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Model-Based Optimization vs. Deep Learning
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Model-Based Optimization vs. Deep Learning
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X Parameters often hand tuned

EUVIP 2023 Model-Based Optimization Meets Deep Learning in Image Analysis 2/76



Model-Based Optimization vs. Deep Learning

many o f6 K7 FC8 many
o ey
inputs Lxlxd% 1x1xIm0 outputs
TxTx512

BxWx512
o565
/) 1inxns ) convolution+ReLU \
=

max pooling

v We know what we do y £ fully comected+ReLU X

v/ Have performance guarantees
X Tends to be slow
X Model is often simplified

X Parameters often hand tuned

A. Pizurica

Model-Based Optimization Meets Deep Learning in Image Analysis 2/76



Model-Based Optimization vs. Deep Learning
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v" We know what we do

v/ Have performance guarantees
X Tends to be slow
X Model is often simplified

v Often works much better

X Success on new data not evident

X Parameters often hand tuned X Often don't know why it fails
EUVIP 2023
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Huge interest in model-based deep learning
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SS1 - Advances in Model-based Deep Learning
Organizers: Emilie Chouzenoux (University Paris Saclay, France), Nikos Deligiannis (Vrije Universiteit Brussel, Belgium), and

Aleksandra Pizurica (Ghent University, Belgium)
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Model-based deep learning: Unfolding/Unrolling

Prior model knowledge

Py|s
Input Predict
y s
Math. Model-based Generic Math.
operation computation step operation
. Training
Tlrammg labels
inputs
Math. (s}

Learned

{y:} Math. Learned
layer

operation layer operation

uoneAndy
UOnEANDY

Predict

Input
K

Picture credit: N. Shlezinger et al. Model-Based Machine Learning for Communications, 2021.

Going back to at least Learned ISTA (LISTA) [Gregor & LeCun, 2010].
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Model-based deep learning: Hybrid models

Prior model knowledge
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Picture credit: N. Shlezinger et al. Model-Based Machine Learning for Communications, 2021.
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Focus of this talk: Analysis of high-dimensional and multimodal images

Remote sensing data {hyperspectral, visible, LIDAR,...) Digitized paintings (infrared, X-Ray, visible)
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Hyperspectral Images in Remote Sensing

Intensity

Matiwan Village, Hebei Province (China), 250 bands, spatial size 3750 x 1580
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Many applications: agriculture, environment monitoring, urban planning ...

EUVIP 2023
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Hyperspectral Image (HSI) Classification and Clustering

@ By classification we mean assigning each pixel to a given class

e Clustering is unsupervised classification (no labelled data to train the model)

Spectral Bands

3D HSI data clustering map spectral signatures t-SNE visualization

High variability of the spectral signatures within the same class makes both
classification and clustering tasks very challenging!
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Hyperspectral Images in Art Investigation
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Sandro Botticelli and Filippino Lippi, Adoration of the Kings, about 1470, The National Gallery, London

B. Sober et al. Revealing and Reconstructing Hidden or Lost Features in Art Investigation.

IEEE Bits, 2022.
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Multimodal imaging of paintings

Detail from Fragonard’s Young Girl Reading, National Gallery of Art, Washington MA-XRF imaging of the panel Elisabeth Borluut
Picture credit: J.K. Delaney Ghent Altarpiece, http://closertovaneyck.kikirpa.be/
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece - Some details
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Recent restoration of the Ghent Altarpiece
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The Ghent Altarpiece - Recent Restoration Campaign
SclENce €he New Nork Eimes
A Master Work, the Ghent Altarpiece, Reawakens Stroke by Stroke

By MILAN SCHREUER ~ DEC. 19, 2016 o
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Sparse representation
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Designed vs. Learned Dictionaries

o Designed dictionaries: wavelets, curvelets, shearlets...

