

Al systems for computer vision: Challenges in high-dimensional and multimodal image analysis

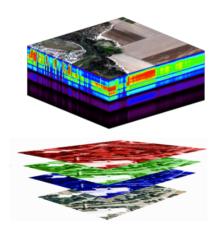
Aleksandra Pižurica

Group for Artificial Intelligence and Sparse Coding (GAIM)
Department Telecommunications and Information Processing
Ghent University

AI FOR PHOTONICS

NB Photonics Topical Meeting
February 5 2021

A Wealth of High-Dimensional Multimodal Data



Remote sensing data (hyperspectral, visible, LiDAR,...)

Digitized paintings (infrared, X-Ray, visible)

Hyperspectral Imaging (HSI) in Earth observation

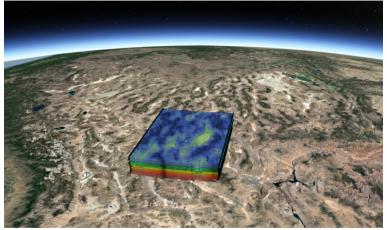


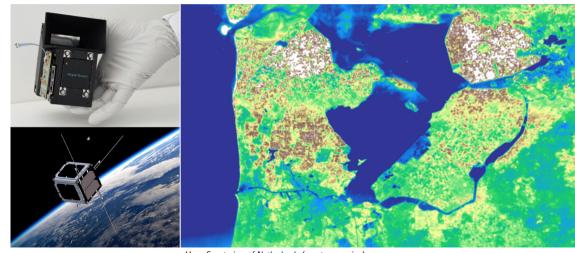
Image credit: Novus Light Technologies Today, December 2018.

HyperScout1 – the first miniaturized hyperspectral imager for space. Launched to an orbit 540km above the Earth. (ESA program, led by Cosine Measurement Systems)

HSI space technology - game changer in environmental monitoring

DLR Earth Sensing Imaging Spectrometer (DESIS) installed on the International Space Station (ISS). Monitors environmental changes on Earth.

"Milk-carton-sized HyperScout making hyperspectral Earth views" Space news feed, 20 May 2020



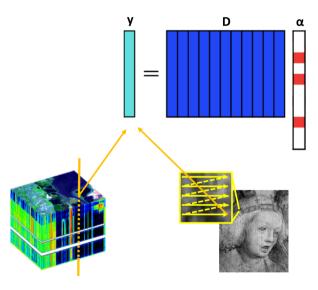
Multimodal data analysis in art investigation

Extracting useful information from multiple modalities, with

- huge data
- imperfect alignment
- scarce annotations
- erroneous annotations

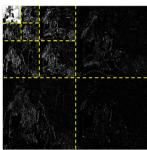
©Ghent, Kathedrale Kerkfabriek, Lukasweb

Sparse representation



Designed vs. Learned Dictionaries

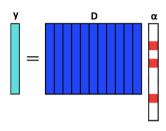
- Designed dictionaries: wavelets, curvelets, shearlets...
 - typically yield sparse representation of signals and images
 - advantages: generic, fast computation



Learned dictionaries

- trained on a set of representative examples
- ▶ goal: optimally sparse representation for a given class of signals

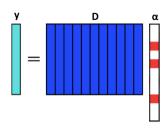
Sparse coding



$$\hat{oldsymbol{lpha}} = rg\min_{oldsymbol{lpha}} \| \mathbf{y} - \mathsf{D}oldsymbol{lpha} \|_2^2 \ \ \ \ \ \ \ \ \ \ \ \| oldsymbol{lpha} \|_0 \leq K$$

$$\hat{\alpha} = \underset{\alpha}{\operatorname{arg\,min}} \frac{\|\alpha\|_0}{\|\alpha\|_0}$$
 subject to $\|\mathbf{y} - \mathbf{D}\alpha\|_2^2 \le \epsilon$

Sparse coding



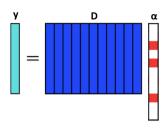
$$\hat{\alpha} = \operatorname*{arg\,min}_{\alpha} \|\mathbf{y} - \mathbf{D}\boldsymbol{\alpha}\|_2^2 \ \ \text{subject to} \ \ \|\boldsymbol{\alpha}\|_0 \leq K$$

$$\hat{\alpha} = \operatorname*{arg\,min}_{lpha} \| \underline{\alpha} \|_0 \quad \text{subject to} \quad \| \mathbf{y} - \mathbf{D} \boldsymbol{\alpha} \|_2^2 \leq \epsilon$$

