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A Wealth of High-Dimensional Multimodal Data
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Capturing Intrinsic Structure of the Data

High-dimensional data often exhibits low-dimensional structure

Early models (PCA): find a linear subspace in which data resides

Recent methods

I Capture more complex low-dimensional structures (manifolds or
unions of multiple linear subspaces)

I Data has a sufficiently sparse representation with respect to some
basis or a dictionary
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Sparse representation
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Designed vs. Learned Dictionaries

Designed dictionaries: wavelets, curvelets, shearlets...
I typically yield sparse representation of signals and images
I advantages: generic, fast computation

Learned dictionaries
I trained on a set of representative examples
I goal: optimally sparse representation for a given class of signals
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Sparse coding

α̂ = arg min
α
‖y −Dα‖2

2 subject to ‖α‖0 ≤ K

α̂ = arg min
α
‖α‖0 subject to ‖y −Dα‖2

2 ≤ ε
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Sparse coding

α̂ = arg min
α
‖y −Dα‖2

2 subject to ‖α‖0 ≤ K

α̂ = arg min
α
‖α‖0 subject to ‖y −Dα‖2

2 ≤ ε

Greedy algorithms

Matching Pursuit (MP) [Mallat and Zhang, ‘93]

OMP [Tropp,‘04], CoSaMP [Needell and Tropp, ‘09]

IHT [Blumensath and Davies, 09]
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Sparse coding

Convex relaxation:

α̂ = arg min
α
‖α‖1 subject to ‖y −Dα‖2

2 ≤ ε

α̂ = arg min
α
‖y −Dα‖2

2 + λ‖α‖1

LASSO [Tibshirani, ‘96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

{D̂, Â} = arg min
D,A

{
‖Y −DA‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

A similar objective:

{D̂, Â} = arg min
D,A

∑
i

‖αi‖0 subject to ‖Y −DA‖2
F ≤ ε
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Iterate Two Steps: Sparse Coding and Dictionary Update

Dictionary update:

method of Olshausen&Field

MOD

K-SVD
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Sparse Coding - A Strategy Employed by V1?

[Olshausen and Field, 1997]

Idea: maximize the likelihood :

P(Y|D) =
∏
i

P(yi |D) =
∏
i

∫
P(yi |α,D)P(α)dα

Approximate P(yi |D) via extremal values. Require: P(α) ∝ e−λ|α|

D̂ = arg max
D

∑
i

max
αi

{
P(yi |αi ,D)P(αi )

}
= arg min

D

∑
i

min
αi

{
‖Dαi − yi‖2 + λ‖α‖1

}
Two-step iterative procedure :

1 Calculate {αi}Ni=1 using a gradient descent procedure

2 Update the dictionary as: D(k+1) = D(k) − η
∑N

i=1

(
D(k)αi − yi

)
αT

i
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The Method of Optimal Directions (MOD) method

[Engan et al., 1999]

Assume the sparse code for each example is known, and define the
coding errors: ei = yi −Dα

Idea: minimize the overall representation error:

‖E‖2
F = ‖[e1, . . . , eN ]‖2

F = ‖Y −DA‖2
F

Two-step iterative procedure :

1 Calculate A = [α1, . . .αN ] using OMP

2 Update the dictionary as: D(k+1) = YA(k)T
(

A(k)A(k)T
)−1
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K-SVD
[Aharon et al., 2006]

Like in K-means clustering, update one dictionary atom at a time
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K-SVD (continued)

[Aharon et al., 2006]

Like in K-means clustering, update one dictionary atom at a time

‖Y −DA‖2
F =

∥∥∥Y −
∑
j

djα
T
j

∥∥∥2

F
=
∥∥∥ (

Y −
∑
j 6=k

djα
T
j

)
︸ ︷︷ ︸

Ek=error due to omitting dk

− dkα
T
k

∥∥∥2

F
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K-SVD (continued)

[Aharon et al., 2006]

Restrict the calculation of the error Ek only to columns yi that use the
atom dk , i.e., only to columns

J = {j | 1 ≤ j ≤ K ,αT
k (j) 6= 0}

Apply SVD to the restricted error

ER
k = U∆VT

Update dk to be the first column of U;
Update αT

k to be the first column of V multiplied by ∆(1, 1)
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Learned Dictionaries of Image Atoms - Examples

Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and
K-SVD [Aharon et al., 2006] (right)
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Unsupervised vs. Supervised Dictionary Learning

Unsupervised dictionary learning

{D̂, Â} = arg min
D,A

{
‖Y −DA‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

I minimizes the reconstruction error
I inverse problems (restoration, inpainting,...)

