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A Wealth of High-Dimensional Multimodal Data
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Capturing Intrinsic Structure of the Data

High-dimensional data often exhibits low-dimensional structure

Early models (PCA): find a linear subspace in which data resides

Recent methods

I Capture more complex low-dimensional structures (manifolds or
unions of multiple linear subspaces)

I Data has a sufficiently sparse representation with respect to some
basis or a dictionary
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Sparse representation
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Designed vs. Learned Dictionaries

Designed dictionaries: wavelets, curvelets, shearlets...
I typically yield sparse representation of signals and images
I advantages: generic, fast computation

Learned dictionaries
I trained on a set of representative examples
I goal: optimally sparse representation for a given class of signals
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Sparse coding

α̂ = arg min
α
‖y −Dα‖2

2 subject to ‖α‖0 ≤ K

α̂ = arg min
α
‖α‖0 subject to ‖y −Dα‖2

2 ≤ ε
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Sparse coding

α̂ = arg min
α
‖y −Dα‖2

2 subject to ‖α‖0 ≤ K

α̂ = arg min
α
‖α‖0 subject to ‖y −Dα‖2

2 ≤ ε

Greedy algorithms

Matching Pursuit (MP) [Mallat and Zhang, ‘93]

OMP [Tropp,‘04], CoSaMP [Needell and Tropp, ‘09]

IHT [Blumensath and Davies, 09]
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Sparse coding

Convex relaxation:

α̂ = arg min
α
‖α‖1 subject to ‖y −Dα‖2

2 ≤ ε

α̂ = arg min
α
‖y −Dα‖2

2 + λ‖α‖1

LASSO [Tibshirani, ‘96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

{D̂, Â} = arg min
D,A

{
‖Y −DA‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

A similar objective:

{D̂, Â} = arg min
D,A

∑
i

‖αi‖0 subject to ‖Y −DA‖2
F ≤ ε
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Iterate Two Steps: Sparse Coding and Dictionary Update

Dictionary update:

Maximum likelihood method of
[Olshausen and Field, 1997]

MOD [Engan et al., 1999]

K-SVD [Aharon et al., 2006]
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Learned Dictionaries of Image Atoms - Examples

Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and
K-SVD [Aharon et al., 2006] (right)
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Unsupervised vs. Supervised Dictionary Learning

Unsupervised dictionary learning

{D̂, Â} = arg min
D,A

{
‖Y −DA‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

I minimizes the reconstruction error
I inverse problems (restoration, inpainting,...)

Supervised (discriminative or task-driven)

{D̂, Ĉ︸︷︷︸
class. par.

, Â} = arg min
D,C,A

{
‖Y −DA‖2

F + µ‖ H︸︷︷︸
labels

− CA‖2
F + η‖C‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

I classification problems (H – label inform.; C – classifier parameters)
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Application in Painter Style Characterization

[Hughes et al, 2009], [Latić and Pižurica, 2014]
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Sparse Representation Classification - SRC

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust

face recognition via sparse representation. IEEE PAMI.
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Sparse Representation Classification - SRC

Equivalently,

rm(y) = ‖y −Dmα̂m‖2, m = 1, ...,M

identity(y) = arg min
m=1,...,M

rm(y)
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SRC in Hyperspectral Image Classification

[Chen et al., 2011a]

α̂ = arg min
α
‖y −Dα‖2

2 subject to ‖α‖0 ≤ K

rm(y) = ‖y −Dmα̂m‖2, m = 1, ...,M

class(y) = arg min
m=1,...,M

rm(y)
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Joint Sparsity Model

Collect pixels from a small neighbourhood Nε into
Y = [y1, ..., yT ] ∈ RB×T

Y = [y1 . . . yT ]︸ ︷︷ ︸
pixels from Nε

= [Dα1 . . . DαT ] = D [α1 . . . αT ]︸ ︷︷ ︸
A

= DA

Sparse codes {αt}Tt=1 share the same support =⇒ A is sparse with only
K non-zero rows, i.e., A is row sparse.

