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A Wealth of High-Dimensional Multimodal Data

Remote sensing data (hyperspectral, visible, LiDAR,...) Digitized paintings (infrared, X-Ray, visible)
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Outline

@ Sparse Coding of High-Dimensional Signals
@ Sparse representation
@ Sparse Representation Classification

© Applications in Remote Sensing
@ Robust SRC in Hyperspectral Imaging
@ Sparse Unmixing
@ Sparse Subspace Clustering

e Applications in Art Investigation
@ The Ghent Altarpiece
@ Challenges for signal processing and machine learning
@ Paint loss detection based on sparse coding
@ Deep learning approaches
@ Virtual restoration
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Outline

@ Sparse Coding of High-Dimensional Signals
@ Sparse representation
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Sparse representation
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Designed vs. Learned Dictionaries

o Designed dictionaries: wavelets, curvelets, shearlets...

> typically yield sparse representation of signals and images
» advantages: generic, fast computation

@ Learned dictionaries

» trained on a set of representative examples
» goal: optimally sparse representation for a given class of signals
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Sparse coding

& = argmin ||y — Dal|3 subject to oo < K
«

& = argmin ||afo  subject to |ly — Da3 < ¢
[0
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Sparse coding

& = argmin |ly — Da|3 subject to  [laflo < K
@

& = argmin||ao subject to |ly — Da3 <€
[0

Greedy algorithms
e Matching Pursuit (MP) [Mallat and Zhang, ‘93]
e OMP [Tropp,'04], CoSaMP [Needell and Tropp, ‘09]
e |HT [Blumensath and Davies, 09]
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Sparse coding

<
=]

Convex relaxation:

& =argmin |lall;  subject to |ly — Da|]3 <€
@

& = argmin|ly — Dax[3 + Aol
(87

LASSO [Tibshirani, '96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

Y D A

DA = argmin{ ||Y — DA|) subject to Vi, ||laj|lo < K
D.A F

A similar objective:

DA} = i ; bject to ||Y — DA||2 <
{D,A} argrg'ﬂZHa o subject to || |F<e
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Sparse coding and dictionary learning

-

Y

{D,A} =arg rSiR{HY - DAHZF} subject to Vi, ||aillo < K

A similar objective:

{D,A} =arg min > lleillo subjectto |[Y — DA| <e
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Iterate Two Steps: Sparse Coding and Dictionary Update

Set of examples Y

1 Sparse Coding

Fix D, find a sparse A

Dictionary update:

2 Dictionary Update
Update D

@ Maximum likelihood method of
[Olshausen and Field, 1997]

e MOD [Engan et al., 1999]
e K-SVD [Aharon et al., 2006]

Stopping criterion
reached?

{D.A}
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Learned Dictionaries of Image Atoms - Examples
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Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and K-SVD
[Aharon et al., 2006] (right)
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Application in Painter Style Characterization

Analysis

[Hughes et al, 2009], [Lati¢ and PiZurica, 2014]
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Outline

@ Sparse Coding of High-Dimensional Signals

@ Sparse Representation Classification
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Sparse Representation Classification
[Wright et al, 2009]

<

D
Dl/' D, Dy

a sample from
classm

& = argmin ||y — Dal|3 subject to [alo < K
[0
rm(y) =|ly = Dmbpml|l2, m=1,...M

class(y) = argmin rpy(y)
m=1,....M
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Joint Sparsity Model
Collect pixels from a small neighbourhood A; into Y = [yg,...,y7] € REXT

Y=[y: ... yr]=[Dai ... Dar]=D[a; ... a7] = DA
~—— —_—
pixels from N¢ A

Sparse codes {at}thl share the same support = A is sparse with only K non-zero
rows, i.e., A is row sparse.

JSRC method [Chen et al., 2011a]:
A=arg m&n |Y — DA||% subject to [|Allowo < K

rm(Y) =Y =DpAnlls, m=1,..M

CIass(Ycentral) = argmin rm(Y)
m=1,...M
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Outline

© Applications in Remote Sensing
@ Robust SRC in Hyperspectral Imaging
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and PiZurica, A. (2017). Robust joint sparsity model for
hyperspectral image classification. In IEEE ICIP 2017.
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise
{A,S} =arg min [[Y — DA — S|[F + AlIS|l  subject to [|A|;ow0 < K
rm(Y) =Y =D,A, -S|, m=1,.,M

class(Yeentrar) = argmin rp(Y)
m=1,....M

S. Huang, H. Zhang and A. Piurica (2017). A Robust Sparse Representation Model for
Hyperspectral Image Classification. Sensors.
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Robust SRC for Hyperspectral Image Classification

