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Some historical notes on wavelet domain image denoising

Peaks indicate image edges
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Spatial context modeling in wavelet domain image denoising

Spatial clustering of large coefficients Calculate a local spatial activity indicator
(Markov random models: fields and trees) (LSAI) from the neighboring coefficients

coefficient vector

Model the statistics of coefficient vectors Non local: look for self similar contexts
(GSM models and generalizations) throughout the image
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Some historical notes on wavelet domain image denoising: ProbShrink

ESTIMATE

LSAl — Local Spatial Activity Indicator
OBSERVATION
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Some historical notes on wavelet domain image denoising: BM3D

collect similar patches,
apply 3D transform
& filter noise

=
AY
 /
=

K. Dabov, A. Foi and K. Egiazarian.. Image denoising by sparse 3D transform-domain
collaborative filtering. IEEE Transactions on Image Processing, 2007.
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Pizurica et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:140

http://asp.eurasipjournals.com/content/2013/1/140

® EURASIP Journal on
Advances in Signal Processing

a SpringerOpen Journal

EDITORIAL Open Access

Advanced statistical tools for enhanced quality
digital imaging with realistic capture models

Aleksandra Pizurica'”, Javier PortillaZ, Keigo Hirakawa® and Karen Egiazarian®

Editorial

Getting closer to reality in modeling image capture
devices is crucial for the improvement of image quality
beyond the limits of image restoration algorithms as we
know them today. This calls for more accurate statistical
modeling of distortions and noise coming from real cap-
ture devices (Poisson noise, internal non-linearities, space
variant point spread functions due to nonideal optics,
chromatic aberrations, etc.). While these effects are often
not considered in the restoration algorithms, their impact
on the resulting image quality is huge in practice. For

A. Pizurica

the camera captures, the amount of light received will
be further decreased by technical barriers (diffraction
effects) [8]. Hence, increasing further the sensor reso-
lution by itself will not necessarily lead to actual gains
in image quality. Also, recent improvements in sensor
sensitivity allow cameras to operate in very low lighting
conditions, but this boosts noise in the acquired images.
The negative effects of noise can be largely suppressed
by post-processing algorithms, but these require precise
knowledge of the noise characteristics to achieve optimal
performance. Due to the mismatch between the actual
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Collaboration with Karen at Ghent University
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Collaboration with Karen at Ghent University
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Outline

@ Sparse Coding of High-Dimensional Signals
@ Sparse representation
@ Sparse Representation Classification

© Applications in Remote Sensing
@ Robust SRC in Hyperspectral Imaging
@ Sparse Unmixing
@ Sparse Subspace Clustering

e Applications in Art Investigation
@ The Ghent Altarpiece
@ Challenges for signal processing and machine learning
@ Paint loss detection based on sparse coding
@ Deep learning approaches
@ Virtual restoration
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A Wealth of High-Dimensional Multimodal Data

Remote sensing data (hyperspectral, visible, LIDAR,...) Digitized paintings (infrared, X-Ray, visible)
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Outline

@ Sparse Coding of High-Dimensional Signals
@ Sparse representation
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Sparse representation
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Designed vs. Learned Dictionaries

o Designed dictionaries: wavelets, curvelets, shearlets...

> typically yield sparse representation of signals and images
» advantages: generic, fast computation

vl 2

@ Learned dictionaries

» trained on a set of representative examples
» goal: optimally sparse representation for a given class of signals
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Sparse coding

& = argmin ||y — Dal|3 subject to oo < K
«

& = argmin||ao subject to |ly — Da3 < e
«
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Sparse coding

& = argmin |ly — Da|3 subject to  [laflo < K
@

& = argmin||ao subject to |ly — Da|3 <€
[0

Greedy algorithms
e Matching Pursuit (MP) [Mallat and Zhang, ‘93]
o OMP [Tropp,'04], CoSaMP [Needell and Tropp, ‘09]
e |HT [Blumensath and Davies, 09]
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Sparse coding

<
=]

Convex relaxation:

& =argmin |lall;  subject to |ly — Da|j3 <€
@

& = arg min |y — Dax[3 + Al
(87

LASSO [Tibshirani, '96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

Y D A

DA = argmin{ ||Y — DA|) subject to Vi, ||laji|lo < K
D.A F

A similar objective:

DA} = i ; bject to ||Y — DA||2 <
{D,A} argrg'ﬂZHa o subject to || lF<e
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Sparse coding and dictionary learning

-

Y

{D,A} =arg 'SiR{”Y - DAHZF} subject to Vi, ||aillo < K

A similar objective:

{D,A} =arg min > lleillo subjectto |[Y — DA| <e
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Iterate Two Steps: Sparse Coding and Dictionary Update

Set of examples Y

1 Sparse Coding

Fix D, find a sparse A

Dictionary update:

2 Dictionary Update

@ Maximum likelihood method of
Update D

[Olshausen and Field, 1997]
e MOD [Engan et al., 1999]
e K-SVD [Aharon et al., 2006]

Stopping criterion
reached?

{D.A}
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Learned Dictionaries of Image Atoms - Examples

e T T ™ LA

Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and K-SVD
[Aharon et al., 2006] (right)
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Application in Painter Style Characterization

Analysis

[Hughes et al, 2009], [Lati¢ and PiZurica, 2014]
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Outline

@ Sparse Coding of High-Dimensional Signals

@ Sparse Representation Classification
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Sparse Representation Classification
[Wright et al, 2009]

<

D
Dl/' D, Dy

a sample from
classm

& = argmin ||y — Dal|3 subject to |alo < K
[0
rm(y) =|ly = Dmbpml|l2, m=1,...M

class(y) = argmin rpy(y)
m=1,....M
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Joint Sparsity Model
Collect pixels from a small neighbourhood A; into Y = [yg,...,y7] € REXT

Y=][y; ... yr]=[Dai ... Dar]=D[a; ... a7] = DA
~—— —_—
pixels from N¢ A

Sparse codes {at}thl share the same support = A is sparse with only K non-zero
rows, i.e., A is row sparse.

JSRC method [Chen et al., 2011a]:
A=arg m&n |Y — DA||% subject to [|All,owo0 < K

rm(Y) =Y =DpAnlls, m=1,..M

CIass(Ycentral) = argmin rm(Y)
m=1,...M
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Outline

© Applications in Remote Sensing
@ Robust SRC in Hyperspectral Imaging
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and PiZurica, A. (2017). Robust joint sparsity model for
hyperspectral image classification. In IEEE ICIP 2017.
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise
{A,S} =arg min [[Y — DA — S|[F + AlIS|l  subject to [|A]|;ow0 < K
rm(Y) =Y =D,A, -S|, m=1,.,M

class(Yeentrat) = argmin rp(Y)
m=1,....M

S. Huang, H. Zhang and A. Piurica (2017). A Robust Sparse Representation Model for
Hyperspectral Image Classification. Sensors.

A. Pizurica Sparse Coding and Machine Learning in Multimodal Image Processing

28 / 105



Robust SRC for Hyperspectral Image Classification

urban HYDICE (false color image) ground truth SVM, OA=89.0%

P

Concrete
Soil
Grass

Asphalt
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Robust SRC for Hyperspectral Image Classification

Indian Pines (false color image) ground truth SVM, OA=80. 4%

Alfalfa Oats
B Com-notill Soybean-notill

B Com-minill Soybean-mintill

B Com Soybean-clean
Grass-pasture Wheat
Grass-trecs Woods
Grass s i Bldgs-grass-trece-drives
Hay-windrowed Stone-steel-towers
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Outline

© Applications in Remote Sensing

@ Sparse Unmixing
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Spectral Mixing

00
- ~ ‘
Mixed pixel o
(soil + rocks)
1000 ‘
o
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Wavelength (nm)
«00
Pure pixel 200
(water) —
2000
-
®300 600 300 1200 1500 1300 2100 2400
Wavelength (nm)
5000
w00
Mixed pixel o
(vegetation + soil) >
2000

300 600_a00 1200 1200 1800 2100 2400
Wavelength (nm)

S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and Comparative Study
of Geometrical Approaches for Spectral Unmixing. International Journal of Scientific and
Engineering Research.
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Sparse Unmixing

Ideal hyperspectral image reordered as a matrix X €
Linear mixing model:

RBXMN

X =EA
E € RB*K —library of endmembers; A € R¥*MN _ ahundance

Y=_E A+ N + S

library abundance  Gaussian noise  sparse noise

The approach of [Aggarval et al, 2016]:

min [[Y — EA — S| + MllAll21 + X211

Many similar variants exist, also making use of low-rank assumption:

minrank{A}  subject to Y —EA — S|z <e
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Sparse Unmixing

EE

Alunite Buddingtonite Chalcedony

I N
2 kilometers

Estimated fractional abundance maps (AVIRIS Cuprite subscene, USGS library).

