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Sparse representation
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Designed vs. Learned Dictionaries

Designed dictionaries: wavelets, curvelets, shearlets...
I typically yield sparse representation of signals and images
I advantages: generic, fast computation

Learned dictionaries
I trained on a set of representative examples
I goal: optimally sparse representation for a given class of signals
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Sparse coding
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Greedy algorithms

Matching Pursuit (MP) [Mallat and Zhang, ‘93]
OMP [Tropp,‘04], CoSaMP [Needell and Tropp, ‘09]
IHT [Blumensath and Davies, 09]
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Sparse coding

Convex relaxation:
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LASSO [Tibshirani, ‘96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning
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Iterate Two Steps: Sparse Coding and Dictionary Update

Dictionary update:

Maximum likelihood method of
[Olshausen and Field, 1997]

MOD [Engan et al., 1999]

K-SVD [Aharon et al., 2006]
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Learned Dictionaries of Image Atoms - Examples

Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and K-SVD
[Aharon et al., 2006] (right)
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Application in Painter Style Characterization

[Hughes et al, 2009], [Latić and Pižurica, 2014]
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Sparse Representation Classification

[Wright et al, 2009]
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Joint Sparsity Model
Collect pixels from a small neighbourhood N✏ into Y = [y
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Robust SRC for Hyperspectral Image Classification

Y = X
|{z}

ideal image

+ N
|{z}

Gaussian noise

+ S
|{z}

sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and Pižurica, A. (2017). Robust joint sparsity model for

hyperspectral image classification. In IEEE ICIP 2017.
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Robust SRC for Hyperspectral Image Classification
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S. Huang, H. Zhang and A. Piurica (2017). A Robust Sparse Representation Model for

Hyperspectral Image Classification. Sensors.
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Robust SRC for Hyperspectral Image Classification
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Robust SRC for Hyperspectral Image Classification
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Spectral Mixing

S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and Comparative Study

of Geometrical Approaches for Spectral Unmixing. International Journal of Scientific and

Engineering Research.
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Sparse Unmixing
Ideal hyperspectral image reordered as a matrix X 2 RB⇥MN

Linear mixing model:
X = EA

E 2 RB⇥K – library of endmembers; A 2 RK⇥MN – abundance

Y = E
|{z}
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A
|{z}

abundance

+ N
|{z}

Gaussian noise

+ S
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sparse noise

The approach of [Aggarval et al, 2016]:
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Sparse Unmixing

Estimated fractional abundance maps (AVIRIS Cuprite subscene, USGS library).

R. Wang, H.-C. Li, A. Pižurica, J. Li, A. Plaza, and W. J. Emery (2017). Hyperspectral

Unmixing Using Double Reweighted Sparse Regression and Total Variation. IEEE Geoscience

and Remote Sensing Letters.
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Spectral clustering

No labelled data available ! no supervised classification but instead clustering
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC+N; Y = [y
1

...y
N
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C
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Similarity matrix: W = |C |+ |C |T
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]
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Joint Sparse Subspace Clustering - JSSC

S. Huang, H. Zhang and A. Pižurica (2018). Semi-supervised Sparse Subspace Clustering

Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images. IEEE J.

Sel. Topics in Earth Observation and Remote Sens.
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Joint Sparse Subspace Clustering - JSSC

Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC (1 %

labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

S. Huang, H. Zhang and A. Pižurica (2018). IEEE JSTARS
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Nice, but ...

SSC becomes practically infeasible for very large scale data.

E.g. for the full Pavia University image 610 ⇥ 340, the size of C is 207400 ⇥ 207400
! 320,5 GB memory
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Sketching

Reduces greatly the size of the problem!

P. A. Traganitis and G. B. Giannakis. Sketched subspace clustering. IEEE Trans. Signal

Process., vol. 66, no. 7, pp. 16631675, 2018.
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Sketched Sparse Subspace Clustering for Hyperspectral Images

S. Huang, H. Zhang and A. Pižurica Sketched Sparse Subspace Clustering with Total Variation

Constraint for Hyperspectral Images, submitted to Information Sciences (2019).
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Deep learning in HSI classification

Improving the performance in the case of limited labelled data.

X. Li, M. Ding and A. Pižurica. Deep Feature Fusion via Two-Stream Convolutional Neural

Network for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote

Sensing, in press (2019).
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Deep learning in HSI classification

Reducing the computational complexity - applicability to large scale data.

X. Li, M. Ding and A. Pižurica. Group Convolutional Neural Networks for Hyperspectral Image

Classification, ICIP 2018.
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece - Some details
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The Ghent Altarpiece - Some details
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The Ghent Altarpiece - Some details
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The current restoration of the Ghent Altarpiece

Ongoing conservation-restoration treatment (started in 2012).A. Pižurica Sparse Coding and Machine Learning in Multimodal Image Processing 46 / 99



Ghent Altarpiece - Current Restoration Campaign
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Ghent Altarpiece restoration – Phase 1
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Ghent Altarpiece restoration – Phase 1
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Ghent Altarpiece restoration – Phase 2 (inner panels)

The Mystic Lamb – before and after the restoration.

