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A fairly general formulation

Reconstruct a signal (image) x ∈ X from data y ∈ Y where

y = T (x) + n

X and Y are Hilbert spaces, T : X 7→ Y is the forward operator and n is noise.

A common model-driven approach is to minimize the negative log-likelihood L:

min
x∈X
L(T (x), y)

Typically, ill-posed and leads to over-fitting. Variational regularization, also called

model-based iterative reconstruction seeks to minimize a regularized objective

function

min
x∈X
L(T (x), y) + τφ(x)

φ : X 7→ R ∪ {−∞,∞} is a regularization functional. τ ≥ 0 governs the influence of

the a priori knowledge against the need to fit the data.
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Linear inverse problems

Many image reconstruction problems can be formulated as a linear inverse problem.

A noisy indirect observation y, of the original image x is then

y = Ax + n

Matrix A is the forward operator. x ∈ Rn; y,n ∈ Rm (or x ∈ Cn; y,n ∈ Cm).

Here, image pixels are stacked into vectors (raster scanning). In general, m 6= n.

Some examples

CT: A is the system matrix modeling the X-ray transformation

MRI: A is (partially sampled) Fourier operator

OCT: A is the first Born approximation for the scattering

Compressed sensing: A is a measurement matrix (dense or sparse)
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Linear inverse problems

For the linear inverse problem y = Ax + n, model-based reconstruction seeks to solve:

min
x

1

2
‖Ax− y‖2

2 + τφ(x) (Tikhonov formulation)

Alternatively,

min
x
φ(x) subject to ‖Ax− y‖2

2 ≤ ε (Morozov formulation)

min
x
‖Ax− y‖2

2 subject to φ(x) ≤ δ (Ivanov formulation)

Under mild conditions, these are all equivalent [Figueiredo and Wright, 2013], and

which one is more convenient is problem-dependent.
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Sparse optimization

A common assumption: x is sparse in a well-chosen transform domain.

We refer to a wavelet representation meaning any wavelet-like multiscale

representation, including curvelets and shearlets..

x = Ψθ, θ ∈ Rd , Ψ ∈ Rn×d

The columns of Ψ are the

elements of a wavelet frame

(an orthogonal basis or an

overcomplete dictionary)

The main results hold for learned dictionaries, trained on a set of representative

examples to yield optimally sparse representation for a particular class of images.
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Compressed sensing

Consider y = Ax + n, with y,n ∈ Rm, x = Ψθ, x ∈ Rn, θ ∈ Rd , m < n

θ̂ = arg min
θ

1

2
‖AΨθ− y‖2

2 + τφ(θ), x̂ = Ψθ̂

Commonly: min
θ
‖θ‖0 s.t. ‖AΨθ− y‖2

2 ≤ ε or min
θ

1
2‖AΨθ− y‖2

2 + τ‖θ‖1

[Candès et al., 2006], [Donoho, 2006], [Lustig et al., 2007]
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Compressed sensing: recovery guarantees

Consider y = Ax + n, with y,n ∈ Rm, x = Ψθ, x ∈ Rn, m < n

Matrix Φ = AΨ has K -restricted isometry property (K-RIP) with constant εK < 1 if

∀ K -sparse (having only K non-zero entries) θ:

(1− εK )‖θ‖2
2 ≤ ‖Φθ‖2

2 ≤ (1 + εK )‖θ‖2
2

Suppose matrix A ∈ Rm×n is formed by subsampling a given sampling operator

Ā ∈ Rn×n. The mutual coherence between Ā and Ψ:

µ(Ā,Ψ) = max
i ,j
|a>i ψj |

If m > Cµ2(Ā,Ψ)Kn log(n), for some constant C > 0, then

min
θ

1

2
‖AΨθ− y‖2

2 + τ‖θ‖1

recovers x with high probability, given the K-RIP holds for Φ = AΨ.
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Analysis vs. synthesis formulation

Consider y = Ax + n, with y ∈ Rm, x = Ψθ, x ∈ Rn, θ ∈ Rd

Synthesis approach:

min
θ

1

2
‖AΨθ− y‖2

2 + τφ(θ)

or in the constrained form:

min
θ
φ(θ) subject to ‖AΨθ− y‖2

2 ≤ ε

Analysis approach:

min
x

1

2
‖Ax− y‖2

2 + τφ(x)

or in the constrained form:

min
x
φ(x) subject to ‖Ax− y‖2

2 ≤ ε
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Analysis vs. synthesis formulation

Consider y = Ax + n, with y ∈ Rm, x = Ψθ, x ∈ Rn, θ ∈ Rd

Synthesis approach:

min
θ

1

2
‖AΨθ− y‖2

2 + τφ(θ)

or in a constrained form:

min
θ
φ(θ) subject to ‖AΨθ− y‖2

2 ≤ ε

Analysis approach that also applies to wavelet regularization

min
x

1

2
‖Ax− y‖2

2 + τφ(Px)

or in a constrained form:

min
x
φ(Px) subject to ‖Ax− y‖2

2 ≤ ε
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Analysis vs. synthesis formulation