Greedy algorithms

- Matching Pursuit (MP) [Mallat and Zhang, '93]
- OMP [Tropp, '04], CoSaMP [Needell and Tropp, '09]
- IHT [Blumensath and Davies, 09]

Sparse coding

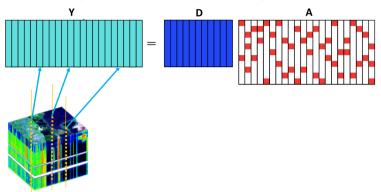


Convex relaxation:

$$\begin{split} \hat{\alpha} &= \arg\min_{\alpha} \| \boldsymbol{\alpha} \|_1 \quad \text{subject to} \quad \| \mathbf{y} - \mathbf{D} \boldsymbol{\alpha} \|_2^2 \leq \epsilon \\ \\ \hat{\alpha} &= \arg\min_{\alpha} \| \mathbf{y} - \mathbf{D} \boldsymbol{\alpha} \|_2^2 + \lambda \| \boldsymbol{\alpha} \|_1 \end{split}$$

LASSO [Tibshirani, '96], BPDN [Chen et al, '01]

Sparse coding and dictionary learning

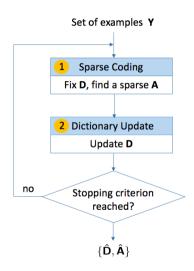


$$\{\hat{\mathsf{D}},\hat{\mathsf{A}}\} = \arg\min_{\mathsf{D},\mathsf{A}} \Bigl\{ \|\mathsf{Y} - \mathsf{D}\mathsf{A}\|_F^2 \Bigr\} \quad \text{subject to} \quad \forall i, \|\boldsymbol{\alpha}_i\|_0 \leq K$$

A similar objective:

$$\{\hat{\mathsf{D}},\hat{\mathsf{A}}\} = \arg\min_{\mathsf{D},\mathsf{A}} \; \sum \|\alpha_i\|_0 \quad \mathsf{subject \ to} \quad \|\mathsf{Y} - \mathsf{D}\mathsf{A}\|_F^2 \leq \epsilon$$

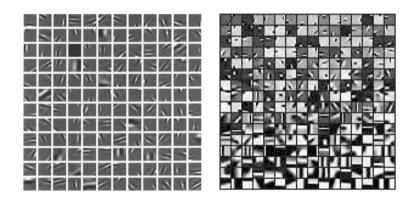
Iterate Two Steps: Sparse Coding and Dictionary Update



Dictionary update:

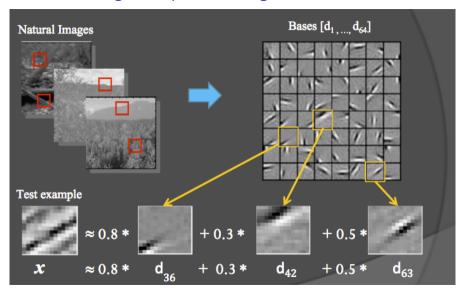
- Maximum likelihood method of [?]
- MOD [?]
- K-SVD [?]

Learned Dictionaries of Image Atoms - Examples

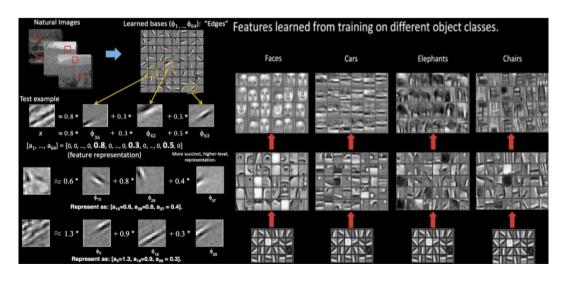


Examples of dictionaries trained by [?] (left) and K-SVD [?] (right)

Representation learning and sparse coding

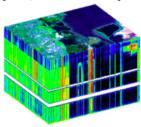


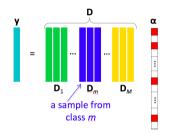
Representation learning and sparse coding



