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ABSTRACT

We propose in this paper an efficient and fast wavelet based
technique for speckle removal from SAR images. It relies on
realistic distributions of the wavelet coefficients which
represent mainly speckle noise on the one hand and those that
represent the useful signal corrupted by speckle on the other.
We propose analytic models for these distributions, and
compute their parameters automatically from a given SAR
image. The resulting algorithm strongly suppresses speckle,
while preserving image details and sharpness.

1. INTRODUCTION

For remote sensing, Synthetic Aperture Radar (SAR) is a very
powerful and attractive tool due to its high spatial resolution.
Yet, automatic interpretation of SAR images is extremely
difficult [1] because of the speckle noise. Speckle affects all
coherent imaging systems and can be regarded as multiplicative
noise. Some standard speckle filters, e.g. [2], yield easily
computable equations but do not preserve fine details in
complex images. A recently proposed method [1] achieves high
performance using Bayes estimation and random fields as
texture models; however, its computational complexity is high.
In order to achieve both high quality denoised images and a fast
computation the wavelet transform [3] is an attractive choice.
Currently, there is a great activity in the area of context-based
and locally adaptive wavelet shrinkage, e.g., [4-7]. In this
respect, we have proposed in [8] a specific form of a spatially
adaptive shrinkage factor as a function of two variables: the first
variable is the ratio of the likelihood’s of the magnitude of the
wavelet coefficient given noise and given useful edges,
respectively; the second variable is derived from a spatial
surrounding in a binary mask that indicates the estimated edge
positions. The likelihood model was heuristic and
parameterized.

In this paper, we further extend and improve this approach.
Instead of using a heuristic likelihood model, we determine
empirically the actual statistical distribution of the wavelet
coefficients representing mainly noise and of those representing
useful edges. Practically, we compute their histograms in the
areas indicated by the corresponding mask. For SAR images,
we notice the following useful property: the magnitudes of the
wavelet coefficients representing mainly noise follow well

scaled exponential distribution; the magnitudes of the wavelet
coefficients representing mainly useful signal follow well scaled
Gamma distribution. The parameters of these distributions are
easily computed from the corresponding histograms. The results
demonstrate the effectiveness of this approach for despeckling
SAR images.

2. ADAPTIVE SHRINKAGE METHOD

Let us denote by wl, j ,D the observed value of the wavelet
coefficient at spatial position l, at the resolution scale 2 j, in the
detail image with orientation D. The corresponding true,
unknown value that we want to estimate is y l, j ,D. We assume
the redundant wavelet decomposition, with equal number of
wavelet coefficients at all scales. In particular, we use the
decomposition with spline wavelets from [9], resulting in two
detail images at each scale. For the sake of clarity, we shall
omit the orientation index D, and the scale index j unless in
cases where it is explicitly needed. With each detail image
w={w1,…,wL} we associate a mask x={x1,…,xL} of binary
labels, where xl = 0 if wl represents mainly noise, and xl = 1 if wl

represents useful signal. Estimated values of these binary labels
will be denoted by lx̂ . Finally, the magnitude of the wavelet

coefficient | wl | will be denoted by ml. The likelihood of ml

given the label value xl will be denoted by p(ml | xl).
To remove noise, we apply wavelet shrinkage lll wqy =ˆ ,

where 0� ql �� is the shrinkage factor. In [8], we have proposed
and motivated the following form for ql:
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The parameter γ controls the relative importance given to the
local spatial neighborhood, for which we use the eight nearest
neighbors of each pixel. Our main interest in this paper is to
determine realistic likelihood models p(ml | xl) for SAR images,
and such that their parameters can be easily computed from the
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given image. Realistic conditional densities can be derived by
investigating the histograms of ml in the areas of the detail
image labeled by the same value xl. Practically, we estimate
these densities for each detail image, using the corresponding,
estimated mask.

Let us first introduce the global description of our
algorithm, before we concentrate on its specific aspects. The
global procedure is the following:

1. Compute the redundant wavelet decomposition into N
resolution scales ( j =1…N )

2. Apply a coarse-to-fine denoising procedure: D
N

D
N wy =ˆ  and

for j =1…N

- Estimate the mask using  the observed detail image and
the previously estimated, coarser one

- Estimate the conditional densities p(ml|0) and p(ml|1)
- Apply the shrinkage factor from Eq (1) to each wavelet

coefficient

3. Apply the inverse wavelet transform.

2.1. Mask estimation

For each detail image, we classify the binary labels as follows:
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where σj is the standard deviation of noise at the resolution
scale 2 j; in particular, we compute it as the median absolute
deviation of the coefficients in a given detail image divided by
0.6745. The classification (3) is motivated in the following way:
it is well known that at positions of meaningful image edges the
magnitudes of wavelet coefficients tend to increase through
resolution scales. In contrast, the magnitudes of the wavelet
coefficients representing pure noise rapidly diminish as the
scale increases. This property can be exploited in different ways
to achieve a better classification of wavelet coefficients than
using their magnitudes alone. For the application considered in
this paper, we found that the simple classification (3) is robust
and provides good results.
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Fig.1. From top to bottom: estimated masks for one orientation of details at the resolution scale 2 j  and the corresponding, estimated
likelihood’s p(ml |xl), for the SAR image from Fig.3.
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2.2. Estimation of likelihood functions

