under two mixture priors: the analyzed Bernoulli-Laplacian (B-L) prior and
the two-normals mixture of [1], that we denote here as Bernoulli-Gaussian (B-G):
f(β) = P (H1)φ(β; σ1) + P (H0)φ(β; σ2). A standard wavelet denoising procedure was
applied: the noisy images were decomposed using a five-level orthogonal wavelet trans-
form with the Daubechies’ wavelet symmlet with eight vanishing moments [13]. In
each wavelet subband the noise-free wavelet coefficients were estimated using the cor-
responding shrinkers for each of the analyzed methods. The inverse wavelet transform
was applied to reconstruct the denoised image. The parameters of both priors were cal-
culated adaptively for each subband. For the B-L prior we used the subband-adaptive
formulation [11] P (H1) = 1− (λ/2)

∫ σ

−σ
exp(−λ|β|)dβ = exp(−λσ). For the B-G prior,

we used the default estimation of the hyperparameters from [1]. Several conclusions can
be drawn from the results in Table 1. Compared to the MMSE estimator, ProbShrink
under the same prior yields a minor performance loss (usually less than 0.1dB). For the
MAP estimator this performance loss is up to 0.3dB. The results also demonstrate that



Figure 1: An illustration of E(β|y,H0) and E(β|y,H1) at the finest resolution scale
for different T . For large y the conditional mean under H1: E(β|y,H1) tends to the
soft-thresholding function with the threshold σ2λ.

the Bernoulli-Laplacian prior yields a significant improvement with respect to the two-
normals mixture, which is often higher than 1dB. The difference in the performance of
our method when using the estimated σ versus a priori known σ is negligible (on the
tested images 0.01 to 0.1dB).

Table 2 compares the performance of the analyzed prior with the mixture of a Lapla-
cian and point mass at zero (here denoted as B-L-PM prior) from [7]. The posterior
mean and the posterior median estimators under this prior were shown to outperform
a range of other estimators on one dimensional (1-D) signals and are currently used as
benchmarks for 1-D signal denoising. We used EBayesThresh software available online
from authors of [7] and ran simulations on four standard test signals: Blocks (blk),
Bumps (bmp), Doppler (dop) HeaviSine (hea). The squared errors for each estimator
were averaged over 100 replications of 512-point signals. Like in [7], for “low noise”
the ratio of the standard deviations of noise and signal is 1/7; for “high noise” this
ratio is 1/3. The posterior mean outperforms the posterior median which agrees with
the conclusions of [7]. In all cases except Blocks with low noise level, the proposed
estimator achieves the smallest error. The gain of the new estimator is bigger for the
higher noise level. Notice that the B-L-PM prior can be seen as a special case of our
prior, for T = 0.

5 Conclusion

We developed the MMSE estimator for the so-called Bernoulli-Laplacian mixture prior,
which has been used in several earlier denoising methods, but combined with other,
more intuitive wavelet shrinkers. Here derived results enable an interpretation and
also a direct extension of these earlier methods within a well-established mean-squared
error criterion. Our results also generalize some of the previous results on MMSE
estimation with Laplacian priors, which can be seen as limiting cases in our approach.
We also demonstrated a significant potential of Bernoulli-Laplacian priors as compared
to the more common mixtures of two normals and mixtures of Laplacian and point
mass at zero. It should be interesting to investigate, in a future work, polynomial
approximations of the developed estimator.



6 Appendix: Proof of the proposition 1

Under the assumed Bernoulli-Laplacian prior, we have with A0 = (λ/2)eλT /(eλT − 1)
and A1 = (λ/2)eλT . We write

E(β|y,H1) =
KH1(y; λ, T )

mH1(y; λ, T )
and E(β|y,H0) =

KH0(y; λ, T )

mH0(y; λ, T )
(10)

f(β|y,H1) = A1mH1(y; λ, T ) and f(β|y,H0) = A1mH0(y; λ, T ) (11)

where

mH1(y; λ, T ) =

∫ −T

−∞
eλβφ(y − β)dβ +

∫ ∞

T

e−λβφ(y − β)dβ

KH1(y; λ, T ) =

∫ −T

−∞
βeλβφ(y − β)dβ +

∫ ∞

T

βe−λβφ(y − β)dβ

mH0(y; λ, T ) =

∫ 0

−T

eλβφ(y − β)dβ +

∫ T

0

e−λβφ(y − β)dβ

KH0(y; λ, T ) =

∫ 0

−T

βeλβφ(y − β)dβ +

∫ T

0

βe−λβφ(y − β)dβ. (12)

On a nonnegative interval [a, b], one can verify [6]

I(y; a; b, λ) =

∫ b

a

e−λβφ(y − β)dβ =
√

2πφ(y)e(y−λ)2/2[Φ(b − y + λ) − Φ(a − y + λ)](13)

II(y; a; b, λ) =

∫ b

a

βe−λβφ(y − β)dβ =
√

2πφ(y)e(y−λ)2/2
[ 1√

2π
e−(a−y+λ)2/2 −

1√
2π

e−(b−y+λ)2/2 + (y − λ)
(

Φ(b − y + λ) − Φ(a − y + λ)
)]

. (14)

Using these identities, we find

mH1(y; λ, T ) = I(y; T,∞, λ) + I(−y; T,∞, λ) =
√

2πφ(y)r+(y; λ; T ) (15)

and

KH1(y; λ, T ) = II(y; T,∞, λ) − II(−y; T,∞, λ) =

√
2πφ(y)

[ 1√
2π

e
−
(

T2

2
+λT

)

(

eTy − e−Ty
)

+ yr+(y; λ; T ) − λr−(y; λ; T )
]

(16)

where

r+(y; λ, T ) = e(y−λ)2/2Φ(y − λ − T ) + e(y+λ)2/2Φ(−y − λ − T )

r−(y; λ, T ) = e(y−λ)2/2Φ(y − λ − T ) − e(y+λ)2/2Φ(−y − λ − T ). (17)

Substituting (15) and (16) into (10) yields E(β|y,H1) from (5).



