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@ Sparse Coding via Dictionary Learning
@ Sparse representation
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A Wealth of High-Dimensional Multimodal Data

Remote sensing data (hyperspectral, visible, LiDAR,...) Digitized paintings (infrared, X-Ray, visible)
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Capturing Intrinsic Structure of the Data

e High-dimensional data often exhibits low-dimensional structure
o Early models (PCA): find a linear subspace in which data resides
@ Recent methods

> Capture more complex low-dimensional structures (manifolds or
unions of multiple linear subspaces)

P. V. Dinh: Review on Manifold Learning, 2009

» Data has a sufficiently sparse representation with respect to some
basis or a dictionary
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Sparse representation
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Designed vs. Learned Dictionaries

o Designed dictionaries: wavelets, curvelets, shearlets...

> typically yield sparse representation of signals and images
» advantages: generic, fast computation

@ Learned dictionaries

> trained on a set of representative examples
» goal: optimally sparse representation for a given class of signals
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Sparse coding

& = argmin|ly — Da|3 subject to  |laflo < K
(a7

& = argmin|jallp subject to |ly — Dal3 < e
(e
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Sparse coding

& = argmin|ly — Da|3 subject to |laflo < K
(a7

& = argmin||allp subject to ||y — Da|j3 <
(a4

Greedy algorithms
e Matching Pursuit (MP) [Mallat and Zhang, ‘93]

e OMP [Tropp,‘04], CoSaMP [Needell and Tropp, ‘09]
e |HT [Blumensath and Davies, 09]
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Sparse coding

=)

Convex relaxation:

& =argmin|jall;  subject to ||y — Dal3 < e
(a4

& = argmin ||y — Dex|3 + Al|ex[|x
@

LASSO [Tibshirani, ‘96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

Y D A

{D,A} = arg rSiR{”Y - DA||,2:} subject to Vi, ||allo < K

A similar objective:

{D,A} = arg rSiR Z |allo subject to ||Y — DA|Z < e
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Sparse coding and dictionary learning

-

Y

{D,A} = arg rSiR{HY — DA||,2:} subject to Vi, |lajllo < K

A similar objective:

A 2 . . 2
{D,A} =arg min Z llaillo  subject to ||Y — DAJz <€

A. Pizurica Sparse Coding and Multimodal Dictionary Learning in Computer Vision

12 / 59



Iterate Two Steps: Sparse Coding and Dictionary Update

Set of examples Y

1 Sparse Coding

Fix D, find a sparse A

2 Dictionary Update Dictionary update:
Update D @ method of Olshausen&Field
e MOD
- T e K-SVD
no :/Stopping criterion
reached? -
{D,A}
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Sparse Coding - A Strategy Employed by V17
[Olshausen and Field, 1997]

Idea: maximize the likelihood :
P(¥ID) =[] PyiD) = I [ Pyl DIP(a)dar
Approximate P(y;|D) via extremal values. Require: P(a) ox e A<l
D= arglgnaxz mofa’.x{P(y,-|a,-7 D)P(a,-)}
_ . . L . 2
= argmin Z r'glin{HDa, yill + )\||a||1}

Two-step iterative procedure :

@ Calculate {a;}, using a gradient descent procedure

@ Update the dictionary as: D*+1) = D(F) — nz,{\lzl (D(k)ai - Yi)a
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The Method of Optimal Directions (MOD) method

[Engan et al., 1999]

Assume the sparse code for each example is known, and define the
coding errors: e, =y, — D

Idea: minimize the overall representation error:

|EIE = llfes. - - enlF = | Y — DA||Z

Two-step iterative procedure :
@ Calculate A = [ag, . .. ay] using OMP

-1
@ Update the dictionary as: D*+1) = YA(")T(A(")A(")T)
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K-SVD
[Aharon et al., 2006]

Y D A

Like in K-means clustering, update one dictionary atom at a time
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K-SVD (continued)

[Aharon et al., 2006]

Y D A

Like in K-means clustering, update one dictionary atom at a time

woowi= v Sl -] (v Yaer) - wall]
J J#k

E,=error due to omitting dx
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K-SVD (continued)
[Aharon et al., 2006]

R S S

|
I
1

NNV
J

Restrict the calculation of the error Ex only to columns y; that use the
atom dy, i.e., only to columns

J={11<j<K,a[(j)#0}
Apply SVD to the restricted error

ER =uAav’

Update di to be the first column of U,
Update a] to be the first column of V multiplied by A(1,1)
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Learned Dictionaries of Image Atoms - Examples
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Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and
K-SVD [Aharon et al., 2006] (right)
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Unsupervised vs. Supervised Dictionary Learning

o Unsupervised dictionary learning

(D,A} = arg rSiR{||Y . DA||2F} subject to Vi, [|ailo < K

> minimizes the reconstruction error
> inverse problems (restoration, inpainting,...)

