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Outline

@ Sparse Coding of High-Dimensional Signals
@ Sparse representation
@ Unsupervised vs. Supervised Dictionary Learning
@ Sparse Representation Classification

© Applications in Remote Sensing
@ Robust SRC in Hyperspectral Imaging
@ Sparse Unmixing
@ Sparse Subspace Clustering

© Applications in Art Investigation
@ The Ghent Altarpiece
@ Challenges for signal processing and machine learning
@ Paint loss detection based on sparse coding
@ Deep learning approaches
@ Virtual restoration
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A Wealth of High-Dimensional Multimodal Data

Remote sensing data (hyperspectral, visible, LiDAR,...) Digitized paintings (infrared, X-Ray, visible)
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Capturing Intrinsic Structure of the Data

e High-dimensional data often exhibits low-dimensional structure
o Early models (PCA): find a linear subspace in which data resides
@ Recent methods

> Capture more complex low-dimensional structures (manifolds or
unions of multiple linear subspaces)

P. V. Dinh: Review on Manifold Learning, 2009

» Data has a sufficiently sparse representation with respect to some
basis or a dictionary
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Outline

@ Sparse Coding of High-Dimensional Signals
@ Sparse representation
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Sparse representation
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Designed vs. Learned Dictionaries

o Designed dictionaries: wavelets, curvelets, shearlets...

> typically yield sparse representation of signals and images
» advantages: generic, fast computation

@ Learned dictionaries

> trained on a set of representative examples
» goal: optimally sparse representation for a given class of signals
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Sparse coding

& = argmin|ly — Da|3 subject to  |laflo < K
(a7

& = argmin|jallp subject to |ly — Dal3 < e
(e
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Sparse coding

& = argmin|ly — Da|3 subject to |laflo < K
(a7

& = argmin||allp subject to ||y — Da|j3 <
(a4

Greedy algorithms
e Matching Pursuit (MP) [Mallat and Zhang, ‘93]

e OMP [Tropp,‘04], CoSaMP [Needell and Tropp, ‘09]
e |HT [Blumensath and Davies, 09]
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Sparse coding

=)

Convex relaxation:

& =argmin|jall;  subject to ||y — Dal3 < e
(a4

& = argmin ||y — Dex|3 + Al|ex[|x
@

LASSO [Tibshirani, ‘96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

Y D A

{D,A} = arg rSiR{”Y - DA||,2:} subject to Vi, ||allo < K

A similar objective:

{D,A} = arg rSiR Z |allo subject to ||Y — DA|Z < e
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Sparse coding and dictionary learning

-

Y

{D,A} = arg rSiR{HY — DA||,2:} subject to Vi, |lajllo < K

A similar objective:

A 2 . . 2
{D,A} =arg min Z llaillo  subject to ||Y — DAJz <€
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Iterate Two Steps: Sparse Coding and Dictionary Update

Set of examples Y

1 Sparse Coding

Fix D, find a sparse A

Dictionary update:

2 Dictionary Update
Update D @ Maximum likelihood method of
[Olshausen and Field, 1997]

/L e MOD [Engan et al., 1999]

no /Stoppmg criterion \\\) @ K-SVD [Aharon et al., 2006]
~_re reached? -

{D.A}
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Learned Dictionaries of Image Atoms - Examples
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Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and
K-SVD [Aharon et al., 2006] (right)
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Outline

@ Sparse Coding of High-Dimensional Signals

@ Unsupervised vs. Supervised Dictionary Learning
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Unsupervised vs. Supervised Dictionary Learning
o Unsupervised dictionary learning

(D,A} = arg rSiR{||Y . DA||2F} subject to Vi, [|ailo < K

> minimizes the reconstruction error
> inverse problems (restoration, inpainting,...)

@ Supervised (discriminative or task-driven)

{D, € A} =arg min {|Y - DA|Z +ul H_~ CAJZ +n|Cl3}
class. par. labels

subject to Vi, ||ajllo < K
> classification problems (H — label inform.; C — classifier parameters)
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Application in Painter Style Characterization

Synthesis Analysis

[Hughes et al, 2009], [Lati¢ and PiZurica, 2014]
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Outline

@ Sparse Coding of High-Dimensional Signals

@ Sparse Representation Classification
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Sparse Representation Classification - SRC

e ma we w3 W mm

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust
face recognition via sparse representation. IEEE PAMI.
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Sparse Representation Classification - SRC

D

y (—/% a

D D

D, - "

Equivalently,
rm(y) = Iy = Dibtml2, m=1,..M
identity(y) = argmin rp,(y)
m=1,....M
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SRC in Hyperspectral Image Classification

D
D, / D, D,

a sample from
classm

[Chen et al., 2011a]

& = argmin ||y — Da||§ subject to ||allp < K
rm(y) =y = Dm@mll2, m=1,.. M

class(y) = argmin rpy(y)
m=1,....M

)
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Joint Sparsity Model

Collect pixels from a small neighbourhood N, into

Y = [y17 ---7YT] S RBXT
Y:[y1 yT]:[Da1 DaT]:D[al aT]:DA
N A
pixels from N¢

Sparse codes {a;}[_; share the same support = A is sparse with only
K non-zero rows, i.e., A is row sparse.