» typically yield sparse representation of signals and images
» advantages: generic, fast computation

@ Learned dictionaries

» trained on a set of representative examples
» goal: optimally sparse representation for a given class of signals
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Sparse coding

& = argmin |y — Da|3 subject to  [allo < K
(87

& = argmin ||allo  subject to |ly — De||3 < ¢
(a2
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Sparse coding

<

Convex relaxation:

& =argmin |af;  subject to |y — D3 <€
[0 %

& = arg min |y — Da3 + Al s
(87

LASSO [Tibshirani, '96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

Y D A

D,A} = argminy ||Y — DA||2 subject to Vi, ||ajllo £ K
D.A F

A similar objective:
{D,A} = arg rSiR E |jllo subject to ||Y — DA||2 <€
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Sparse coding and dictionary learning
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Application in Painter Style Characterization

Analysis

[Hughes et al, 2009], [Lati¢ and PiZurica, 2014]
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Outline

@ Sparse Representation-based Classification (SRC)
@ Robust HSI classification
@ Sparse unmixing
@ Optimal target detection

© Sparse subspace clustering (SSC)

@ Self-representation model
@ Scalable SSC models

© Model-based Deep Learning
@ Some hybrid models
@ Deep clustering
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Sparse Representation-based Classification (SRC)

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust face recognition
via sparse representation. |[EEE PAMI.
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SRC in hyperspectral image classification

D
D, /Dm D,,

a sample from
class m
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SRC in hyperspectral image classification

D
D, /' D, D,

a sample from
classm

&

= argmin|ly — Da||3 subject to |ja|lo < K
[e 2
rm(Y) = ||y - Dmdm||27 m = 1a HES) M

class(y) = argmin rp(y)
m=1,....M
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SRC in digital painting analysis

paint loss cracks other
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paint loss

cracks

others

S. Huang, B. Cornelis, B. Devolder, M. Martens and A. PiZurica. Multimodal Target Detection
by Sparse Coding: Application to Paint Loss Detection in Paintings. IEEE TIP, 2020.
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Outline

@ Sparse Representation-based Classification (SRC)
@ Robust HSI classification
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Joint Sparsity Model

Collect pixels from a small neighbourhood A into Y = [y1, ...,y7] € REXT
Y=[y1 ... yr]=[Das ... Day] =Dla; ... a7] =DA
— ———

pixels from N A

Sparse codes {at}thl share the same support = A is sparse with only K non-zero
rows, i.e., A is row sparse.

A = argmin Y — DA|[% subject to [[Allow0 < K
rmn(Y) =Y = DmAnlle, m=1,.,M

class(ycentra) = argmin r,(Y)
m=1,....M
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and PiZurica, A. (2017). Robust joint sparsity model for
hyperspectral image classification. In IEEE ICIP 2017.
EUVIP 2023 Model-Based Optimization Meets Deep Learning in Image Analysis
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise
{A.5) = arg min [[Y' — DA — S[IF + AlISll:  subject to [|Allrow0 < K
rm(Y) =Y =DmpAn—S|lp, m=1,.,.M

class(ycentrar) = argmin rp(Y)
m=1,....M

S. Huang, H. Zhang and A. Pizurica (2017). A Robust Sparse Representation Model for
Hyperspectral Image Classification. Sensors.
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Robust SRC for Hyperspectral Image Classification

urban HYDICE (false color image) ground truth SVM, OA=89.0%

P ]

Trees
I Concrete
Il Soil
Bl Grass

Asphalt
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Robust SRC for Hyperspectral Image Classification

Indian Pines (false color image) ground truth SVM, OA=80. 4%

Alfalfa Oats
B Com-notill Soybean-notill

B Com-minill Soybean-mintill

B Com Soybean-clean
Grass-pasture Wheat
Grass-trecs Woods
Grass s i Bldgs-grass-trece-drives
Hay-windrowed Stone-steel-towers
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Outline

@ Sparse Representation-based Classification (SRC)

@ Sparse unmixing
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Why do we need spectral unmixing?

Mixed pixel
(soil + rocks)

Pure pixel
(water) —

Mixed pixel

(vegetation + soil) E—

S.R Bijitha et al (2016). Performance Analysis and Comparative Study of Geometrical
Approaches for Spectral Unmixing. Int. J. Sci. Eng. Research.
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Pigment mapping

Spoeirul Libmly

Pigment Maps

500 600 700 800 900
Wiavalangen (Nanometars)

PIGMENT
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ALGORITHM

Imugn Cubu ‘

H. Deborah: Pigment Mapping of Cultural Heritage Paintings Based on Hyperspectral Imaging.

Master thesis, Gjgvik University College, 2013. Supervisors: J.Y. Hardeberg and S. George.
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Sparse Unmixing