@ Supervised (discriminative or task-driven)
S & Al — : _ 2 _ 2 2
{6, & A} =arg min {|IY DA} + ul| L~ CA[IZ +n[C|}

class. par. labels

subject to Vi, [|ajo < K

> classification problems (H — label inform.; C — classifier parameters)
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Application in Painter Style Characterization

Synthesis Analysis

[Hughes et al, 2009], [Lati¢ and PiZurica, 2014]
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Outline

@ Sparse Coding via Dictionary Learning

@ Some Open Problems and Challenges
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Hierarchical Dictionaries

J. Mairal, R. Jenatton, G. Obozinski and F. Bach (2011). Learning Hierarchical
and Topographic Dictionaries with Structured Sparsity. SPIE Wav.&Sparsity.
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Some Open Problems and Challenges

@ Most of the current methods focus on training a dictionary in a
single feature space or on features derived from the same imaging
modality [Shen et al., 2015]. Generalizations to multimodal and
heterogeneous data are challenging.

@ Development of efficient learning tools, especially for multimodal
dictionaries is still an open problem [Bahrampour et al., 2006].

@ Lack of structure limits the practical applicability of learned
dictionaries [Shao et al., 2014].
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Outline

© Coupled Dictionary Learning
@ Image and Video Super-Resolution
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Coupled Dictionary Learning for Super-Resolution

Coupled dictionary learning SR reconstruction

J. Yang, J. Wright, T. S. Huang, and Y. Ma (2010). Image Super-Resolution
Via Sparse Representation, IEEE TIP.
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Outline

© Coupled Dictionary Learning

@ Source Separation
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Coupled Dictionary Learning for X-Ray Source Separation

Visible parts from the front and back panel

X-ray scan

N. Deligiannis, J. Mota, B. Cornelis, M. Rodrigues and |. Daubechies (2017).
Multi-Modal Dictionary Learning for Image Separation With Application in Art
Investigation. IEEE TIP.
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Coupled Dictionary Learning for X-Ray Source Separation

visible back side

2. —
y2... y1 =Wz,
visible front side -
Y1 y2 = Wzoe
mixed X-ray
_Jray ray
m=Xx;" + X, x;Y = ®°z;. + dv

X5” = ®°z. + dv

min {zicl + lz2clly + 2vlln }
subject to m = ®°z;. + ®°z, + dv
y1 = Wz

y2 = Wizo
[Deligiannis et al, 2017]
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Coupled Dictionary Learning for X-Ray Source Separation

mixed X-ray patch estimated x;ay estimated x;ay

[Deligiannis et al, 2017]
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Coupled Dictionary Learning for X-Ray Source Separation

mixed X-ray patc estimated x;ay estimated Xgay
W

(contrast enhanced )

[Deligiannis et al, 2017]
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Outline

© Sparse Representation Classification
@ Hyperspectral Image Classification
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Sparse Representation Classification - SRC

e ma we w3 W mm

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust
face recognition via sparse representation. IEEE PAMI.
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Sparse Representation Classification - SRC

D
y /—/% a
H
= m
b
L]
D, / D, D, i
l
L

a sample from
class m

& =argminlly —Dal3 st |afo <K
(a3

Let () denote a vector whose all entries are set to zero except those
associated with class m and define a class-specific residual r,(y)

rm(y) = ly = Dom(&)|2, m=1,...M

and the sample class as: identity(y) = arg min rp(y)
m=1,....M
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Sparse Representation Classification - SRC

D

y L

D D

D, m v

Equivalently,

rm(y) = Iy = Dibtml2, m=1,..M

identity(y) = argmin rp,(y)
m=1,....M
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SRC in Hyperspectral Image Classification

D
D, / D, D,

a sample from
classm

[Chen et al., 2011]

& = argmin ||y — Da||§ subject to ||allp < K
rm(y) =y = Dm@mll2, m=1,.. M

class(y) = argmin rpy(y)
m=1,....M

)
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Joint Sparsity Model

Collect pixels from a small neighbourhood N, into

Y = [y17 "'7yT] S REXT
Y:[y1 yT]:[Da1 DaT]:D[al aT]:DA
N A
pixels from N¢

Sparse codes {a;}[_; share the same support = A is sparse with only
K non-zero rows, i.e., A is row sparse.

JSRC method [Chen et al., 2011]:

A=arg mAin |Y — DA||Z subject to ||Al/ow.0 < K
rm(Y) =Y —=DnALllr, m=1,..M

class(Ycentral) = arg mir,c” rm(Y)
m=1,...,
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and PiZurica, A. (2017). Robust joint sparsity
model for hyperspectral image classification. In IEEE ICIP 2017
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise

{A,8} = arg min |[Y — DA —S||2+ \|S|; subject to ||All,owo < K

rm(Y) =Y =DnA, ~S|lr, m=1,..M

class(Yeentrar) = argmin ry(Y)
m=1,....M

Huang, S., Zhang, H., Liao, W., and PiZurica, A. (2017). Robust joint sparsity
model for hyperspectral image classification. In IEEE ICIP 2017
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Robust SRC for Hyperspectral Image Classification

ground truth SVM, OA=89.0%

Trees
I Concrete
Il Soil
I Grass
Asphalt
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Robust SRC for Hyperspectral Image Classification

Indian Pines (false color image) ground truth

SVM, OA=80.4%

Alfalfa Oats

Comenotill Soybean-notill
Com-mintill Soybean-mintill
Com Soybean-clean
Grass-pasture Wheat

Grass-trees Woods
Grass-pas i Bldgs-grass-trees-di
Hay-windrowed Stone-steel-towers
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Outline

© Sparse Representation Classification

@ Paint Loss Detection
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The Ghent Altarpiece

. gk
o
4 |
| |
I |

Also known as Adoration of the Mystic Lamb, Hubert and Jan Van Eyck,
completed in 1432.