SVM, OA=89.0%

ground truth

Trees
Concrete
Soil
Grass

Asphalt
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Robust SRC for Hyperspectral Image Classification

Indian Pines (false color image) ground truth SVM, OA 80.. 4%

Alfalfa Oats
B Com-notill Soybean-notil
B Com-mintil S
Bl Com

Grass-pasture

Grass-trees s
: i BId "
Grass-pas g

Hay-windrowed Stone-stecl-towers
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Outline

© Applications in Remote Sensing

@ Sparse Unmixing
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Spectral Mixing

.
o ~
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S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and Comparative Study
of Geometrical Approaches for Spectral Unmixing. International Journal of Scientific and
Engineering Research.
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Sparse Unmixing

Ideal hyperspectral image reordered as a matrix X €
Linear mixing model:

RBXMN

X =EA
E € RB*K — library of endmembers; A € R¥*MN _ ahundance

Y=_E A+ N + S

library abundance  Gaussian noise  sparse noise

The approach of [Aggarval et al, 2016]:

min [[Y — EA — S| + MllAll21 + X211

Many similar variants exist, also making use of low-rank assumption:

minrank{A}  subject to Y —EA — S|z <e
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Sparse Unmixing

EE

Alunite Buddingtonite Chalcedony

I N
2 kilometers

Estimated fractional abundance maps (AVIRIS Cuprite subscene, USGS library).

R. Wang, H.-C. Li, A. Pizurica, J. Li, A. Plaza, and W. J. Emery (2017). Hyperspectral
Unmixing Using Double Reweighted Sparse Regression and Total Variation. IEEE Geoscience
and Remote Sensing Letters.
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Outline

© Applications in Remote Sensing

@ Sparse Subspace Clustering
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Spectral clustering

No labelled data available — no supervised classification but instead clustering

Similarity matrix: W ¢ RMNxMN
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Sparse Subspace Clustering
[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N;

Cij # 0 —y; and y; are in the same subspace.

Similarity matrix: W = |C|+|C|T
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yn] € R™N

y~Yc=73,yic = csys + C7y7
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Joint Sparse Subspace Clustering - JSSC

C1Cy C3Cy

Y1Y2 Y3Y4

L5

row sparsity

S. Huang, H. Zhang and A. PiZurica (2018). Semi-supervised Sparse Subspace Clustering
Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images. IEEE J.
Sel. Topics in Earth Observation and Remote Sens.

i 32 /99
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() OA=61.51 (8) OA=71.61 (h) OA=69.91 (i) 0A=76.82 (j) OA=95.36

I Unlabelled MO Asphalt Il Meadows Trees Il Metal I Bare Soil MMM Bitumen [ Brick Shadows
Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC (1 %
labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

S. Huang, H. Zhang and A. PiZurica (2018). IEEE JSTARS
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Nice, but ...

= Huge
complexity

-
I C € ]RM‘\' XMN

SSC becomes practically infeasible for very large scale data.

E.g. for the full Pavia University image 610 x 340, the size of C is 207400 x 207400
— 320,5 GB memory
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Sketching

Reduces greatly the size of the problem!

P. A. Traganitis and G. B. Giannakis. Sketched subspace clustering. IEEE Trans. Signal
Process., vol. 66, no. 7, pp. 16631675, 2018.

A. PiZurica Sparse Coding and Machine Learning in Multimodal Image Processing 35 /99



Sketched Sparse Subspace Clustering for Hyperspectral Images

AR

DeRBx» A € RWMN Noise

«= Total variation (TV)
norm on each layer

S. Huang, H. Zhang and A. PiZurica Sketched Sparse Subspace Clustering with Total Variation
Constraint for Hyperspectral Images, submitted to Information Sciences (2019).
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Sketched Sparse Subspace Clustering for Hyperspectral Images

Y € R204x111104 ==p C ¢ R111104x111104
Salinas: 16 Classes; 111104 pixels l Our method

STV

& Ll

>
k\ s SSC
|22 -

False color Ground truth ~ OA=63.79 OA=74.36 OA=80.28

Time=31s Time=269 s Time=335s

I oroetes [ oo [ S — [E— suve [ coev
solvinarc.deveop [N co etuce- [N terceswk Letuce vk -

S. Huang, H. Zhang and A. PiZurica Sketched Sparse Subspace Clustering with Total Variation
Constraint for Hyperspectral Images, submitted to Information Sciences (2019).
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Deep learning in HSI classification

SE-Conv, Pooling *SE-RES ‘ SE-Res ‘ Pooling *SEConv *Pooling 4 se-conv JfFf Pooling

Local Feature Extraction Stream

\
2 = F) | i
=1 | ] = &
SE-Conv SE-Conv SE-Conv SE-Conv ,' Pooling 7 FC~ FC & FC &
I C P
I
)

* 5 ] g u
f f f # F Concatenate % : Softmax
| Sigmoid
\‘____'____'____' ________ P Sigmoid+L2

Improving the performance in the case of limited labelled data.