A. Pižurica Sparse Coding and Machine Learning in Multimodal Image Processing 50 / 99



Central panel

The Mystic Lamb – restored.
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Restoration – Phase 1, after cleaning: paint losses
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Restoration – Phase 1, after cleaning: paint losses
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Why do we need automatic paint loss detection?

Paint loss detection is crucial for

documenting purpose

virtual restoration

decision making in the actual
restoration process

Currently done manually:

labor intensive

only rough indication

prone to errors

c�Ghent, Kathedrale Kerkfabriek, Lukasweb
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Crack detection

Diagnostics, overpaint detection.

Input for virtual crack filling. Improving readability of inscriptions.
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Challenges: Information extraction from multimodal data

Extracting useful information
from multiple modalities, with

huge data

imperfect alignment

scarce annotations

erroneous annotations

c�Ghent, Kathedrale Kerkfabriek, Lukasweb
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Paint loss detection problem - di�culties

c�Ghent, Kathedrale Kerkfabriek, Lukasweb

A scatter plot of RGB values for randomly
selected paint loss and background pixels in
the macrophotography after cleaning
(red: paint loss; blue: background).
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A multimodal approach

c�Ghent, Kathedrale Kerkfabriek, Lukasweb
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Registration of multimodal images

Crack patterns can be employed as landmarks.
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Paint loss detection data sets - John the Evangelist
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Paint loss detection data sets - prophet Zachary
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Annotations by art restorers
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Annotations by art restorers
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Multimodal Data

c�Ghent, Kathedrale Kerkfabriek, Lukasweb

Annotations done on macrophotographs during the treatment;

Dictionaries for sparse representation classification constructed from the available
multimodal data. The available modalities may di↵er from one panel to another.
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Features for SRC

S. Huang, W. Liao, H. Zhang, and A. Pižurica (2016). Paint Loss Detection in Old Paintings

by Sparse Representation Classification. iTWIST.
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SRC-based Paint Loss Detection Method

Nm

j

- number of trials in which y
j

was labelled as class m; m 2 {PaintLoss,Other}

class(y
j

) = argmax
m

p
j

(m) = argmax
m

(Nm

j

/N)
| {z }

empirical prob. of class m

S. Huang, W. Liao, H. Zhang, and A. Pižurica (2016). Paint Loss Detection in Old Paintings

by Sparse Representation Classification. iTWIST.
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Paint Loss Detection Results

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Paint Loss Detection - Numerical results

SVM – Support Vector Machines
SRC – Direct application of SRC (Sparse Representation Classification)
STD – Sparse Representation for Target Detection [Chen et al., 2011b]
Proposed – the proposed method based on kernel-SRC [Huang et al., 2018]

S. Huang, L. Meeus, B. Cornelis, B. Devolder, M. Martens, and A. Pižurica, (2018). Paint loss

detection via kernel sparse representations. In Image Processing for Art Investigation (IP4AI).
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A multiscale deep learning method for paint loss detection

L. Meeus, S. Huang, B. Devolder, M.Martens, and A. Pižurica (2018).

Deep Learning for Paint Loss Detection: A Case Study on the Ghent Altarpiece. IP4AI.
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A multiscale deep learning method for paint loss detection

Size: 5954 ⇥ 7546; processed in < 1 minute
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A multiscale deep learning method for paint loss detection
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Deep learning in crack detection

Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017].
However, crack detection in paintings is much more challenging!
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A deep learning method for crack detection in paintings

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. Pižurica (2018). A deep

learning approach to crack detection in panel paintings. IP4AI.

A. Pižurica Sparse Coding and Machine Learning in Multimodal Image Processing 76 / 99



Crack detection: panel Singing Angels
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Crack detection: panel Singing Angels

Left: A Bayesian multimodal method (BCTF). Right: CNN-based.
red – false detections; blue – missing cracks; green - -correct.
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Patch-based inpainting
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Context adaptative inpainting

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov

random field modeling. IEEE Transactions on Image Processing 2015
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Global inpainting
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Global inpainting

E (x) =
X

i2⌫
V
i

(x
i

) +
X

hi ,ji2"

V
ij

(x
i

, x
j

), (1)

[Komodakis and Tziritas, 2007], [Ružić and Pižurica, 2015]
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Global inpainting
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Global inpainting: e�cient inference

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov

random field modeling. IEEE Transactions on Image Processing 2015
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A summary of patch based inpainting

P
i ,j = S(�

i

,�
j

) + max
k

X

l2N
j,k

S(�
i

,�
l

)

A. Pižurica et al. Digital Image Processing of the Ghent Altarpiece. Signal Process. Mag. 2015
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Crack inpaiting
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Crack inpaiting
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Left: Input; Middle: virtual restoration; Right: actual restoration.
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IP4AI Community

IP4AI - Image Processing for Art Investigation

IP4AI 2018 proceedings: https://ip4ai.ugent.be/
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Special Session at ISIT 2019

ISIT 2019 Special Session on Applications in Fine Arts
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A. Pižurica Sparse Coding and Machine Learning in Multimodal Image Processing 99 / 99



Huang, S., Meeus, L., Cornelis, B., Devolder, B., Martens, M., and Pižurica, A.
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