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Ghent Altarpiece - Current Restoration Campaign

Ll Restored and ravishing: the magnificent
theguardian Ghent Altarpiece gives up its centuries-
old mysteries

Itis one of the most influential, and most stolen, works ever. But for centuries,
the origins of the Ghent Altarpiece have been shrouded in mystery. Now a
restoration is revealing the truth about this masterpiece

Noah Charney
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Ghent Altarpiece - Current Restoration Campaign
SCIENCE €he New Pork Simes
A Master Work, the Ghent Altarpiece, Reawakens Stroke by Stroke

By MILAN SCHREUER  DEC. 19, 2016 o
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Ghent Altarpiece - Current Restoration Campaign

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Ghent Altarpiece - Current Restoration Campaign

before cleaning after cleaning

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Problem of Paint Loss Detection

Paint loss detection crucial for
@ documenting purpose
@ virtual restoration

@ decision making in the actual
restoration process

Currently done manually:
@ labor intensive
@ only rough indication

@ prone to errors

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Multimodal Data

Infrared image before ' Visible image before Visible image after
cleaning cleaning cleaning

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Features for SRC

Neighborhood Feature vectors

matrix [EEE f Features:
Layer t 1t mean, variance,

range, correlations

: Y fui=[fuin fiize o fuiel

Infrared-:
image

yi = [fl,i: fZ,i! '"th,i]

= . -
Visible color image E!Em fri

IR

=

S. Huang, W. Liao, H. Zhang, and A. PiZurica (2016). Paint Loss Detection in
Old Paintings by Sparse Representation Classification. iTWIST.
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SRC-based Paint Loss Detection Method

i L X
st —wg o
N ®0co0’
®e Empirical
Construct =Y src [ § Pprobabilities of [~ Output

dictionary class label

LI 4

Generate repeat N times
feature space

N;" - number of trials in which y; was labelled as class m;
m € {PaintLoss, Other}

class labels

class(y;) = argmax p;(m) = argmax (N"/N)

empirical prob. of class m

S. Huang, W. Liao, H. Zhang, and A. PiZurica (2016). Paint Loss Detection in
Old Paintings by Sparse Representation Classification. iTWIST.
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Paint Loss Detection Results

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Virtual Restoration

The result of automatic paint loss detection followed by inpainting using
the method Of [Rui|é and Piiurica, 2015] Copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Outline

@ Applications in Spectral Unmixing
@ Spectral Mixing
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Spectral Mixing

g &

I%eﬂ:émnu
N
L 7]

Mixed pixel >
(soil + rocks)

300 600 900 1200 1500 1800 2100 2400

Wavelength (nm)
o 00
Pure pixel E om0
(water) — 3
& 2000
]
& 1000 /\r
“s00 co0_so0 1200 100 1000 2100 2000
Wavelength (am)

Mixed pixel
(vegetation + soil)

200 500 1200 1500 1800 2100 2400

*Wavelengeh (am)

S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and
Comparative Study of Geometrical Approaches for Spectral Unmixing.
International Journal of Scientific and Engineering Research.
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Outline

@ Applications in Spectral Unmixing

@ Sparse Unmixing
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Sparse Unmixing

Ideal hyperspectral image reordered as a matrix X € REXMN
Linear mixing model:
X =EA

E € REXKX — |ibrary of endmembers; A € RX*MN _ abundance

Y=_E A+ N + S

library abundance  Gaussian noise  sparse noise

The approach of [Aggarval et al, 2016]:

rRig |Y — EA — S||Z + \i]|A]l21 + X2IS |1

Many similar variants exist, also making use of low-rank assumption:

min rank{A} subjectto [[Y —EA -S|z <¢
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Related work

@ Model anomalies in a network with a sparse outlier matrix

Y=X+N+ _S
outliers

@ Low-rank plus sparsity-promoting estimator

min [[Po(Y = X = S)[[ + Aal|X[l + XIS

M. Mardani, G. Mateos, and G. B. Giannakis (2013). Recovery of low rank
plus compressed sparse matrices with application to unveiling traffic anomalies.
IEEE Trans. Info. Theory.
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Summary

@ Many applications in various inverse problems and
detection/classification tasks

@ Related approaches include Sparse Representation Classification
where the dictionary is constructed from the training samples

e Outlook
» Efficient methods for multimodal dictionary learning
> Incorporating efficiently structure and feature hierarchies
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