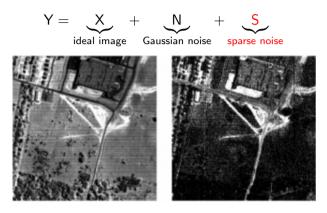
Sparse Representation Classification

[Wright et al, 2009]





$$\hat{lpha}=rg\min_{oldsymbol{lpha}}\|\mathbf{y}-\mathsf{D}oldsymbol{lpha}\|_2^2 \;\; ext{subject to}\; \|oldsymbol{lpha}\|_0 \leq K$$
 $r_m(\mathbf{y})=\|\mathbf{y}-\mathsf{D}_m\hat{oldsymbol{lpha}}_m\|_2, \qquad m=1,...,M$ $class(\mathbf{y})=rg\min_{oldsymbol{m}=1,...,M}r_m(\mathbf{y})$



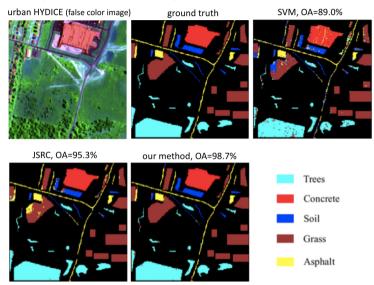
Examples of stripe noise and mixed noise in a real hyperspectral image.

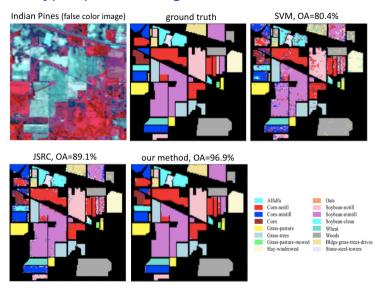
Huang, S., Zhang, H., Liao, W., and Pižurica, A. (2017). Robust joint sparsity model for hyperspectral image classification. In IEEE ICIP 2017.

$$Y = X + N + S$$
ideal image Gaussian noise sparse noise

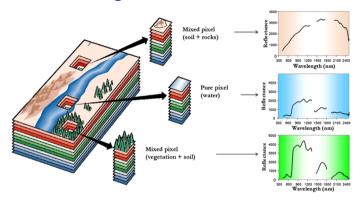
$$\begin{split} \{\hat{\mathsf{A}}, \hat{\mathsf{S}}\} &= \arg\min_{\mathsf{A},\mathsf{S}} \|\mathsf{Y} - \mathsf{D}\mathsf{A} - \mathsf{S}\|_F^2 + \lambda \|\mathsf{S}\|_1 \quad \text{subject to} \quad \|\mathsf{A}\|_{row,0} \leq K \\ \\ r_m(\mathsf{Y}) &= \|\mathsf{Y} - \mathsf{D}_m \hat{\mathsf{A}}_m - \hat{\mathsf{S}}\|_F, \qquad m = 1,...,M \\ \\ class(\mathsf{y}_{central}) &= \arg\min_{m=1,...,M} r_m(\mathsf{Y}) \end{split}$$

S. Huang, H. Zhang and A. Pižurica (2017). A Robust Sparse Representation Model for Hyperspectral Image Classification. Sensors.



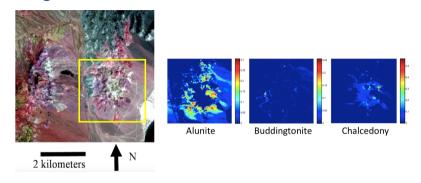


Spectral Unmixing



S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and Comparative Study of Geometrical Approaches for Spectral Unmixing. International Journal of Scientific and Engineering Research.

Sparse Unmixing

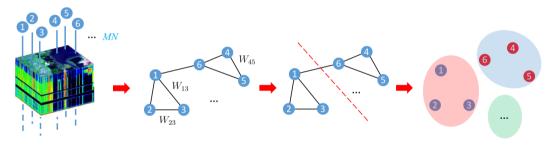


Estimated fractional abundance maps (AVIRIS Cuprite subscene, USGS library).

R. Wang, H.-C. Li, A. Pižurica, J. Li, A. Plaza, and W. J. Emery (2017). Hyperspectral Unmixing Using Double Reweighted Sparse Regression and Total Variation. IEEE Geoscience and Remote Sensing Letters.