JSRC method [Chen et al., 2011a]:

A=arg mAin |Y — DA||Z subject to ||Al/ow.0 < K
rm(Y) =Y —=DnALllr, m=1,..M

class(Ycentral) = arg mir,c” rm(Y)
m=1,...,

A. Pizurica Multimodal Image Processing and Machine Learning in Computer Vision 23 /96



Outline

© Applications in Remote Sensing
@ Robust SRC in Hyperspectral Imaging
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and PiZurica, A. (2017). Robust joint sparsity
model for hyperspectral image classification. In IEEE ICIP 2017.
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise

{A,8} = arg min |[Y — DA —S||2+ \|S|; subject to ||All,owo < K

rm(Y) =Y =DnA, ~S|lr, m=1,..M

class(Yeentrar) = argmin ry(Y)
m=1,....M

S. Huang, H. Zhang and A. Piurica (2017). A Robust Sparse Representation
Model for Hyperspectral Image Classification. Sensors.
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Robust SRC for Hyperspectral Image Classification

ground truth SVM, OA=89.0%

Trees
I Concrete
Il Soil
I Grass
Asphalt
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Robust SRC for Hyperspectral Image Classification

Indian Pines (false color image) ground truth

SVM, OA=80.4%

Alfalfa Oats

Comenotill Soybean-notill
Com-mintill Soybean-mintill
Com Soybean-clean
Grass-pasture Wheat

Grass-trees Woods
Grass-pas i Bldgs-grass-trees-di
Hay-windrowed Stone-steel-towers
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Outline

© Applications in Remote Sensing

@ Sparse Unmixing
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Spectral Mixing

g &

Mixed pixel >
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S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and
Comparative Study of Geometrical Approaches for Spectral Unmixing.
International Journal of Scientific and Engineering Research.
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Sparse Unmixing

Ideal hyperspectral image reordered as a matrix X € REXMN
Linear mixing model:
X =EA

E € REXKX — |ibrary of endmembers; A € RX*MN _ abundance

Y=_E A+ N + S

library abundance  Gaussian noise  sparse noise

The approach of [Aggarval et al, 2016]:

rRig |Y — EA — S||Z + \i]|A]l21 + X2IS |1

Many similar variants exist, also making use of low-rank assumption:

min rank{A} subjectto [[Y —EA -S|z <¢
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Sparse Unmixing

Alunite Buddingtonite Chalcedony

I N
2 kilometers

Fractional abundance maps estimated for the AVIRIS Cuprite subscene
with the USGS library.

R. Wang, H.-C. Li, A. PiZurica, J. Li, A. Plaza, and W. J. Emery (2017).
Hyperspectral Unmixing Using Double Reweighted Sparse Regression and Total
Variation. |IEEE Geoscience and Remote Sensing Letters.

A. Pizurica Multimodal Image Processing and Machine Learning in Computer Vision 32 /96



Outline

© Applications in Remote Sensing

@ Sparse Subspace Clustering

A. Pizurica Multimodal Image Processing and Machine Learning in Computer Vision 33 /96



Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yn] € R™*N

Cij # 0 —y; and y; are in the same subspace.

Similarity matrix: W =|C|+|C|T
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Sparse Subspace Clustering
[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yn] € R™*N

y~Yc=>yi¢ = cys + cry7

Cij #0 —y; and y; are in the same subspace.
Similarity matrix: W = |C| +|C|T
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Joint Sparse Subspace Clustering - JSSC
JM; » 7 &-5 j, . YIY2 y ’. s C1C2 C3Cy

L5

HSI Segmented HSI

€1C2C3Cy

I

row sparsity

S. Huang, H. Zhang and A. PiZurica (2018). Semi-supervised Sparse Subspace
Clustering Method With a Joint Sparsity Constraint for Hyperspectral Remote
Sensing Images. |IEEE J. Sel. Topics in Earth Observation and Remote Sens.
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() 0A=6151 (g) 0A=7161 (b} OA=69.91 () OA=76.82 (i) 0A=95.36
B Uniabelled Asphalt [l Meadows Trees [l Metal M Bare Soil MMM Bitumen [ Brick Shadows
Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC
(1 % labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

S. Huang, H. Zhang and A. PiZurica (2018). IEEE JSTARS
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Outline

© Applications in Art Investigation
@ The Ghent Altarpiece
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece

470 cm 4=

Hubert and Jan Van Eyck, completed in 1432.