Consider y = Ax + n, with y ∈ Rm, x = Ψθ, x ∈ Rn, θ ∈ Rd

Synthesis approach:

min
θ

1

2
‖AΨθ− y‖2

2 + τφ(θ)

or in a constrained form:

min
θ
φ(θ) subject to ‖AΨθ− y‖2

2 ≤ ε

Analysis approach that also applies to wavelet regularization

min
x

1

2
‖Ax− y‖2

2 + τφ(Px)

or in a constrained form:

min
x
φ(Px) subject to ‖Ax− y‖2

2 ≤ ε

P: a wavelet transform operator or P = I (standard analysis)
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Solution strategies: greedy methods vs. convex optimization

Solution strategy is problem-dependent. For non-convex problems like

min
x
‖x‖0 subject to ‖Ax− y‖2

2 ≤ ε

Greedy algorithms, e.g.,

Matching Pursuit (MP) [Mallat and Zhang, 1993]

OMP[Tropp, 2004], CoSaMP [Needell and Tropp, 2009]

IHT [Blumensath and Davies, 2009]

or convex relaxation can be applied leading to:

min
x
‖x‖1 subject to ‖Ax− y‖2

2 ≤ ε

min
x

1

2
‖Ax− y‖2

2 + τφ(x)

known as LASSO [Tibshirani, 1996] or BPDN [Chen et al., 2001] problem.
A. Pǐzurica (UGent) Sparse Optimization in Image Reconstruction B-Q Minded 2020 15 / 51



Greedy methods: OMP

OMP algorithm for solving min
x
‖x‖0 subject to Ax = y

Require: k = 1, r(1) = y,Λ(0) = ∅
1: repeat

2: λ(k) = arg maxj |Aj · r(k)|
3: Λ(k) = Λ(k−1) ∪ {λ(k)}
4: x(k) = arg minx‖AΛkx− y‖2

5: ŷ(k) = AΛkx
(k)

6: r(k+1) = r(k) − ŷ(k)

7: k = k + 1

8: until stopping criterion satisfied

Aj is the j-th column of A, and AΛ a sub-matrix of A with columns indicated in Λ.
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Greedy methods: OMP

OMP algorithm for solving min
x
‖x‖0 subject to Ax = y

Require: k = 1, r(1) = y,Λ(0) = ∅
1: repeat

2: λ(k) = arg maxj |Aj · r(k)| identify the ’important’ column of A

3: Λ(k) = Λ(k−1) ∪ {λ(k)} augment the index set

4: x(k) = arg minx‖AΛkx− y‖2 solve the least square problem

5: ŷ(k) = AΛkx
(k) express the portion of y being explained by AΛkx

(k)

6: r(k+1) = r(k) − ŷ(k) update the residual by removing the explained portion of y

7: k = k + 1

8: until stopping criterion satisfied

Aj is the j-th column of A, and AΛ a sub-matrix of A with columns indicated in Λ.

’Important column’ = that with max absolute value of correlation with the residual
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Proximal operator

Many state-of-the-art image reconstruction algorithms solve problems of the kind

min
x

1

2
‖Ax− y‖2

2 + τφ(Px)

making use of the proximity operator i.e., the Moreau proximal mapping

[Combettes and Wajs, 2005]

proxτφ(y) = argmin
x

1

2
‖x− y‖2

2 + τφ(x)

For certain choices of φ(x), this operator has a closed-form, e.g.,

φ(x) = ‖x‖1 → proxτ`1
(y) = soft(y, τ) component-wise soft thresholding

φ(x) = ‖x‖0 → proxτ`0
(y) = hard(y,

√
2τ) component-wise hard thresholding

Another common regularization function is total variation (TV):

φ(x) = ‖x‖TV → proxτTV (y) Chambolle’s algorithm [Chambolle, 2004]
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Iterative shrinkage/thresholding (IST)

The standard algorithm for solving

min
x

1

2
‖Ax− y‖2

2 + τφ(x)

is iterative shrinkage/thresholding (IST) algorithm [Figueiredo and Nowak, 2003],

[Daubechies et al., 2004]:

xk+1 = proxτφ

(
xk −

1

γ
AH(Axk − y)︸ ︷︷ ︸

gradient of the data
fidelity term

)

Its key ingredient is the proximity operator proxτφ(y) = argmin
x

1
2‖x− y‖2

2 + τφ(x)

A general approach in [Daubechies et al., 2004]: φ(x) is a weighted `p norm of the

coefficients of x with respect to a wavelet basis.
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Iterative shrinkage/thresholding (IST) and extensions

