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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.

A. Pižurica Signal Processing and Machine Learning in Art Conservation 5 / 74



The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The current restoration of the Ghent Altarpiece

Ongoing conservation-restoration treatment (started in 2012).
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Ghent Altarpiece - Current Restoration Campaign
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Ghent Altarpiece restoration – Phase 1
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Ghent Altarpiece restoration – Phase 1, after cleaning: paint losses
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Ghent Altarpiece restoration – Phase 1, after cleaning: paint losses
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Ghent Altarpiece restoration – Phase 1, after cleaning: paint losses
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Why do we need automatic paint loss detection?

Paint loss detection is crucial for

documenting purpose

virtual restoration

decision making in the actual
restoration process

Currently done manually:

labor intensive

only rough indication

prone to errors

c©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Crack detection

Diagnostics, overpaint detection.

Input for virtual crack filling. Improving readability of inscriptions.
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Challenges: Huge data

Each 15x20 cm area recorded in a separate capture with a camera fitted with a
Hasselblad 120mm lens and a 50-megapixel camera back (8176 x 6132 pixels).
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Paint loss detection problem - difficulties

c©Ghent, Kathedrale Kerkfabriek, Lukasweb

A scatter plot of RGB values for randomly
selected paint loss and background pixels in
the macrophotography after cleaning
(red: paint loss; blue: background).
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A multimodal approach

c©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Registration of multimodal images

Crack patterns can be employed as landmarks.
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Sparse representation
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Sparse coding

α̂ = arg min
α
‖y −Dα‖2

2 subject to ‖α‖0 ≤ K

α̂ = arg min
α
‖α‖0 subject to ‖y −Dα‖2

2 ≤ ε

Greedy algorithms

Matching Pursuit (MP) [Mallat and Zhang, ‘93]

OMP [Tropp,‘04], CoSaMP [Needell and Tropp, ‘09]

IHT [Blumensath and Davies, 09]
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Sparse coding

Convex relaxation:

α̂ = arg min
α
‖α‖1 subject to ‖y −Dα‖2

2 ≤ ε

α̂ = arg min
α
‖y −Dα‖2

2 + λ‖α‖1

LASSO [Tibshirani, ‘96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

{D̂, Â} = arg min
D,A

{
‖Y −DA‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

A similar objective:

{D̂, Â} = arg min
D,A

∑
i

‖αi‖0 subject to ‖Y −DA‖2
F ≤ ε
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Iterate Two Steps: Sparse Coding and Dictionary Update

Dictionary update:

method of [Olshausen and Field, 1997]

MOD [Engan et al., 1999]

K-SVD [Aharon et al., 2006]
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Sparse Coding - A Strategy Employed by V1?
[Olshausen and Field, 1997]

Idea: maximize the likelihood :

P(Y|D) =
∏
i

P(yi |D) =
∏
i

∫
P(yi |α,D)P(α)dα

Approximate P(yi |D) via extremal values. Require: P(α) ∝ e−λ|α|

D̂ = arg max
D

∑
i

max
αi

{
P(yi |αi ,D)P(αi )

}
= arg min

D

∑
i

min
αi

{
‖Dαi − yi‖2 + λ‖α‖1

}
Two-step iterative procedure :

1 Calculate {αi}Ni=1 using a gradient descent procedure

2 Update the dictionary as: D(k+1) = D(k) − η
∑N

i=1

(
D(k)αi − yi

)
αT

i
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Learned Dictionaries of Image Atoms - Examples

Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and K-SVD
[Aharon et al., 2006] (right)
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Unsupervised vs. Supervised Dictionary Learning

Unsupervised dictionary learning

{D̂, Â} = arg min
D,A

{
‖Y −DA‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

I minimizes the reconstruction error
I inverse problems (restoration, inpainting,...)

Supervised (discriminative or task-driven)

{D̂, Ĉ︸︷︷︸
class. par.

, Â} = arg min
D,C,A

{
‖Y −DA‖2

F + µ‖ H︸︷︷︸
labels

− CA‖2
F + η‖C‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

I classification problems (H – label inform.; C – classifier parameters)
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Application in Painter Style Characterization

[Hughes et al, 2009], [Latić and Pižurica, 2014]
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Sparse Representation Classification - SRC

α̂ = arg min
α
‖y −Dα‖2

2 s.t. ‖α‖0 ≤ K

Let δm(α) denote a vector whose all entries are set to zero except those associated
with class m and define a class-specific residual rm(y)

rm(y) = ‖y −Dδm(α̂)‖2, m = 1, ...,M

and the sample class as: identity(y) = arg min
m=1,...,M

rm(y)
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Sparse Representation Classification - SRC

Equivalently,
rm(y) = ‖y −Dmα̂m‖2, m = 1, ...,M

identity(y) = arg min
m=1,...,M

rm(y)
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SRC in Hyperspectral Image Classification
[Chen et al., 2011a]