A. Pizurica
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The current restoration of the Ghent Altarpiece

Ongoing conservation-restoration treatment (started in 2012).
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Ghent Altarpiece - Current Restoration Campaign
SCIENCE €he New ork Eimes
A Master Work, the Ghent Altarpiece, Reawakens Stroke by Stroke

By MILAN SCHREUER  DEC. 19, 2016
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Ghent Altarpiece restoration — Phase 1

[ = Overpaint © KIK-IRPA
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Restoration — Phase 1, after cleaning: paint losses
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Restoration — Phase 1, after cleaning: paint losses
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Restoration — Phase 1, after cleaning: paint losses
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Outline

© Applications in Art Investigation

@ Challenges for signal processing and machine learning
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Why do we need automatic paint loss detection?

Paint loss detection is crucial for
@ documenting purpose
@ virtual restoration

@ decision making in the actual
restoration process

Currently done manually:
@ labor intensive
@ only rough indication

@ prone to errors

(©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Crack detection

- ‘ ‘ . U

Diagnostics, overpaint detection.

Input for virtual crack filling. Improving readability of inscriptions.
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Challenges: Huge data

Each 15x20 cm area recorded in a separate capture with a camera fitted
with a Hasselblad 120mm lens and a 50-megapixel camera back (8176 x
6132 pixels).
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Paint loss detection problem - difficulties

200

200
R 250 O

A scatter plot of RGB values for
randomly selected paint loss and
background pixels in the macropho-
tography after cleaning

(red: paint loss; blue: background).

(©Ghent, Kathedrale Kerkfabriek, Lukasweb
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A multimodal approach

Macrophotography X-radiography Infrared maci Infrared reflectography
N J

hd N
Before treatment During treatment

(@©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Registration of multimodal images

Crack patterns can be employed as landmarks.
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Outline

© Applications in Art Investigation

@ Paint loss detection based on sparse coding
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Paint loss detection data sets - John the Evangelist

A. Pizurica Multimodal Image Processing and Machine Learning in Computer Vision 55 / 96



Paint loss detection data sets - prophet Zachary

A. Pizurica Multimodal Image Processing and Machine Learning in Computer Vision 56 / 96



Annotations by art restorers
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Annotations by art restorers
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Multimodal Data

(©Ghent, Kathedrale Kerkfabriek, Lukasweb

@ Annotations done on macrophotographs during the treatment;

@ Dictionaries for sparse representation classification constructed from
the available multimodal data. The available modalities may differ
from one panel to another.
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Features for SRC

Neighborhood Feature vectors

matrix [EEE f Features:
Layer t 1t mean, variance,

range, correlations

: Y fui=[fuin fiize o fuiel

Infrared-:
image

yi = [fl,i: fZ,i! '"th,i]

= . -
Visible color image E!Em fri

IR

=

S. Huang, W. Liao, H. Zhang, and A. PiZurica (2016). Paint Loss Detection in
Old Paintings by Sparse Representation Classification. iTWIST.
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SRC-based Paint Loss Detection Method

portion of
examples ® ...
@ : B o
.. @
Construct ° Empirical Output
L probabilities of
dictionary # = dFss (bl » class label

r J

Generate repeat N times
feature space

N - number of trials in which y; was labelled as class m;
m € {PaintLoss, Other}

class(y;) = argmax p;(m) = argmax (N"/N)
m m
[ —

empirical prob. of class m

S. Huang, W. Liao, H. Zhang, and A. PiZurica (2016). Paint Loss Detection in
Old Paintings by Sparse Representation Classification. iTWIST.
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Paint Loss Detection Results
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Paint Loss Detection - Numerical results

o
. Schome 1
.
Number of . .
. . Schemes modalities Imaging modalities
z® ! My
g 3 Myc, Mpe, IRge
s
&g 3 5 Maycs Mge, IRge, IRRge , X-rayge
)
M — macrophotography subscript:
5 IR — infrared macrophotography AC — after cleaning
w IRR — infrared reflectography BC — before cleaning
SsVM SRC STD  Proposed X-ray — radiography

SVM - Support Vector Machines

SRC — Direct application of SRC (Sparse Representation Classification)
STD - Sparse Representation for Target Detection [Chen et al., 2011b]
Proposed — the proposed method based on kernel-SRC

[Huang et al., 2018]

S. Huang, L. Meeus, B. Cornelis, B. Devolder, M. Martens, and A. PiZurica,
(2018). Paint loss detection via kernel sparse representations. In Image
Processing for Art Investigation (IP4Al).
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Outline