X. Li, M. Ding and A. PiZurica. Deep Feature Fusion via Two-Stream Convolutional Neural
Network for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote
Sensing, in press (2019).
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Deep learning in HSI classification

u
]
] [
u n
\ n
] M Softmax
: i—p
] B
(I
u
] [
s FC .
Classification
FC result
— Grouped feature fusion
Multi-scale spectral Group spectral and spatial
feature extraction (MSSFE) feature extraction

Reducing the computational complexity - applicability to large scale data.

X. Li, M. Ding and A. Pizurica. Group Convolutional Neural Networks for Hyperspectral Image
Classification, ICIP 2018.
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Outline

e Applications in Art Investigation
@ The Ghent Altarpiece
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece - Some details
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The Ghent Altarpiece - Some details
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The Ghent Altarpiece - Some details
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The current restoration of the Ghent Altarpiece

A. Pizurica



Ghent Altarpiece - Current Restoration Campaign
SCIENCE Ehe New York Eimes
A Master Work, the Ghent Altarpiece, Reawakens Stroke by Stroke

By MILAN SCHREUER  DEC. 18, 2016 o
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Ghent Altarpiece restoration — Phase 1

R
I\

" &« \&
=/

[ = Overpaint © KIK-IRPA
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Ghent Altarpiece restoration — Phase 1
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Ghent Altarpiece restoration — Phase 2 (inner panels)

The Mystic Lamb — before and after the restoration.
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Central panel
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Restoration — Phase 1, after cleaning: paint losses
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Restoration — Phase 1, after cleaning: paint losses
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Outline

© Applications in Art Investigation

@ Challenges for signal processing and machine learning
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Why do we need automatic paint loss detection?

Paint loss detection is crucial for
@ documenting purpose
@ virtual restoration

@ decision making in the actual
restoration process

Currently done manually:
@ labor intensive
@ only rough indication

@ prone to errors

A. Pizurica

(@©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Crack detection

- ‘ ‘ “ ‘ : 0

Diagnostics, overpaint detection.

- 4 ; . -
3 | [ A )

Input for virtual crack filling. Improving readability of inscriptions.
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Challenges: Information extraction from multimodal data

Extracting useful information
from multiple modalities, with

@ huge data
@ imperfect alignment
@ scarce annotations

@ erroneous annotations

A. Pizurica
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Paint loss detection problem - difficulties

(©Ghent, Kathedrale Kerkfabriek, Lukasweb

A. Pizurica

A scatter plot of RGB values for randomly
selected paint loss and background pixels in
the macrophotography after cleaning

(red: paint loss; blue: background).
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A multimodal approach

Macrophotography X-radiography Infrared macrophotography Macrophotography Infrared reflectography

Before treatment During treatment

(@©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Registration of multimodal images

Crack patterns can be employed as landmarks.
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Outline

© Applications in Art Investigation

@ Paint loss detection based on sparse coding
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Paint loss detection data sets - John the Evangelist

SRR ) _
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Paint loss detection data sets - prophet Zachary

7 N :
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Annotations by art restorers
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Annotations by art restorers
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Multimodal Data

(@©Ghent, Kathedrale Kerkfabriek, Lukasweb

@ Annotations done on macrophotographs during the treatment;

@ Dictionaries for sparse representation classification constructed from the available
multimodal data. The available modalities may differ from one panel to another.
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Features for SRC

Neighborhood Feature vectors

matrix  Egm f Features:
Lt mean, variance,

range, correlations

Layer t

P— Y fui= i fuiz o friel

Infrared-
image

Vi = [fvi foi 0 fril

Frren

Visible color image E'E.:> B fei
! —Jui

=

S. Huang, W. Liao, H. Zhang, and A. PiZurica (2016). Paint Loss Detection in Old Paintings
by Sparse Representation Classification. iTWIST.
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SRC-based Paint Loss Detection Method

portion of [ X

examples ® _. ...