Supervised (discriminative or task-driven)

{D̂, Ĉ︸︷︷︸
class. par.

, Â} = arg min
D,C,A

{
‖Y −DA‖2

F + µ‖ H︸︷︷︸
labels

− CA‖2
F + η‖C‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

I classification problems (H – label inform.; C – classifier parameters)
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Application in Painter Style Characterization

[Hughes et al, 2009], [Latić and Pižurica, 2014]
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Hierarchical Dictionaries

J. Mairal, R. Jenatton, G. Obozinski and F. Bach (2011). Learning Hierarchical

and Topographic Dictionaries with Structured Sparsity. SPIE Wav.&Sparsity.

A. Pižurica Sparse Coding and Multimodal Dictionary Learning in Computer Vision 23 / 59



Some Open Problems and Challenges

Most of the current methods focus on training a dictionary in a
single feature space or on features derived from the same imaging
modality [Shen et al., 2015]. Generalizations to multimodal and
heterogeneous data are challenging.

Development of efficient learning tools, especially for multimodal
dictionaries is still an open problem [Bahrampour et al., 2006].

Lack of structure limits the practical applicability of learned
dictionaries [Shao et al., 2014].
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Coupled Dictionary Learning for Super-Resolution

J. Yang, J. Wright, T. S. Huang, and Y. Ma (2010). Image Super-Resolution

Via Sparse Representation, IEEE TIP.
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Coupled Dictionary Learning for X-Ray Source Separation

N. Deligiannis, J. Mota, B. Cornelis, M. Rodrigues and I. Daubechies (2017).

Multi-Modal Dictionary Learning for Image Separation With Application in Art

Investigation. IEEE TIP.
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Coupled Dictionary Learning for X-Ray Source Separation

[Deligiannis et al, 2017]

y1 = Ψcz1c

y2 = Ψcz2c

xray1 = Φcz1c + Φv

xray2 = Φcz2c + Φv

min
{
‖z1c‖1 + ‖z2c‖1 + 2‖v‖1

}
subject to m = Φcz1c + Φcz2c + Φv

y1 = Ψcz1c

y2 = Ψcz2c
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Coupled Dictionary Learning for X-Ray Source Separation

[Deligiannis et al, 2017]
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Coupled Dictionary Learning for X-Ray Source Separation

(contrast enhanced )

[Deligiannis et al, 2017]
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Sparse Representation Classification - SRC

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust

face recognition via sparse representation. IEEE PAMI.

A. Pižurica Sparse Coding and Multimodal Dictionary Learning in Computer Vision 33 / 59



Sparse Representation Classification - SRC

α̂ = arg min
α
‖y −Dα‖2

2 s.t. ‖α‖0 ≤ K

Let δm(α) denote a vector whose all entries are set to zero except those
associated with class m and define a class-specific residual rm(y)

rm(y) = ‖y −Dδm(α̂)‖2, m = 1, ...,M

and the sample class as: identity(y) = arg min
m=1,...,M

rm(y)
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Sparse Representation Classification - SRC

Equivalently,

rm(y) = ‖y −Dmα̂m‖2, m = 1, ...,M

identity(y) = arg min
m=1,...,M

rm(y)
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SRC in Hyperspectral Image Classification

[Chen et al., 2011]

α̂ = arg min
α
‖y −Dα‖2

2 subject to ‖α‖0 ≤ K

rm(y) = ‖y −Dmα̂m‖2, m = 1, ...,M

class(y) = arg min
m=1,...,M

rm(y)
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Joint Sparsity Model

Collect pixels from a small neighbourhood Nε into
Y = [y1, ..., yT ] ∈ RB×T

Y = [y1 . . . yT ]︸ ︷︷ ︸
pixels from Nε

= [Dα1 . . . DαT ] = D [α1 . . . αT ]︸ ︷︷ ︸
A

= DA

Sparse codes {αt}Tt=1 share the same support =⇒ A is sparse with only
K non-zero rows, i.e., A is row sparse.