Spectral clustering

No labelled data available \rightarrow no supervised classification but instead clustering



Similarity matrix: $\mathbf{W} \in \mathbb{R}^{MN \times MN}$

Sparse Subspace Clustering

[?]

Self-representation model:
$$Y = YC + N$$
; $Y = [y_1...y_N] \in \mathbb{R}^{m \times N}$

$$Y = [y_1...y_N] \in \mathbb{R}^{m \times N}$$

 $C_{i,j} \neq 0 \rightarrow y_i$ and y_j are in the same subspace.

Similarity matrix: $W = |C| + |C|^T$

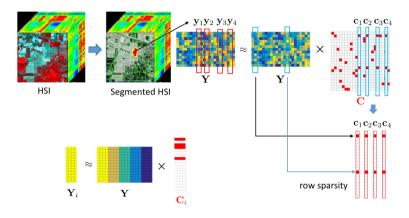
Sparse Subspace Clustering

[?]

Self-representation model:
$$Y = YC + N$$
; $Y = [y_1...y_N] \in \mathbb{R}^{m \times N}$

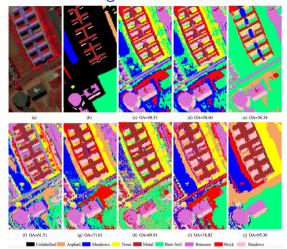
$$Y = [y_1...y_N] \in \mathbb{R}^{m \times N}$$

Joint Sparse Subspace Clustering - JSSC



S. Huang, H. Zhang and A. Pižurica (2019). Semi-supervised Sparse Subspace Clustering Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images. IEEE J. Sel. Topics in Earth Observation and Remote Sens.

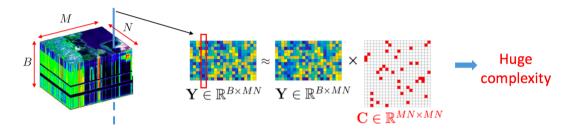
Joint Sparse Subspace Clustering - JSSC



Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC (1 % labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

[?]

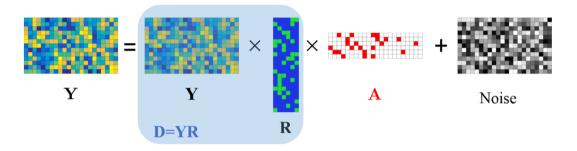
Nice, but ...



SSC becomes practically infeasible for very large scale data.

E.g. for the full *Pavia University* image 610 \times 340, the size of C is 207400 \times 207400 \to 320,5 GB memory

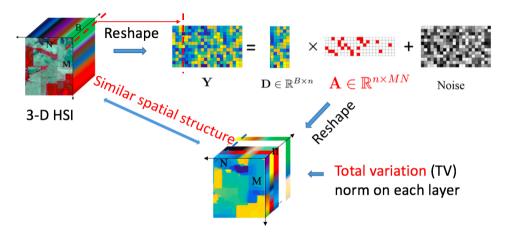
Sketching



Reduces greatly the size of the problem!

P. A. Traganitis and G. B. Giannakis (2018). Sketched subspace clustering. IEEE Trans. Signal Process. [?]

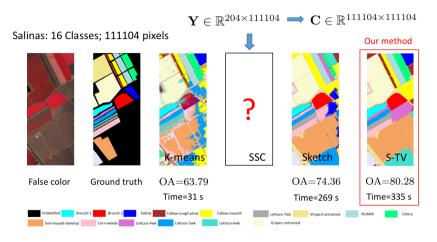
Sketched Sparse Subspace Clustering for Hyperspectral Images



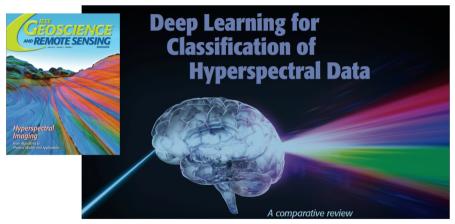
S. Huang, H. Zhang and A. Pižurica (2020).

Sketch-based Subspace Clustering of Hyperspectral Images. Remote Sensing.