Ideal hyperspectral image reordered as a matrix X €
Linear mixing model:

RBXMN

X=EA
E € RBXK — library of endmembers; A € R¥*MN _ ahundance

Y=_E A+ N + S

library abundance  Gaussian noise  sparse noise

The approach of [Aggarval et al, 2016]:

min || — EA = S[[E + Aa[|All21 + AalISa

Many similar variants exist, also making use of low-rank assumption:

minrank{A}  subject to [[Y —EA — S| <e
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Sparse Unmixing

Alunite Buddingtonite Chalcedony

I N
2 kilometers

Estimated fractional abundance maps (AVIRIS Cuprite subscene, USGS library).

R. Wang, H.-C. Li, A. PiZurica, J. Li, A. Plaza, and W. J. Emery. Hyperspectral Unmixing
Using Double Reweighted Sparse Regression and Total Variation. IEEE Geoscience and Remote
Sensing Letters, 2017.

EUVIP 2023



Outline

@ Sparse Representation-based Classification (SRC)

@ Optimal target detection
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Sparse Representation-based Target Detectors

Hp : x = Dpap + n1, xis a background pixel
Hi :x =Dt +ny, xis a target pixel

Input:

x=Dpap+Diasr+n = Da+n; D =[D¢,Dy]
Solve: & = argmin|lx — Da|]?  s.t. |lallo < Ko
Find the residuals:  rp(x) = ||x — Dpéepll2;  re(x) = ||x — Dréeel|2
Detect as target if  rp(x) — re(x) > 0; 0>0

S. Huang, B. Cornelis, B. Devolder, M. Martens and A. PiZurica. Multimodal Target Detection
by Sparse Coding: Application to Paint Loss Detection in Paintings. IEEE TIP, 2020.
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Why do we need automatic paint loss detection?

Paint loss detection is crucial for
@ documenting purpose
@ virtual restoration

@ decision making in the actual
restoration process

Currently done manually:
@ labor intensive
@ only rough indication

@ prone to errors

(©Ghent, Kathedrale Kerkfabriek, Lukasweb
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A multimodal approach

Macrophotography X-radiography Infrared macrophotography Macrophotography Infrared reflectography

Before treatment During treatment

(©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Paint loss detection data sets - prophet Zachary
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Virtual Restoration

S. Huang, B. Cornelis, B. Devolder, M. Martens and A. PiZurica. Multimodal Target Detection
by Sparse Coding: Application to Paint Loss Detection in Paintings. IEEE TIP, 2020.
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Target detectlon in HSI |mages

Fig. 14. Detection results on the HYDICE Urban image. (a) False color image (b) Ground truth of asphalt road and detection maps obtained by (c) MSD,
(d) ACE, (e) STD, (f) SVM, (g) SRC, (h) MFL, (i) MSC and (j) SRC-KF.

S. Huang, B. Cornelis, B. Devolder, M. Martens and A. PiZurica. Multimodal Target Detection
by Sparse Coding: Application to Paint Loss Detection in Paintings. IEEE TIP, 2020.
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Outline

@ Sparse subspace clustering (SSC)
@ Self-representation model
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Spectral clustering

No labelled data available — no supervised classification but instead clustering

Similarity matrix: W € RMNxMN

A. PiZurica Model-Based Optimization Meets Deep Learning in Image Analysis 50 / 76



Self-representation model

— | Spectral Clustering

Y € RBXMN Y e RBxMN

MNxMN
cern W = (C] +[C7))/2

o Traditional approach: estimate the similarity matrix and apply spectral clustering.

e Spectral clustering: use the spectrum (eigenvalues) of the similarity matrix of
the data to perform dimensionality reduction, then cluster in fewer dimensions.

@ Main challenge: obtaining the similarity matrix. Many state-of-the-art methods
use the self-representation model with sparsity or low-rank constraints.
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1..yn] € RN
R +
S fesamaned 1 datah
ST
;r_-_z_;'_:._-z:.;_'._
:M: 1 1
C

Cij # 0 —yjand y; are in the same subspace.