JSRC method [Chen et al., 2011]:

Â = arg min
A
‖Y −DA‖2

F subject to ‖A‖row ,0 ≤ K

rm(Y) = ‖Y −DmÂm‖F , m = 1, ...,M

class(ycentral) = arg min
m=1,...,M

rm(Y)

A. Pižurica Sparse Coding and Multimodal Dictionary Learning in Computer Vision 37 / 59



Robust SRC for Hyperspectral Image Classification

Y = X︸︷︷︸
ideal image

+ N︸︷︷︸
Gaussian noise

+ S︸︷︷︸
sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and Pižurica, A. (2017). Robust joint sparsity

model for hyperspectral image classification. In IEEE ICIP 2017
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Y = X︸︷︷︸
ideal image

+ N︸︷︷︸
Gaussian noise

+ S︸︷︷︸
sparse noise

{Â, Ŝ} = arg min
A,S
‖Y −DA− S‖2

F + λ‖S‖1 subject to ‖A‖row ,0 ≤ K

rm(Y) = ‖Y −DmÂm − Ŝ‖F , m = 1, ...,M

class(ycentral) = arg min
m=1,...,M

rm(Y)

Huang, S., Zhang, H., Liao, W., and Pižurica, A. (2017). Robust joint sparsity

model for hyperspectral image classification. In IEEE ICIP 2017
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Robust SRC for Hyperspectral Image Classification

A. Pižurica Sparse Coding and Multimodal Dictionary Learning in Computer Vision 40 / 59



Robust SRC for Hyperspectral Image Classification
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A. Pižurica Sparse Coding and Multimodal Dictionary Learning in Computer Vision 42 / 59



The Ghent Altarpiece

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb

Also known as Adoration of the Mystic Lamb, Hubert and Jan Van Eyck,
completed in 1432.
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Ghent Altarpiece - Current Restoration Campaign
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Ghent Altarpiece - Current Restoration Campaign
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Ghent Altarpiece - Current Restoration Campaign

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Ghent Altarpiece - Current Restoration Campaign

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Problem of Paint Loss Detection

Paint loss detection crucial for

documenting purpose

virtual restoration

decision making in the actual
restoration process

Currently done manually:

labor intensive

only rough indication

prone to errors

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Multimodal Data

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Features for SRC

S. Huang, W. Liao, H. Zhang, and A. Pižurica (2016). Paint Loss Detection in

Old Paintings by Sparse Representation Classification. iTWIST.
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SRC-based Paint Loss Detection Method

Nm
j - number of trials in which yj was labelled as class m;

m ∈ {PaintLoss,Other}

class(yj) = arg max
m

pj(m) = arg max
m

(Nm
j /N)︸ ︷︷ ︸

empirical prob. of class m

S. Huang, W. Liao, H. Zhang, and A. Pižurica (2016). Paint Loss Detection in

Old Paintings by Sparse Representation Classification. iTWIST.
A. Pižurica Sparse Coding and Multimodal Dictionary Learning in Computer Vision 51 / 59



Paint Loss Detection Results

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Virtual Restoration

The result of automatic paint loss detection followed by inpainting using
the method of [Ružić and Pižurica, 2015]. Copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Spectral Mixing

S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and

Comparative Study of Geometrical Approaches for Spectral Unmixing.

International Journal of Scientific and Engineering Research.
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Sparse Unmixing

Ideal hyperspectral image reordered as a matrix X ∈ RB×MN

Linear mixing model:
X = EA

E ∈ RB×K – library of endmembers; A ∈ RK×MN – abundance

Y = E︸︷︷︸
library

A︸︷︷︸
abundance

+ N︸︷︷︸
Gaussian noise

+ S︸︷︷︸
sparse noise

The approach of [Aggarval et al, 2016]:

min
A,S
‖Y − EA− S‖2

F + λ1‖A‖2,1 + λ2‖S‖1

Many similar variants exist, also making use of low-rank assumption:

min
A

rank{A} subject to ‖Y − EA− S‖2
F ≤ ε
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Related work

Anomalies in ArXiv collaboration network (General Relativity co-authors). Georgios B. Giannakis, 2017

Model anomalies in a network with a sparse outlier matrix

Y = X + N + S︸︷︷︸
outliers

Low-rank plus sparsity-promoting estimator

min
X,S
‖PΩ(Y − X− S)‖2

F + λ1‖X‖? + λ2‖S‖1

M. Mardani, G. Mateos, and G. B. Giannakis (2013). Recovery of low rank

plus compressed sparse matrices with application to unveiling traffic anomalies.

IEEE Trans. Info. Theory.
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Summary

Many applications in various inverse problems and
detection/classification tasks

Related approaches include Sparse Representation Classification
where the dictionary is constructed from the training samples

Outlook
I Efficient methods for multimodal dictionary learning
I Incorporating efficiently structure and feature hierarchies
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