The standard algorithm for solving

min
x

1

2
‖Ax− y‖2

2 + τφ(x)

is iterative shrinkage/thresholding (IST) algorithm [Figueiredo and Nowak, 2003],

[Daubechies et al., 2004]:

xk+1 = proxτφ

(
xk −

1

γ
AH(Axk − y)︸ ︷︷ ︸

gradient of the data
fidelity term

)

Different accelerated versions:

TwIST [Bioucas-Dias and Figueiredo, 2007]

FISTA [Beck and Teboulle, 2009]

SpaRSA [Wright et al., 2009]
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Variable splitting

A very old idea (back to at least [Courant, 1943]): Represent minx f1(x) + f2(Gx) as

min
x
f1(x) + f2(z) subject to Gx = z

The rationale: it may be easier to solve the constrained problem.

Variable splitting (VS) together with the augmented Lagrangian method (ALM) and

non linear block Gauss-Seidel (NLBGS) leads to a form of Alternating Direction

Method of Multipliers (ADMM). It is this interpretation:

(VS + ALM + NLBGS)→ ADMM

that we give in the next few slides, following [Afonso et al., 2010]
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Variable splitting and Augmented Lagrangian Method

A very old idea (back to at least [Courant, 1943]): Represent minx f1(x) + f2(Gx) as

min
x
f1(x) + f2(z) subject to Gx = z

Lµ(x, z,λ) = f1(x) + f2(z) + λT (Gx− z)︸ ︷︷ ︸
Lagrangian

+
µ

2
‖Gx− z‖2

2︸ ︷︷ ︸
“augmentation”

Basic augmented Lagrangian method (ALM), a.k.a., method of multipliers (MM),:

(x(k), z(k)) = argmin
(x,z)

Lµ(x, z,λ(k−1))

λ(k) = λ(k−1) + µ(Gx(k) − z(k))

Goes back to at least [Hestenes, 1969], [Powell, 1969]
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Variable splitting and Augmented Lagrangian Method

A very old idea (back to at least [Courant, 1943]): Represent minx f1(x) + f2(Gx) as

min
x
f1(x) + f2(z) subject to Gx = z

Lµ(x, z,λ) = f1(x) + f2(z) + λT (Gx− z)︸ ︷︷ ︸
Lagrangian

+
µ

2
‖Gx− z‖2

2︸ ︷︷ ︸
“augmentation”

After simple “complete-the-squares” ALM/MM yields [Afonso et al., 2010]:

(x(k), z(k)) = argmin
(x,z)

f1(x) + f2(z) +
µ

2
‖Gx− z− d(k−1)‖2

2

d(k) = d(k−1) − (Gx(k) − z(k))
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ADMM as Variable splitting and ALM

Use variable splitting (VS) to represent minx f1(x) + f2(Gx) as

min
x
f1(x) + f2(z) subject to Gx = z

ALM/MM yields :

(x(k), z(k)) = argmin
(x,z)

f1(x) + f2(z) +
µ

2
‖Gx− z− d(k−1)‖2

2 (P)

d(k) = d(k−1) − (Gx(k) − z(k))

Solve (P) with one step of NLBGS → “scaled” ADMM version [Boyd et al., 2011]:

x(k) = argmin
x
f1(x) +

µ

2
‖Gx− z(k−1) − d(k−1)‖2

2

z(k) = argmin
z
f2(z) +

µ

2
‖Gx(k−1) − z− d(k−1)‖2

2

d(k) = d(k−1) − (Gx(k) − z(k))
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ADMM algorithm

ADMM algorithm for solving: minx f1(x) + f2(Gx)

Require: k = 0, µ > 0, z{0},d{0}

1: repeat

2: x(k) = argmin
x
f1(x) + µ

2 ‖Gx− z(k−1) − d(k−1)‖2
2

3: z(k) = argmin
z
f2(z) + µ

2‖Gx(k−1) − z− d(k−1)‖2
2

4: d(k) = d(k−1) − (Gx(k) − z(k))
5: k = k + 1

6: until stopping criterion is satisfied

Equivalent to split-Bregman method [Goldstein and Osher, 2009].

Connections with Douglas-Raschford splitting [Setzer, 2009].
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ADMM algoritm for linear inverse problems

Instantiate ADMM to our linear inverse problem: minx‖Ax− y‖2
2 + τφ(Px)

Require: k = 0, µ > 0, z{0},d{0}

1: repeat

2: x(k) = argmin
x
‖Ax− y‖2

2 + µ
2 ‖Px− z(k−1) − d(k−1)‖2

2

3: z(k) = argmin
z

τφ(z) + µ
2 ‖Px(k−1) − z− d(k−1)‖2

2= proxτφ/µ(Px(k−1) − d(k−1))

4: d(k) = d(k−1) − (Px(k) − z(k))
5: k = k + 1

6: until stopping criterion is satisfied
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A variant of ADMM algorithm for more than two functions

Consider minx∈Rn
∑J
j=1 gj(Hjx) and map it into the previous: minx f1(x) + f2( Gx︸︷︷︸

z

)

f1(x) = 0, f2(z) =
J∑
j=1

gj(zj), G =

H1
...