Similarity matrix: W = |C|+ |C|T

A. Pizurica
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yn] € R™N

y~Yc=)yic = csys + cry7
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Joint Sparse Subspace Clustering - JSSC

V & }" 7 €1C2 C3Cy

Yi¥Y2 Y3ya

L8 55

HSI Segmented HSI

€1C2C3Cy

Q

——

row sparsity

S. Huang, H. Zhang and A. PiZurica (2018). Semi-supervised Sparse Subspace Clustering
Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images. IEEE J.

Sel. Topics in Earth Observation and Remote Sens.

Model-Based Optimization Meets Deep Learning in Image Analysis 54 / 76
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() 0A=61.51 (8) OA=71.61 (h) 0A=69.91 (i) 0A=76.82 () 0A=95.36

B Unisbelled MO Asphalt Il Meadows Trees I Metal W Bare Soil WM Bitumen [ Brick Shadows
Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC (1 %
labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

S. Huang, H. Zhang and A. PiZurica (2018). IEEE JSTARS
EUVIP 2023




Outline

@ Sparse subspace clustering (SSC)

@ Scalable SSC models
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Nice, but ...

? - i f
l...l-- £ ] - Huge .
A complexity
I C € }RMNXMN

SSC becomes practically infeasible for very large scale data.

E.g. for the full Pavia University image 610 x 340, the size of C is 207400 x 207400
— 320,5 GB memory
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Sketching

Reduces greatly the size of the problem!

P. A. Traganitis and G. B. Giannakis. Sketched subspace clustering. IEEE Trans. Signal
Process., vol. 66, no. 7, pp. 1663-1675, 2018.
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Sketched Sparse Subspace Clustering for Hyperspectral Images

7’

D c RBx» A I RanN

a

Q¥

«= Total variation (TV)
norm on each layer

S. Huang, H. Zhang and A. PiZurica Sketched Sparse Subspace Clustering with Total Variation
Constraint for Hyperspectral Images, submitted to Information Sciences (2019).
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Sketched Sparse Subspace Clustering for Hyperspectral Images
Y c ]R204><111104 =) C c R111104X111104

Salinas: 16 Classes; 111104 pixels l our method
? ‘ A A

SSC STV
False color Ground truth ~ OA=63.79 OA=T74.36 0OA=80.28
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S. Huang, H. Zhang and A. PiZurica Sketched Sparse Subspace Clustering with Total Variation
Constraint for Hyperspectral Images, submitted to Information Sciences (2019).
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Subspace clustering via dictionary learning

Obtained = -
coefficients K ¥ ’
Subspace o
representation B »
with respect to i : .
different atoms d, Al 1) \ o e s w m e e
] = ®)
p Stack * *R
“d 5 A(,,2) g .= h
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|
] i. © ()
L A(syz,m)

Fig. 12. Feature visualization by applying (a) raw data, (b) coefficients of
SSC, (c) coefficients of DLSC and (d) coefficients of IDLSC in the dimension
reduction algorithm t-SNE. The dimension of data is reduced to two.

S. Huang, H. Zhang, A. PizZurica. Subspace Clustering for Hyperspectral Images via Dictionary Learning with
Adaptive Regularization. IEEE Transactions on Geoscience and Remote Sensing, 2022.
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Multi-view clustering

Multi-scale local
Adaptive multi-scale hypergraphs
super-pixel segmentation

i Local spatlal
— ! information in
: multi- scales !
Patch-wise nonlocal

o Hybrid-hypergraph
K : Nonlocal 1
—  spatial '—>
'5 ! mformatlon
K-nearest patches hypergraph

Reduced HSI

Scale 1

HSI \

Centralized patches

S. Huang, H. Zhang, A. Pizurica. Hybrid-Hypergraph Regularized Multiview Subspace Clustering for Hyperspectral
Images. IEEE Transactions on Geoscience and Remote Sensing, 2022
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Band Selecton

Fig. 1. Correlations of spectral bands in three typical HSIs: Indian

in HSI

200
w s @ w0

(left), Pavia University (middle), and Salinas (right).