R. Wang, H.-C. Li, A. Pizurica, J. Li, A. Plaza, and W. J. Emery (2017). Hyperspectral
Unmixing Using Double Reweighted Sparse Regression and Total Variation. IEEE Geoscience
and Remote Sensing Letters.
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Outline

© Applications in Remote Sensing

@ Sparse Subspace Clustering
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Spectral clustering

No labelled data available — no supervised classification but instead clustering

Similarity matrix: W ¢ RMVN*MN
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1..yn] € R™N
.-: .c .
o
My MEE
i
o
C

Cij # 0 —y; and y; are in the same subspace.

Similarity matrix: W = |C|+ |C|T
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yn] € R™N

y~Yc=73,yic = csys + Cry7
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Joint Sparse Subspace Clustering - JSSC

Vi1Y2 ¥3Ya €1C2 C3Cy

5

—

FEm

row sparsity

=
e

S. Huang, H. Zhang and A. PiZurica (2018). Semi-supervised Sparse Subspace Clustering
Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images. IEEE J.

Sel. Topics in Earth Observation and Remote Sens.
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() 0A=61.51 (8) OA=71.61 (h) 0A=69.91 (i) 0A=76.82 () 0A=95.36

B Unisbelled MO Asphalt Il Meadows Trees I Metal W Bare Soil WM Bitumen [ Brick Shadows
Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC (1 %
labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

S. Huang, H. Zhang and A. PiZurica (2018). IEEE JSTARS
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Nice, but ...

- Huge
complexity

-
| C c R.\INXMN

SSC becomes practically infeasible for very large scale data.

E.g. for the full Pavia University image 610 x 340, the size of C is 207400 x 207400
— 320,5 GB memory
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Sketching

Reduces greatly the size of the problem!

P. A. Traganitis and G. B. Giannakis. Sketched subspace clustering. IEEE Trans. Signal
Process., vol. 66, no. 7, pp. 16631675, 2018.
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Sketched Sparse Subspace Clustering for Hyperspectral Images

7’

D c RBx» A I RanN

a

Q¥

«= Total variation (TV)
norm on each layer

S. Huang, H. Zhang and A. PiZurica Sketched Sparse Subspace Clustering with Total Variation
Constraint for Hyperspectral Images, submitted to Information Sciences (2019).
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Sketched Sparse Subspace Clustering for Hyperspectral Images
Y c ]R204><111104 =) C c R111104X111104

Salinas: 16 Classes; 111104 pixels l our method
? ‘ A A

SSC STV
False color Ground truth ~ OA=63.79 OA=T74.36 0OA=80.28
Time=31s Time=269 s Time=335s

o— suovte [ celerv

- Unlabelled Brocoli-1 - - Fallow - Fe low
[ O T— -

Soilvinyard-develop ¢

S. Huang, H. Zhang and A. PiZurica Sketched Sparse Subspace Clustering with Total Variation

Constraint for Hyperspectral Images, submitted to Information Sciences (2019).
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Deep learning in HSI classification

( Global Feature Extraction Stream N\
| 4 ¥ ¥ i
I SE-Conv Pooling *SE—Res SE-Res Pooling *SE—Conv Pooling Ji SE-Conv i Pooling l
L

| —-—— - —— N —, —,
\ » Fa i
] ] '
g E = = j

Local Feature Extraction Stream Feature Fusion

\
" P ) | .
= ‘ H X
SE-Conv SE-Conv SE-Conv SE-Conv ‘ Pooling "‘ N FC m FC = FC m
|  rc &
|
)

i -
'4" '4" '4" .

w
" Softmax

Concatenate @

.
. Sigmoid
Sigmoid+L2

Improving the performance in the case of limited labelled data.