α̂ = arg min
α
‖y −Dα‖2

2 subject to ‖α‖0 ≤ K

rm(y) = ‖y −Dmα̂m‖2, m = 1, ...,M

class(y) = arg min
m=1,...,M

rm(y)
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Paint loss detection data sets - John the Evangelist
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Paint loss detection data sets - Prophet Zachary
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Annotations by art restorers
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Annotations by art restorers
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Multimodal Data

c©Ghent, Kathedrale Kerkfabriek, Lukasweb

Annotations done on macrophotographs during the treatment;

Dictionaries for sparse representation classification constructed from the available
multimodal data. The available modalities may differ from one panel to another.
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Features for SRC

S. Huang, W. Liao, H. Zhang, and A. Pižurica (2016). Paint Loss Detection in Old Paintings

by Sparse Representation Classification. iTWIST.
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SRC-based Paint Loss Detection Method

Nm
j - number of trials in which yj was labelled as class m; m ∈ {PaintLoss,Other}

class(yj) = arg max
m

pj(m) = arg max
m

(Nm
j /N)︸ ︷︷ ︸

empirical prob. of class m

S. Huang, W. Liao, H. Zhang, and A. Pižurica (2016). Paint Loss Detection in Old Paintings

by Sparse Representation Classification. iTWIST.
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Paint Loss Detection Results

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Paint Loss Detection - Numerical results

SVM – Support Vector Machines
SRC – Direct application of SRC (Sparse Representation Classification)
STD – Sparse Representation for Target Detection [Chen et al., 2011b]
Proposed – the proposed method based on kernel-SRC [Huang et al., 2018]

S. Huang, L. Meeus, B. Cornelis, B. Devolder, M. Martens, and A. Pižurica, (2018). Paint loss

detection via kernel sparse representations. In Image Processing for Art Investigation (IP4AI).
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Deep learning methods

A generic concept of a classifier based on a convolutional neural network (CNN).
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Deep learning methods

ρ – pointwise nonlinearity (e.g., ReLU); Wi – linear operator (convolution);

Wjxj−1(u, kj) =
∑

k

∑
v xj−1(v , k)wj ,kj (u − v , k) =

∑
k(xj−1(., k) ? wj ,kj (., k))(u)
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Deep learning methods

Predicted probabilities of class labels using the softmax rule:

P(class(x(u) = j |zj) =
ezj∑
l e

zl
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A multiscale deep learning method applied to paint loss detection

L. Meeus, S. Huang, B. Devolder, M.Martens, and A. Pižurica (2018). Deep Learning for Paint

Loss Detection: A Case Study on the Ghent Altarpiece. IP4AI.
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A multiscale deep learning method applied to paint loss detection

Size: 5954 × 7546; processed in < 1 minute
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Deep learning in crack detection

Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017].
However, crack detection in paintings is much more challenging!
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A deep learning method for crack detection in paintings

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. Pižurica (2018). A deep

learning approach to crack detection in panel paintings. IP4AI.
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Crack detection: panel Singing Angels
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Crack detection: panel Singing Angels

Left: A Bayesian multimodal method (BCTF). Right: CNN-based.
red – false detections; blue – missing cracks; green - -correct.
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Crack detection: Central panel

The Mystic Lamb – before and after the restoration.
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Patch-based inpainting
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Context adaptative inpainting

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov

random field modeling. IEEE Transactions on Image Processing 2015
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Global inpainting
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Global inpainting

E (x) =
∑
i∈ν

Vi (xi ) +
∑
〈i ,j〉∈ε

Vij(xi , xj), (1)

[Komodakis and Tziritas, 2007], [Ružić and Pižurica, 2015]

A. Pižurica Signal Processing and Machine Learning in Art Conservation 63 / 74



Global inpainting
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Global inpainting: efficient inference

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov

random field modeling. IEEE Transactions on Image Processing 2015
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A summary of patch based inpainting

Pi ,j = S(φi ,φj) + max
k

∑
l∈Nj,k

S(φi ,φl)

A. Pižurica et al. Digital Image Processing of the Ghent Altarpiece. Signal Process. Mag. 2015
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Crack inpaiting
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Crack inpaiting
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Virtual Restoration

Automatic paint loss detection; inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection; inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection; inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Left: Before treatment; Middle: virtual restoration; Right: actual restoration.
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Summary

The study on the Ghent Altarpiece indicates that signal processing and machine
learning techniques can provide a useful support in conservation-restoration
treatments.

Virtual restoration benefits from statistical spatial context modelling.

Potentials of sparse coding and representation learning still to be further explored.
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A. Pižurica Signal Processing and Machine Learning in Art Conservation 74 / 74


	Case Study: Ghent Altarpiece 
	Current conservation-restoration treatment
	Challenges for signal processing and machine learning

	Paint loss localization and crack detection
	Sparse coding methods
	Deep learning methods

	Virtual restoration
	Patch-based inpainting
	Virtual restoration of the Ghent Altarpiece