Sketched Sparse Subspace Clustering for Hyperspectral Images



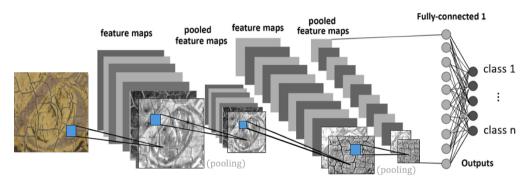
Deep learning for HSI analysis



NICOLAS AUDEBERT, BERTRAND LE SAUX, AND SÉBASTIEN LEFÈVRE

N. Audebert, B. Le Saux, and S. Lefèvre, IEEE Geosc. Remote Sens. Mag., June 2019.

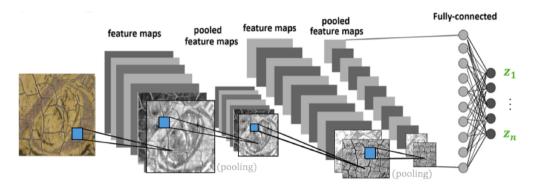
Convolutional Neural Networks (CNN)



Output at location (i, j) of the k-th feature map in the l-th layer:

$$x_{i,j}^{l,k} = \sigma(\sum_{m=1}^{M} \sum_{p=0}^{H_l-1} \sum_{q=0}^{W_l-1} w_{p,q}^{l,k,m} x_{(i+p),(j+q)}^{(l-1),m} + b^{l,k})$$

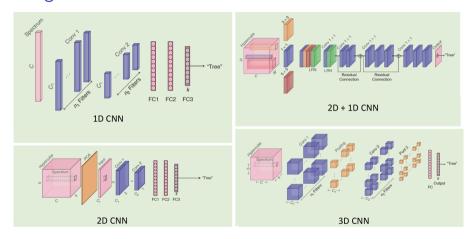
Convolutional Neural Networks (CNN)



Predicted probabilities of class labels using the softmax rule:

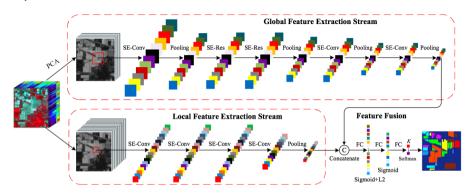
$$P(\operatorname{class}(x_{i,j}) = c) = \frac{e^{z_c}}{\sum_k e^{z_k}}$$

Deep learning models in HSI classification



N. Audebert, B. Le Saux, and S. Lefèvre. Deep Learning for Classification of Hyperspectral Data - A comparative Review. IEEE Geosc. Remote Sens. Mag., June 2019.

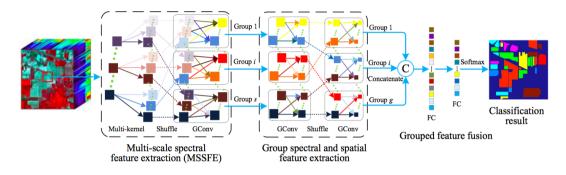
Spectral-spatial feature fusion with two-stream CNN



Improving the performance in the case of limited labelled data.

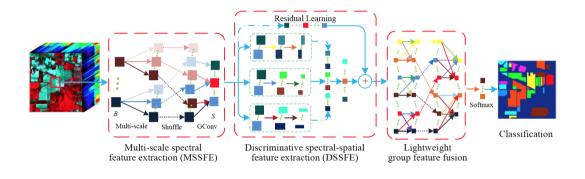
X. Li, M. Ding and A. Pižurica. Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2020. [?]

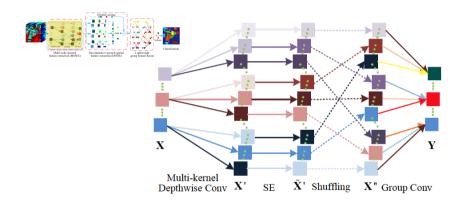
Group CNN for HSI classification

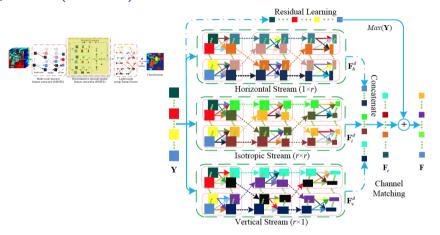


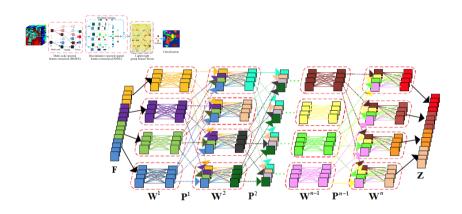
Reducing the computational complexity - applicability to large scale data.