JSRC method [Chen et al., 2011a]:

Â = arg min
A
‖Y −DA‖2

F subject to ‖A‖row ,0 ≤ K

rm(Y) = ‖Y −DmÂm‖F , m = 1, ...,M

class(ycentral) = arg min
m=1,...,M

rm(Y)
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Robust SRC for Hyperspectral Image Classification

Y = X︸︷︷︸
ideal image

+ N︸︷︷︸
Gaussian noise

+ S︸︷︷︸
sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and Pižurica, A. (2017). Robust joint sparsity

model for hyperspectral image classification. In IEEE ICIP 2017.
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Robust SRC for Hyperspectral Image Classification

Y = X︸︷︷︸
ideal image

+ N︸︷︷︸
Gaussian noise

+ S︸︷︷︸
sparse noise

{Â, Ŝ} = arg min
A,S
‖Y −DA− S‖2

F + λ‖S‖1 subject to ‖A‖row ,0 ≤ K

rm(Y) = ‖Y −DmÂm − Ŝ‖F , m = 1, ...,M

class(ycentral) = arg min
m=1,...,M

rm(Y)

S. Huang, H. Zhang and A. Piurica (2017). A Robust Sparse Representation

Model for Hyperspectral Image Classification. Sensors.
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Robust SRC for Hyperspectral Image Classification
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Robust SRC for Hyperspectral Image Classification
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Spectral Mixing

S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and

Comparative Study of Geometrical Approaches for Spectral Unmixing.

International Journal of Scientific and Engineering Research.
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Sparse Unmixing

Ideal hyperspectral image reordered as a matrix X ∈ RB×MN

Linear mixing model:
X = EA

E ∈ RB×K – library of endmembers; A ∈ RK×MN – abundance

Y = E︸︷︷︸
library

A︸︷︷︸
abundance

+ N︸︷︷︸
Gaussian noise

+ S︸︷︷︸
sparse noise

The approach of [Aggarval et al, 2016]:

min
A,S
‖Y − EA− S‖2

F + λ1‖A‖2,1 + λ2‖S‖1

Many similar variants exist, also making use of low-rank assumption:

min
A

rank{A} subject to ‖Y − EA− S‖2
F ≤ ε
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Sparse Unmixing

Fractional abundance maps estimated for the AVIRIS Cuprite subscene
with the USGS library.

R. Wang, H.-C. Li, A. Pižurica, J. Li, A. Plaza, and W. J. Emery (2017).

Hyperspectral Unmixing Using Double Reweighted Sparse Regression and Total

Variation. IEEE Geoscience and Remote Sensing Letters.
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yN ] ∈ Rm×N

Ci,j 6= 0→ yi and yj are in the same subspace.

Similarity matrix: W = |C |+ |C |T
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Sparse Subspace Clustering
[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yN ] ∈ Rm×N

y ≈ Yc =
∑

i yici = c5y5 + c7y7

Ci,j 6= 0→ yi and yj are in the same subspace.

Similarity matrix: W = |C |+ |C |T
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Joint Sparse Subspace Clustering - JSSC

S. Huang, H. Zhang and A. Pižurica (2018). Semi-supervised Sparse Subspace

Clustering Method With a Joint Sparsity Constraint for Hyperspectral Remote

Sensing Images. IEEE J. Sel. Topics in Earth Observation and Remote Sens.
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Joint Sparse Subspace Clustering - JSSC

Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC
(1 % labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

S. Huang, H. Zhang and A. Pižurica (2018). IEEE JSTARS
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.

A. Pižurica Multimodal Image Processing and Machine Learning in Computer Vision 39 / 96



The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The current restoration of the Ghent Altarpiece

Ongoing conservation-restoration treatment (started in 2012).
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Ghent Altarpiece - Current Restoration Campaign
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Ghent Altarpiece restoration – Phase 1
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Restoration – Phase 1, after cleaning: paint losses
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Restoration – Phase 1, after cleaning: paint losses
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Restoration – Phase 1, after cleaning: paint losses
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Why do we need automatic paint loss detection?

Paint loss detection is crucial for

documenting purpose

virtual restoration

decision making in the actual
restoration process

Currently done manually:

labor intensive

only rough indication

prone to errors

c©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Crack detection

Diagnostics, overpaint detection.

Input for virtual crack filling. Improving readability of inscriptions.