Table 1: Experimental PSNR[dB] results of several Bayesian wavelet shrinkers and
two different mixture priors: Bernoulli-Laplacian (B-L) prior and Bernoulli-Gaussian

(B-G) prior from [1], which is a mixture of two-normals. Wavelet type: Daubechies’
least asymetrical wavelet with eight vanishing moments.

Standard deviation of noise Standard deviation of noise

Prior Estimator 10 15 20 25 10 15 20 25

BOAT LENA

noisy image 28.15 24.62 22.10 20.17 28.13 24.60 22.12 20.16

B-L MAP 32.00 29.92 28.42 27.37 33.43 31.47 30.18 29.23

B-L ProbShrink [11] 32.13 30.05 28.63 27.63 33.69 31.70 30.39 29.41

B-L MMSE 32.23 30.14 28.70 27.70 33.62 31.65 30.39 29.41

B-G [1] MMSE 31.01 29.04 27.66 26.68 32.84 30.97 29.66 28.74

Now we introduce Ψ(a; T ) = Φ(a + T ) − Φ(a), to express

mH0(y; λ, T ) = I(y; 0, T, λ) + I(−y; 0, T, λ) =
√

2πφ(y)ρ+(y; λ; T ) (18)

and

KH0(y; λ, T ) = II(y; 0, T, λ) − II(−y; 0, T, λ) =

√
2πφ(y)

[

− 1√
2π

e
−
(

T2

2
+λT

)

(

eTy − e−Ty
)

+ yρ+(y; λ; T ) − λρ−(y; λ; T )
]

(19)

where

ρ+(y; λ, T ) = e(y−λ)2/2Ψ(λ − y; T ) + e(y+λ)2/2Ψ(λ + y; T )

ρ−(y; λ, T ) = e(y−λ)2/2Ψ(λ − y; T ) − e(y+λ)2/2Ψ(λ + y; T ). (20)

Substituting (18) and (19) into (10) yields E(β|y,H0) from (6). Finally, the conditional
densities of noisy wavelet coefficients are f(y|H0) = A0mH0(y; λ, T ) and f(y|H1) =
A1mH1(y; λ, T ), with A0 = (λ/2)eλT /(eλT − 1) and A1 = (λ/2)eλT , which yields
η = f(y|H1)/f(y|H1) from (7). This completes the proof of Proposition 1. � For
arbitrary σ, we replace the integrals I(y; a, b, λ) and II(y; a, b, λ) from (13),(14) by

I(y; a, b, λ, σ) and II(y; a, b, λ, σ), resp., where I(y; a, b, λ, σ) =
∫ b

a
e−λβ 1

σ
√

2π
e−

(y−β)2

2σ2 dβ

and II(y; a, b, λ, σ) =
∫ b

a
βe−λβ 1

σ
√

2π
e−

(y−β)2

2σ2 dβ and use the change of variable β ′ = β
σ
.

References

[1] H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch, “Adaptive Bayesian wavelet shrinkage,”
J. of the Amer. Statist. Assoc, vol. 92, pp. 1413–1421, 1997.

[2] F. Abramovich, T. Sapatinas, and B. Silverman, “Wavelet thresholding via a Bayesian approach,”
J. of the Royal Statist. Society B, vol. 60, pp. 725–749, 1998.

[3] M. Clyde, G. Parmigiani, and B. Vidakovic, “Multiple shrinkage and subset selection in wavelets,”
Biometrika, vol. 85, no. 2, pp. 391–401, 1998.



Table 2: Sums of squared errors, averaged over 100 replications of 512 point signals.
The wavelet transform is four-level orthogonal. The maximum standard deviation of
entries given columnwise.

LOW NOISE HIGH NOISE

Prior Estimator blk bmp dop hea blk bmp dop hea

B-L ProbShrink (MMSE) 16.03 2.59 0.37 12.82 72.47 11.35 1.36 48.32

B-L-PM [7] PostMean (MMSE) 14.81 2.60 0.42 13.46 90.06 12.46 1.55 51.93

B-L-PM [7] PostMedian 17.41 3.25 0.52 13.98 107.84 15.53 1.84 50.42

maximum standard deviation 3.68 0.60 0.09 3.14 19.30 2.15 0.26 9.27

[4] B. Vidakovic, “Wavelet-based nonparametric Bayes methods,” in Practical Nonparametric and
Semiparametric Bayesian Statistics, ser. Lecture Notes in Statistics, D. D. Dey, P. Müller, and
D. Sinha, Eds., vol. 133. Springer Verlag, New York, 1998, pp. 133–155.

[5] A. Benazza-Benyahia and J.-C. Pesquet, “Building robust wavelet estimators for multicomponent
images using Steins’ principle,” IEEE Trans. Image Proc. (in press).

[6] M. Hansen and B. Yu, “Wavelet thresholding via MDL for natural images,” IEEE Trans. Inform.
Theory, vol. 46, no. 5, pp. 1778–1788, Aug. 2000.

[7] I. Johnstone and B. Silverman, “Empirical Bayes selection of wavelet thresholds,” Annals of
Statistics, vol. 33, no. 4, pp.1700-1752, 2005.

[8] M. Jansen and A. Bultheel, “Empirical Bayes approach to improve wavelet thresholding for image
noise reduction,” J. Amer. Stat. Assoc., vol. 96, no. 454, pp. 629–639, 2001.

[9] M. Jansen, Noise Reduction by Wavelet Thresholding, Springer-Verlag, New York, 2001.
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