© Applications in Art Investigation

@ Deep learning approaches
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Deep learning methods

pooled Fully-connected 1

feature maps pooled  featuremaps feature maps
feature maps

class 1
classn
Outputs
Input Convolutional Pooling 1 Convolutional  paoling 2
layer 1 layer 2
“ S
feature extraction classification

A generic concept of a classifier based on a convolutional neural network

(CNN).
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Deep learning methods

led Fully-connected 1

pool
feature maps pooled  featuremaps feature maps
feature maps

classn

(pooling) Outputs

w, W, '
xw) L xnk) L k)

p — pointwise nonlinearity (e.g., ReLU); W; — linear operator
(convolution);

VVJ'XJ'—l(u7 kj) = Ek vaj—l(‘/’ k)WJ',kj(u -V, k) =
2ok (xima (s k) % w1 K))(w)
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Deep learning methods

Fully-connected

pooled
feature maps pooled  featuremaps  feature maps
feature maps

Z

] (pooling)

w, W, ‘
@ L m@k) L naky)

Predicted probabilities of class labels using the softmax rule:

. e
P(class(x(u) = j|z) = S e
!
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A multiscale deep learning method for paint loss detection

22 propability Classification

Multimodal images map
registered & concatenated

L. Meeus, S. Huang, B. Devolder, M.Martens, and A. PiZurica (2018).
Deep Learning for Paint Loss Detection: A Case Study on the Ghent

Altarpiece. IP4Al.

68 / 96
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A multiscale deep learning method for paint loss detection

[

Size: 5954 x 7546; processed in < 1 minute
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Deep learning in crack detection

* TGE G 2 TR
] ; \"\ "; AN ;‘
iz ] : }

N

Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017].
However, crack detection in paintings is much more challenging!
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A deep learning method for crack detection in paintings

Kernels Convolution 1 Kernels Convolution 2 Kernels Convolution 3
Fully Fully
connected 1 connected 2
Red Comp
Green Comp.
Blue Comp
Rimage
XR image
MF for RGB
I MEfeEXR 1x192 1x2

6x6x12 axax24 2x2x48
8x8x8

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. PiZurica
(2018). A deep learning approach to crack detection in panel paintings. IP4Al.
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Crack detection: panel Singing Angels
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Crack detection: panel Singing Angels

Left: A Bayesian multimodal method (BCTF). Right: CNN-based.
red — false detections; blue — missing cracks; green - -correct.
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Crack detection: Central panel

The Mystic Lamb — before and after the restoration.
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Crack detection: | Central panel

. Pizurica




Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Outline

© Applications in Art Investigation

@ Virtual restoration
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Patch-based inpainting

damaged patch

=

composite
patch
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Context adaptative inpainting

Contextual
descriptor

Comparison of
contextual
descriptors

Selection of the
most contextually
similar blocks

T. RuZi¢ and A. PiZurica et al. Context-aware patch-based image inpainting
using Markov random field modeling. IEEE Transactions on Image Processing
2015
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Global inpainting

position p

Multimodal Image Processing and Machine Learning in Computer Vision



Global inpainting

E(x) =) Vilx)+ > Vilxi, ), (1)

icv (ij)yee

[Komodakis and Tziritas, 2007], [Ruzi¢ and PiZurica, 2015]
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Global inpainting

Messages Beliefs

Mypg(q) = 71;11‘121[1\ {V;‘lf(mi“ xq) + Vp(zp)
»

)

rir#q,(rp)€s
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Global inpainting: efficient inference

© O @ 0o 0
[

T. RuZi¢ and A. PiZurica et al. Context-aware patch-based image inpainting
using Markov random field modeling. IEEE Transactions on Image Processing
2015
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A summary of patch based inpainting

greedy approach global approach adding structural priority

s

Pij =Sy ) +max > S(dy. 1)

1EN; «

A. PiZurica et al. Digital Image Processing of the Ghent Altarpiece. Signal
Process. Mag. 2015
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Crack inpaiting
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Crack inpaiting
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [RuZi¢ and PiZurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [RuZi¢ and PiZurica, TIP, 2015].
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Virtual Restoration

Automatic paint loss detection;
inpainting method of [RuZi¢ and PiZurica, TIP, 2015].
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Virtual Restoration

Left: Input; Middle: virtual restoration; Right: actual restoration.
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IP4Al Community

FARE
I Y i kit | e

IP4Al - Image Processing for Art Investigation

IP4Al 2018 proceedings: https://ip4ai.ugent.be/
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Special Session at ISIT 2019

IEEE ISIT 2019

Informatlon Theory#se ©

ISIT 2019 Special Session on Applications in Fine Arts
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