) o (

/—\ ()
oo
Construct . Output
robabilities of

‘ ad ° ‘ class label

T A

Generate repeat N times
feature space

N[™ - number of trials in which y; was labelled as class m; m € {PaintLoss, Other}

class(y;) = argmaxp;(m) = argmax (N;"/N)
m m

-~

empirical prob. of class m

S. Huang, W. Liao, H. Zhang, and A. Pizurica (2016). Paint Loss Detection in Old Paintings
by Sparse Representation Classification. iTWIST.
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Paint Loss Detection Results

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Paint Loss Detection - Numerical results

95
20 pr—
Number of . o,

- s Schemes modalities Imaging modalities
: 80 1 MAC
g 3 Mjyc, Mge, [Rpe
3
g ” 3 5 Myc, Mpc, IRpe, IRRpe , X-raype

70

M — macrophotography subscript:
L IR — infrared macrophotography AC — after cleaning
o Ll IRR — infrared reflectography BC — before cleaning
SVM SRC STD  Proposed X-ray — radiography

SVM — Support Vector Machines

SRC — Direct application of SRC (Sparse Representation Classification)
STD — Sparse Representation for Target Detection [Chen et al., 2011b]
Proposed — the proposed method based on kernel-SRC [Huang et al., 2018]

S. Huang, L. Meeus, B. Cornelis, B. Devolder, M. Martens, and A. PiZurica, (2018). Paint loss
detection via kernel sparse representations. In Image Processing for Art Investigation (IP4Al).
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Outline

© Applications in Art Investigation

@ Deep learning approaches
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A multiscale deep learning method for paint loss detection

i t
R — EET:;'
) £
r:> HH 3x3 conv
9 ot i pooling
& 22 conv Probability Classification

Multimodal images

) ma
registered & concatenated P

L. Meeus, S. Huang, B. Devolder, M.Martens, and A. PiZurica (2018).
Deep Learning for Paint Loss Detection: A Case Study on the Ghent Altarpiece. IP4Al.
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A multiscale deep learning method for paint loss detection

Size: 5954 x 7546; processed in < 1 minute
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A multiscale deep learning method for paint loss detection
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Deep learning in crack detection

e R ‘

| " e
i :‘ - \\\“ P " \\{ e
2 L5

Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017].
However, crack detection in paintings is much more challenging!

75 / 99
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A deep learning method for crack detection in paintings

Kernels Convolution 1 Kernels Convolution 2 Kernels Convolution 3
@12 @24 Fully Fully
connected 1 connected 2
Red Comp
Green Comp
Blue Comp
IR image
XR image — — — —p
MF for RGB

MF for XR 1x192 1x2

6%6x12 4x4x24 2x2x48

8x8x8

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. PiZurica (2018). A deep
learning approach to crack detection in panel paintings. IP4Al.
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Crack detection: panel Singing Angels
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Crack detection

15 e

. panel Singing Angels

N

Left: A Bayesian multimodal method (BCTF). Right: CNN-based.
red — false detections; blue — missing cracks; green - -correct.
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Outline

© Applications in Art Investigation

@ Virtual restoration

A. PiZurica Sparse Coding and Machine Learning in Multimodal Image Processing 84 /99



Patch-based inpainting

damaged patch

=

composite
patch
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Context adaptative inpainting

Contextual
descriptor

{

Comparison of
contextual
descriptors

:

Selection of the
most contextually
=T: 3 3 similar blocks

T. RuZi¢ and A. PiZurica et al. Context-aware patch-based image inpainting using Markov
random field modeling. IEEE Transactions on Image Processing 2015
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Global inpainting

position p

A. PiZurica Sparse Coding and Machine Learning in Multimodal Image Processing 87 / 99



Global inpainting

E() =S Vil) + D Viiox), M)

iev (ij)ee

[Komodakis and Tziritas, 2007], [RuZi¢ and PiZurica, 2015]
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Global inpainting

Messages

Mpg(q) = min {qu(x,,,wq) + Vplap) bp(ay) = ~Vp(ap) = Y my(ay)

r:(r.p)€e
+ Z mrp(wp)}

rir#q,(r,p)€e
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Global inpainting: efficient inference

T. Ruzi¢ and A. PiZurica et al. Context-aware patch-based image inpainting using Markov
random field modeling. IEEE Transactions on Image Processing 2015

A. Pizurica Sparse Coding and Machine Learning in Multimodal Image Processing 90 / 99



A summary of patch based inpainting

greedy approach global approach adding structural priority

DEI

=

7

i{l

Pij = S(¢;, ¢;) + max Z S(oi, &)

/ENj,k

A. PiZurica et al. Digital Image Processing of the Ghent Altarpiece. Signal Process. Mag. 2015
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Crack inpaiting

A. PiZurica Sparse Coding and Machine Learning in Multimodal Image Processing 92 / 99



Crack inpaiting
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [RuZi¢ and PiZurica, TIP, 2015].
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Virtual Restoration
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Virtual Restoration

Left: Input; Middle: virtual restoration; Right: actual restoration.
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