A. Pižurica Multimodal Image Processing and Machine Learning in Computer Vision 49 / 96



Challenges: Huge data

Each 15x20 cm area recorded in a separate capture with a camera fitted
with a Hasselblad 120mm lens and a 50-megapixel camera back (8176 x
6132 pixels).
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Paint loss detection problem - difficulties

c©Ghent, Kathedrale Kerkfabriek, Lukasweb

A scatter plot of RGB values for
randomly selected paint loss and
background pixels in the macropho-
tography after cleaning
(red: paint loss; blue: background).
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A multimodal approach

c©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Registration of multimodal images

Crack patterns can be employed as landmarks.
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Paint loss detection data sets - John the Evangelist
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Paint loss detection data sets - prophet Zachary
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Annotations by art restorers
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Annotations by art restorers
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Multimodal Data

c©Ghent, Kathedrale Kerkfabriek, Lukasweb

Annotations done on macrophotographs during the treatment;

Dictionaries for sparse representation classification constructed from
the available multimodal data. The available modalities may differ
from one panel to another.
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Features for SRC

S. Huang, W. Liao, H. Zhang, and A. Pižurica (2016). Paint Loss Detection in

Old Paintings by Sparse Representation Classification. iTWIST.
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SRC-based Paint Loss Detection Method

Nm
j - number of trials in which yj was labelled as class m;

m ∈ {PaintLoss,Other}

class(yj) = arg max
m

pj(m) = arg max
m

(Nm
j /N)︸ ︷︷ ︸

empirical prob. of class m

S. Huang, W. Liao, H. Zhang, and A. Pižurica (2016). Paint Loss Detection in

Old Paintings by Sparse Representation Classification. iTWIST.
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Paint Loss Detection Results

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb
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Paint Loss Detection - Numerical results

SVM – Support Vector Machines
SRC – Direct application of SRC (Sparse Representation Classification)
STD – Sparse Representation for Target Detection [Chen et al., 2011b]
Proposed – the proposed method based on kernel-SRC
[Huang et al., 2018]

S. Huang, L. Meeus, B. Cornelis, B. Devolder, M. Martens, and A. Pižurica,

(2018). Paint loss detection via kernel sparse representations. In Image

Processing for Art Investigation (IP4AI).
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Deep learning methods

A generic concept of a classifier based on a convolutional neural network
(CNN).
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Deep learning methods

ρ – pointwise nonlinearity (e.g., ReLU); Wi – linear operator
(convolution);

Wjxj−1(u, kj) =
∑

k

∑
v xj−1(v , k)wj,kj (u − v , k) =∑

k(xj−1(., k) ? wj,kj (., k))(u)
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Deep learning methods

Predicted probabilities of class labels using the softmax rule:

P(class(x(u) = j |zj) =
ezj∑
l e

zl
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A multiscale deep learning method for paint loss detection

L. Meeus, S. Huang, B. Devolder, M.Martens, and A. Pižurica (2018).

Deep Learning for Paint Loss Detection: A Case Study on the Ghent

Altarpiece. IP4AI.
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A multiscale deep learning method for paint loss detection

Size: 5954 × 7546; processed in < 1 minute
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Deep learning in crack detection

Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017].
However, crack detection in paintings is much more challenging!
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A deep learning method for crack detection in paintings

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. Pižurica

(2018). A deep learning approach to crack detection in panel paintings. IP4AI.
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Crack detection: panel Singing Angels
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Crack detection: panel Singing Angels

Left: A Bayesian multimodal method (BCTF). Right: CNN-based.
red – false detections; blue – missing cracks; green - -correct.
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Crack detection: Central panel

The Mystic Lamb – before and after the restoration.
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Crack detection: Central panel

The Mystic Lamb – restored.
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Patch-based inpainting
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Context adaptative inpainting

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting

using Markov random field modeling. IEEE Transactions on Image Processing

2015
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Global inpainting
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Global inpainting

E (x) =
∑
i∈ν

Vi (xi ) +
∑
〈i,j〉∈ε

Vij(xi , xj), (1)

[Komodakis and Tziritas, 2007], [Ružić and Pižurica, 2015]
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Global inpainting
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Global inpainting: efficient inference

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting

using Markov random field modeling. IEEE Transactions on Image Processing

2015
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A summary of patch based inpainting

Pi,j = S(φi ,φj) + max
k

∑
l∈Nj,k

S(φi ,φl)

A. Pižurica et al. Digital Image Processing of the Ghent Altarpiece. Signal

Process. Mag. 2015
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Crack inpaiting
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Crack inpaiting
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [Ružić and Pižurica, TIP, 2015].
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Virtual Restoration

Left: Input; Middle: virtual restoration; Right: actual restoration.
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IP4AI Community

IP4AI - Image Processing for Art Investigation

IP4AI 2018 proceedings: https://ip4ai.ugent.be/
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Special Session at ISIT 2019

ISIT 2019 Special Session on Applications in Fine Arts
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