S. Huang, H. Zhang, A. Pizurica. A Structural Subspace Clustering Approach for Hyp

Fig. 5.
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IEEE Transactions on Geoscience and Remote Sensing, 2022.
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The number of bands

o

Influence of band selection on the classification performance in classifiers SVM and KNN on the dataset IndianP. (a) OA in SVM, (b) AA in SVM
(© & in SVM, (d) OA in KNN, (¢) AA in KNN, and (f) & in KNN.

erspectral Band Selection

S. Huang, H. Zhang, J.Xue, A. PiZurica. Heterogeneous regularization-based tensor subspace clustering for hyperspectral
band selection. IEEE Transactions on Neural Networks and Learning Systems, 2022.

EUVIP 2023
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Outline

© Model-based Deep Learning
@ Some hybrid models
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Model-based deep learning: Hybrid models

Prior model knowledge

Pyls
Input Predict
y K
Math. Model-based Generic Math.
. — .
operation computation step operation
Trainingdata
{se,ye}
Input Predict
y K

Math. Generic Math.

operation step operation

Picture credit: N. Shlezinger et al. Model-Based Machine Learning for Communications, 2021.
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Joint denoising and classification

———3 Forward-propagation

<«— Back-propagation

Noisy HSI X

Pseudo reference X
\ 4

Denoising loss
£,(x,X,0,)

<« € ¢« <«

Latent noise-free
Local patchZ  All-band denoiser f(Z,0,) pixel X

Joint Learning

Compound loss
£(%X,p,1,6,,6,)

Class label 7

l Classificati
/71—

> > > —+—>+—>—>L
— €« €« <«

Corn Wood Grass

il

4

on loss
o,)

Class probability p

Spectral classifier f(X,©,,)

X. Li, M. Ding and A. Pizurica. An End-to-End Framework for Joint Denoising and,Classification of Hyperspectral Images.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023.

EUVIP 2023
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Deep SRC

3 3
g g
8 S
= =
S s
N <N
Encoder Decoder
43 .
w @«
One 8 2
N N

........ Zero
= Trainable

M. Abavisani and V.M. Patel. Deep Sparse Representation-Based Classification.
IEEE Sig. Proc. Lett., 2019.
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Outline

© Model-based Deep Learning

@ Deep clustering
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Model-based deep clustering

9
3 INEEN BN | ] =
A T
mzm g . - - N
Yemn oy e
ccE W = (O] + [CT])/2

@1:L*Ei*

All Image Patches Self-representation layer
v

Spectral Clustering

Deep Subspace Clustering Networks [Ji et al, 2017]. Instead of solving a sparse
coding problem, a neural network outputs the data representation matrix.

EUVIP 2023 Model-Based Optimization Meets Deep Learning in Image Analysis 69 / 76

& 4
. E .,

Reconstructed Image
Patches




Model-based deep clustering
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Four types of deep clustering models of HSI: (a) self-representation-based, (b) AEs-based, ngh-level Highly discriminative
(c) intrinsic graph feature convolution-based and feature (d) self-supervision-based models.

S. Huang, H. Zhang, H. Zeng and A. PiZurica. From Model-Based Optimization Algorithms to
Deep Learning Models for Clustering Hyperspectral Images. Remote Sensing, 2023.
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Model-aware deep clustering
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X. Li, N. Nadisic, S. Huang, N. Deligiannis and A. PiZurica. Model-Aware Deep Learning for
the Clustering of Hyperspectral Images with Context Preservation. EUSIPCO’23
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Comparison with other methods

Houston(130 x 130 X 144, 6104 samples) PaviaU(610 x 340 x 115,42776 samples)
0.80 0.8
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mmm HyperAE 0.7
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Finch (Sarfraz et al. 2019): nearest neighbors based; DEC (Xie et al. 2016): data-driven deep learning;
HyperAE (Cai et al. 2021), NCSC (Cai et al. 2022): self-representation based deep learning;
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Comparison with other methods

- Apple trees

Buildings

- Ground

Wood

- Vineyard
- Roads
- Unlabeled

false color 64.63% 80.30% 48.50% 76.22% 75.92% 88.80% Ground

image FCM Kmeans++ DEC Finch NCSC Ours truth class color

The numbers below each image are the clustering accuracies (ACC).
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Summary and conclusions

@ Sparse optimization finds many uses in image analysis
@ Hybrid deep learning: replace intensive calculations by learned representations
@ Current results show advantages over purely data-driven deep learning

@ An emerging topic - much room for improvement!
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