X. Li, M. Ding and A. PiZurica. Deep Feature Fusion via Two-Stream Convolutional Neural
Network for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote
Sensing, in press (2019).
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Deep learning in HSI classification

]
]
] u
u ]
] u
] W Softmax
J : i—
- ] 5]
J ] ]
] "
| [
s FC . .
Classification
) FC result
Grouped feature fusion
Multi-scale spectral Group spectral and spatial
feature extraction (MSSFE) feature extraction

Reducing the computational complexity - applicability to large scale data.

X. Li, M. Ding and A. Pizurica. Group Convolutional Neural Networks for Hyperspectral Image
Classification, ICIP 2018.
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Outline

e Applications in Art Investigation
@ The Ghent Altarpiece
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece - Some details
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The Ghent Altarpiece - Some details
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The Ghent Altarpiece - Some details
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The current restoration of the Ghent Altarpiece
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Ghent Altarpiece - Current Restoration Campaign
SclENce €he New Nork Eimes
A Master Work, the Ghent Altarpiece, Reawakens Stroke by Stroke

By MILAN SCHREUER ~ DEC. 19, 2016 o
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Ghent Altarpiece restoration — Phase 1



Ghent Altarpiece restoration — Phase 1
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Ghent Altarpiece restoration — Phase 2 (inner panels)

The Mystic Lamb — before and after the restoration.
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Central panel
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Restoration — Phase 1, after cleaning: paint losses
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Restoration — Phase 1, after cleaning: paint losses
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Outline

© Applications in Art Investigation

@ Challenges for signal processing and machine learning
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Why do we need automatic paint loss detection?

Paint loss detection is crucial for
@ documenting purpose
@ virtual restoration

@ decision making in the actual
restoration process

Currently done manually:
@ labor intensive
@ only rough indication

@ prone to errors

A. Pizurica

(©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Crack detection

- ‘ ‘ “ ‘ : 0

Diagnostics, overpaint detection.

- 4 ; . -
3 | [ A )

Input for virtual crack filling. Improving readability of inscriptions.
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Challenges: Information extraction from multimodal data

Extracting useful information
from multiple modalities, with

@ huge data
@ imperfect alignment
@ scarce annotations

@ erroneous annotations

A. Pizurica

(©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Paint loss detection problem - difficulties

(©Ghent, Kathedrale Kerkfabriek, Lukasweb

A. Pizurica

A scatter plot of RGB values for randomly
selected paint loss and background pixels in
the macrophotography after cleaning

(red: paint loss; blue: background).
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A multimodal approach

Macrophotography X-radiography Infrared macrophotography Macrophotography Infrared reflectography

Before treatment During treatment

(@©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Registration of multimodal images

Crack patterns can be employed as landmarks.
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Outline

© Applications in Art Investigation

@ Paint loss detection based on sparse coding
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Paint loss detection data sets - John the Evangelist
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Paint loss detection data sets - prophet Zachary

K
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Annotations by art restorers
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Annotations by art restorers
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Multimodal Data

(©Ghent, Kathedrale Kerkfabriek, Lukasweb

@ Annotations done on macrophotographs during the treatment;

@ Dictionaries for sparse representation classification constructed from the available
multimodal data. The available modalities may differ from one panel to another.
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Features for SRC

Neighborhood Feature vectors

matrix  Egm f Features:
Lt mean, variance,

range, correlations

Layer t

P Y fui= i fuiz o friel

Infrared-
image

Vi = [fvi foi 0 fril

Frren

Visible color image E'E.:> B fei
! —Jei

=

S. Huang, W. Liao, H. Zhang, and A. PiZurica (2016). Paint Loss Detection in Old Paintings
by Sparse Representation Classification. iTWIST.
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SRC-based Paint Loss Detection Method

portion of o0

examples ® _. ...