X. Li, M. Ding and A. Pižurica. Group Convolutional Neural Networks for Hyperspectral Image Classification, ICIP 2018.









The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.

The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.

The current restoration of the *Ghent Altarpiece*

Ghent Altarpiece - Current Restoration Campaign

SCIENCE

The New Hork Times

A Master Work, the Ghent Altarpiece, Reawakens Stroke by Stroke

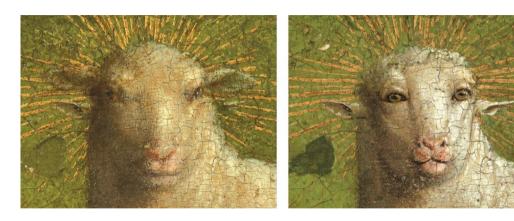


Ghent Altarpiece restoration - Phase 1

= Overpaint © KIK-IRPA

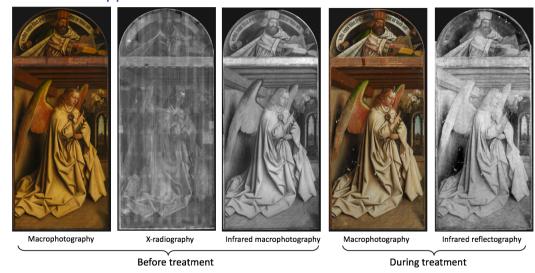
Ghent Altarpiece restoration - Phase 1

Ghent Altarpiece restoration – Phase 2 (inner panels)



The Mystic Lamb – before and after the restoration.

A multimodal approach

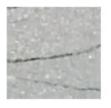


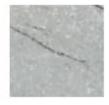
©Ghent, Kathedrale Kerkfabriek, Lukasweb

A multiscale deep learning method for paint loss detection

Size: 5954×7546 ; processed in < 1 minute

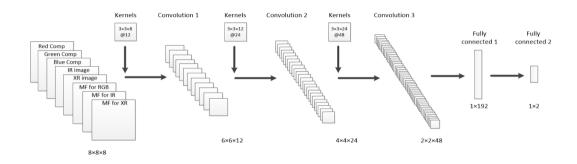
Deep learning in crack detection



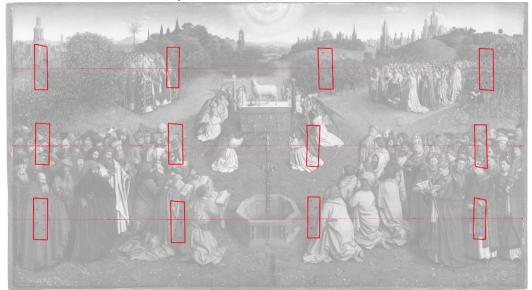


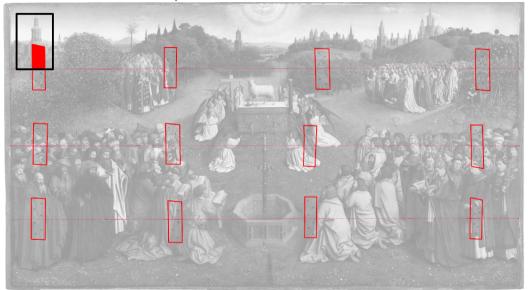
Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017]. However, crack detection in paintings is much more challenging!

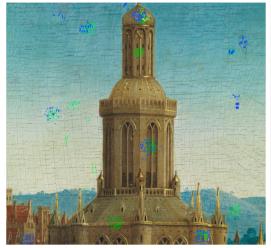
A deep learning method for crack detection in paintings

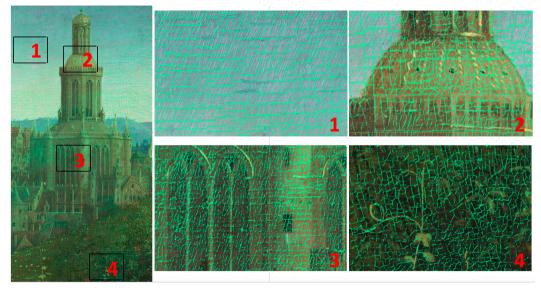


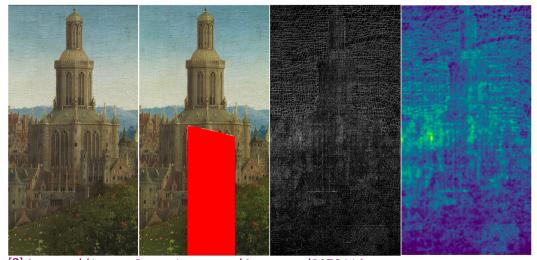
R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. Pižurica (2018). A deep learning approach to crack detection in panel paintings. IP4AI.