Let us denote by }0ˆ,|{0 =∈= lxSllS  and }1ˆ,|{1 =∈= lxSllS

the two subsets of the image field S={1,…n}, containing the
estimated positions of noisy and significant wavelet
coefficients, respectively. We compute the histogram of the
vector }|{ 0Slml ∈=0m , and normalize it (such that the total

area under the curve equals one); this normalized histogram is
the empirical estimate of the density p(ml|0). In the similar way,
p(ml|1) is empirically estimated by computing and normalizing
the histogram of the vector }|{ 1Slml ∈=1m . The empirically

estimated likelihood’s for several detail images of the SAR
image from Fig.3 are shown in Fig.1. By inspecting these
histograms in different detail images and for a number of
different SAR images, we found an interesting result: the
empirically estimated likelihood’s p(ml | 0) and p(ml | 1) can be
well approximated by scaled exponential and Gamma densities,
respectively. More precisely, we use the following analytic form
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In Fig.1, we show these analytic approximations together with
the empirically estimated ones. Use of these analytic
expressions greatly facilitates the computation of the shrinkage
factor. The parameters a and b are computed automatically
during the denoising procedure, by minimizing the mean
squared difference between the normalized histogram and the
sampled analytic approximation.

2.3. Adaptive family of shrinkage functions

Using the likelihood models (4) and (5), one can easily compute
the shrinkage factor ql from Eq (1) for any given value ml. Let
us first examine the shape of the resulting shrinkage function
without the influence of the local spatial neighborhood (i.e., for
ηl =1). We illustrate it in Fig.2.a, (for likelihood models with
a=b=9, as in the top row of Fig.1.), and we compare it with
standard hard- and soft-thresholding functions; in the latter two
cases the threshold was determined as the intersection of

p(ml | 0) and p(ml | 1). One can see that the proposed shrinkage
function suppresses high magnitude coefficients less than the
classical soft-thresholding. This is very important for high-
resolution SAR images, where strong scatterers and the
sharpness of image details should be preserved. In Fig.2.b, and
Fig.2.c, we illustrate the resulting families of shrinkage
functions, when different relative importance γ is given to the
local spatial context.

3. RESULTS AND DISCUSSION

We demonstrate the performance of the proposed method on
three different SAR images. The size of the original image in
Fig. 3 is 400x600 pixels, while in Fig. 4, due to limited space
we show only the parts of other two SAR images. One can see
that speckle noise is efficiently removed, while the sharpness
and tiny details are preserved. The computation is fast, (only
slightly larger than that of the simplest wavelet thresholding
techniques); this is very important, since SAR images may
contain huge amount of data. The method can operate fully
automatically: the only parameter that is not computed directly
from the input image is γ, i.e.,  the relative importance given to
the local spatial context. By qualitative judgement of results for
many different SAR images, we found that the value γ=0.2  was
optimal in all cases; this value was also used for all the results
presented here. For some applications, it might be desirable to
have the possibility of tuning this parameter. Its higher value
(see Fig.2.c) leads to greater smoothing of noise and
background textures, while enhancing the main edges, which
are detected in masks.

To enable an objective comparison with other methods, we
also give the peak-signal-to-noise-ratio (PSNR) values for two
standard test images corrupted by synthetic noise. We have used
the speckle noise model from Matlab: it adds to an image I the
multiplicative noise uI, where u is a uniformly distributed
random variable with zero mean and standard deviation σu.. For
the Cameraman image and σu equal to 15, 25 and 35 the PSNR
values after despeckling are 34.78dB, 31.34dB and 28.84,
respectively. For the Lena image, and the same standard
deviations σu, the resulting PSNR values are 35.73dB, 31.75dB
and 29.35dB, respectively.
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Fig.2. An illustration of the proposed adaptive shrinkage functions, derived from the estimated p(ml |xl) for j=3 from Fig.1. (a) The
resulting shrinkage function for γ=0, in comparison with standard hard- and soft-thresholding functions. (b) and (c) Families of
resulting shrinkage functions, depending on the local spatial context, for γ=0.2 and γ=0.4, respectively.
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4. CONCLUSION

In this paper, we proposed a new and efficient technique for
despeckling SAR images. The main novelty is the use of
realistic distributions of the wavelet coefficients which
represent mainly speckle noise on the one hand and those that
represent the useful signal on the other. We proposed analytic
models for these distributions, and the automatic computation
of their parameters directly from a given SAR image. By
combining these distributions with a simple local model for
spatial context, we obtained a family of adaptive shrinkage
functions for the wavelet coefficients. Its use leads to fast
computation and despeckling with well-preserved image details,
as was demonstrated on different SAR images.
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Fig.4. Parts of original (resolution 1m, source Sandia) and despeckled SAR images. Left: agricultural fields. Right: a city area.

Fig.3. Left: original SAR image showing a horse track, resolution 1m, source Sandia Natioanal Lab. Right: Despeckled image.
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