) o (

/—\ ()
oo
Construct . Output
robabilities of

‘ ad ° ‘ class label

T A

Generate repeat N times
feature space

N[™ - number of trials in which y; was labelled as class m; m € {PaintLoss, Other}

class(y;) = argmaxp;(m) = argmax (N;"/N)
m m

-~

empirical prob. of class m

S. Huang, W. Liao, H. Zhang, and A. Pizurica (2016). Paint Loss Detection in Old Paintings
by Sparse Representation Classification. iTWIST.
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Paint Loss Detection Results

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Paint Loss Detection - Numerical results

95
20 pr—
Number of . o,

- s Schemes modalities Imaging modalities
: 80 1 MAC
g 3 Mjyc, Mge, [Rpe
3
g ” 3 5 Myc, Mpc, IRpe, IRRpe , X-raype

70

M — macrophotography subscript:
L IR — infrared macrophotography AC — after cleaning
o Ll IRR — infrared reflectography BC — before cleaning
SVM SRC STD  Proposed X-ray — radiography

SVM — Support Vector Machines

SRC — Direct application of SRC (Sparse Representation Classification)
STD — Sparse Representation for Target Detection [Chen et al., 2011b]
Proposed — the proposed method based on kernel-SRC [Huang et al., 2018]

S. Huang, L. Meeus, B. Cornelis, B. Devolder, M. Martens, and A. PiZurica, (2018). Paint loss
detection via kernel sparse representations. In Image Processing for Art Investigation (IP4Al).
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Outline

© Applications in Art Investigation

@ Deep learning approaches
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A multiscale deep learning method for paint loss detection

e .
i t
e EET::D
ﬁ ; —
U Ve ’:} FH 3x3conv
T e € pooling
iz propability Classification

Multimodal images

) ma
registered & concatenated P

L. Meeus, S. Huang, B. Devolder, M.Martens, and A. PiZurica (2018).
Deep Learning for Paint Loss Detection: A Case Study on the Ghent Altarpiece. IP4Al.
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A multiscale deep learning method for paint loss detection

Size: 5954 x 7546; processed in < 1 minute
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A multiscale deep learning method for paint loss detection
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Deep learning in crack detection

5 N RERED *‘f‘.‘-{- EYA
. (55 e Bl
-—-‘-"-"' ?- o LS | —‘-":" ! N
. ™ e . ' lw

e W)

Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017].
However, crack detection in paintings is much more challenging!
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A deep learning method for crack detection in paintings

Kernels Convolution 1 Kernels Convolution 2 Kernels Convelution 3

3x3x8 3x3x12 3x3x24
@12 @24 @48

Fully Fully
connected 1 connected 2
Red Comp
Green Comp
Blue Comp
IR image
XR image — — — — —p
MF for RGB
MF for XR 1%192 1x2
6x6x12 Ax4%24 2%2%48
8x8x8

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. PiZurica (2018). A deep
learning approach to crack detection in panel paintings. IP4Al.
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Crack detection: panel Singing Angels
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Left: A Bayesian multimodal method (BCTF). Right: CNN-based.
red — false detections; blue — missing cracks; green - -correct.
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central
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Crack detection: Central panel

A. PiZurica Sparse Coding and Machine Learning in Multimodal Image Processing 90 / 105



Outline

© Applications in Art Investigation

@ Virtual restoration
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Patch-based inpainting

damaged patch
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Context adaptative inpainting

Contextual
descriptor
!
Comparison of
contextual
descriptors

-
Selection of the
most contextually

=r ; - similar blocks

T. RuZi¢ and A. PiZurica et al. Context-aware patch-based image inpainting using Markov
random field modeling. IEEE Transactions on Image Processing 2015
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Global inpainting

position p
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Global inpainting

E() =S Vil) + > Viiox), M)

iev (ij)ee

[Komodakis and Tziritas, 2007], [RuZi¢ and PiZurica, 2015]
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Global inpainting

Messages Beliefs
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Global inpainting: efficient inference

T. Ruzi¢ and A. PiZurica et al. Context-aware patch-based image inpainting using Markov
random field modeling. IEEE Transactions on Image Processing 2015
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A summary of patch based inpainting

greedy approach global approach adding structural priority

DEI

=

7

i{l

Pij = S(¢;, &;) + max Z S(oi, &)

/ENj,k

A. PiZurica et al. Digital Image Processing of the Ghent Altarpiece. Signal Process. Mag. 2015
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Crack inpaiting
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Crack inpaiting
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [RuZi¢ and Pizurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [Ruzi¢ and PiZurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [RuZi¢ and PiZurica, TIP, 2015].
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Virtual Restoration

Left: Input; Middle: virtual restoration; Right: actual restoration.
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