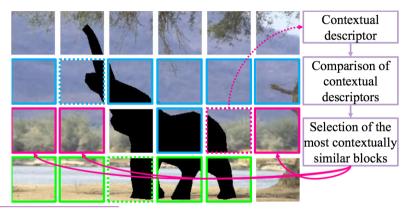






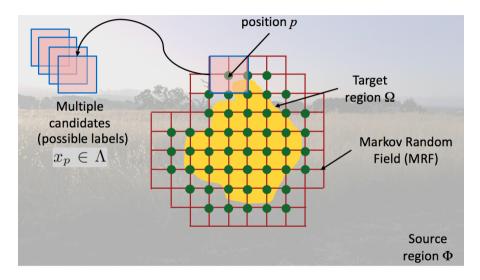
[?] https://ieeexplore.ieee.org/document/9072114

Context adaptative inpainting

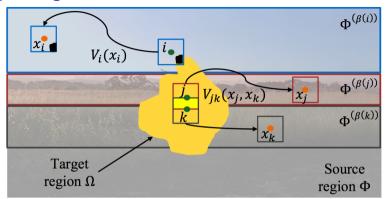


T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov random field modeling. *IEEE Transactions on Image Processing* 2015

Global inpainting



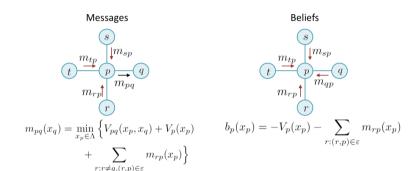
Global inpainting



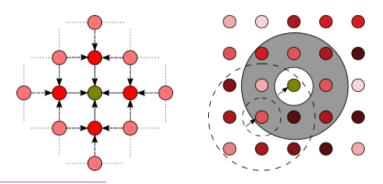
$$E(\mathsf{x}) = \sum_{i \in \nu} V_i(\mathsf{x}_i) + \sum_{\langle i,j \rangle \in \varepsilon} V_{ij}(\mathsf{x}_i, \mathsf{x}_j), \tag{1}$$

[Komodakis and Tziritas, 2007], [?]

Global inpainting



Global inpainting: efficient inference



T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov random field modeling. *IEEE Transactions on Image Processing* 2015

Crack inpaiting

[?]

Virtual Restoration

Left: original; Middle: automatic paint loss detection method [?]. Right: MRF-based inpainting method [?]

Research Group for Artificial Intelligence and Sparse Modelling - GAIM

GAIM (https://gaim.ugent.be) is part of the Department Telecommunications and Information Processing at the Faculty of Engineering of Ghent University.

Collaborators

Special Issues

Submit to Special Issue

Submit Abstract to Special Issue

Review for Remote Sensing

Edit a Special Issue

Journal Menu

- Remote Sensing Home
- Aims & Scope
- Editorial Board

Special Issue "Spectral Unmixing of Hyperspectral Remote Sensing Imagery"

- Special Issue Editors
- . Special Issue Information
- Keywords
- Published Papers

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing Image Processina".

Deadline for manuscript submissions: 20 March 2021.

Guest Editors: Shaoguang Huang, Aleksandra Pizurica, Hongyan Zhang and Mauro Dalla Mura

Special Issues

Submit to Special Issue

Submit Abstract to Special Issue

Review for Remote Sensing

Edit a Special Issue

Journal Menu

- Remote Sensing Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Reviewer Boar
- Tonice Roard

Special Issue "Remote Sensing Image Denoising, Restoration and Reconstruction"

- Special Issue Editors
- · Special Issue Information
- Keywords
- Published Papers

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing Image Processing".

Deadline for manuscript submissions: 31 May 2021.

Guest Editors: Karen Egiazarian, Aleksandra Pizurica and Vladimir Lukin