HJ

 ∈ Rp×n, z(k) =

z
(k)
1
...

z
(k)
J

, d(k) =

d
(k)
1
...

d
(k)
J

,

x(k) =
( J∑
j=1

((Hj)
>Hj

)−1( J∑
j=1

(Hj)
>(z

(k−1)
j + dk−1

j )
)

z
(k)
1 = proxg1µ(H1x(k−1) − d

(k−1)
1 )

...

z
(k)
J = proxgJµ(HJx

(k−1) − d
(k−1)
J ) C-SALSA [Afonso et al., 2011]

d(k) = d(k−1) − (Gx(k) − z(k))
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Example: MRI reconstruction with shearlet regularization

A transversal slice of a FLAIR sequence, resampled along a non-Cartesian trajectory

based on an Archimedean spiral (sampling rate 15%). [Aelterman et al., 2011].
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Example: CT reconstruction with shearlet regularization

x̂ = arg min
x

1

2
‖C−1(Ax− y)‖2

2 + τ‖Px‖1

Matrix C is a “prewhitener” for the acquisition system [Vandeghinste et al., 2013].
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Example: CT reconstruction with shearlet regularization

Top left: reference; Top right: SIRT; Bottom left: ADMM with TV regularization;

Bottom right: ADMM with shearlet regularization [Vandeghinste et al., 2013]
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Modelling structured sparsity

Two main approaches to modelling structured sparsity in image reconstruction

in the acquisition stage

in the reconstruction stage

In the following we only focus on the second approach.

For the the improved design of the sampling patterns/sampling trajectories making

use of the structured sparsity, see [Roman et al., 2015], [Adcock et al., 2017],

[Gozcu, 2018]
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Wavelet tree sparsity

[Jacob et al., 2009], [He and Carin, 2009], [Rao et al., 2011].

Application to MRI [Chen and Huang, 2014].
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Wavelet-tree sparsity

Standard CS approach with `1 regularization:

θ̂ = min
θ

1

2
‖AΨθ− y‖2

2 + τ‖θ‖1

Wavelet-tree sparsity approach:

Illustration from [Rao et al., 2011]

A group Lasso estimator:

θ̂GL = min
θ

1

2
‖AΨθ− y‖2

2+τ
∑
g∈G
‖θg‖2

G – the collection of all parent-child groups;

g is one such group.

Whole groups are set to zero if their `2 norm is relatively small.
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Sparse reconstruction with Markov Random Field priors

Consider (a little simpler): y = Ax + n, with y,n ∈ Rm, x ∈ Rn, si ∈ {0, 1}

P(s) =
1

Z
exp

[
−
(∑
i

αsi +
∑
〈i ,j〉

βsisj

)]
P(s, x, y) = P(y|x)P(x|s)P(s)

[x̂, ŝ] = arg max
x,s

{∑
〈i ,j〉

βsisj +
∑
i

[αsi + log(p(xi |si)]−
1

2σ2
‖y − Ax‖2

2

}
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Sparse reconstruction with Markov Random Field priors

Use Markov Random Field (MRF) as a statistical model for the spatial clustering of

important wavelet coefficients [Cevher et al., 2010], [Pǐzurica et al., 2011]
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Sparse MRI reconstruction with MRF priors
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Sparse MRI reconstruction with MRF priors
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Sparse MRI reconstruction with MRF priors

Consider: y = Ax + n, with y,n ∈ Cm, x ∈ Cn, x = Ψθ, θ ∈ Cd , si ∈ {0, 1}

Let Ωs = {i ∈ N : si = 1}. Define a model for θ that conforms to the support s:

Ms = {θ ∈ CD : supp(θ) = Ωs}

Our objective is:

min
x∈CN

‖Ax− y‖2
2 subject to Px ∈Mŝ

or equivalently:

min
x∈CN

‖Ax− y‖2
2 + ιΩs(supp(Px))

where

ιQ(q) =

{
0, q ∈ Q
+∞, otherwise

LaSB [Pǐzurica et al., 2011], GreeLa [Panić et al., 2016], LaSAL [Panić et al., 2017]
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Example: CS-MRI with LaSB - early motivating results for using MRFs

SB (split-Bregman) and LaSB implemented with the same shearlet transform.
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Example: CS-MRI with MRF priors

20% measurements, with variable density random sampling

Left: zero fill (PSNR = 19.87 dB)

Middle: WaTMRI [Chen and Huang, 2014] (wavelet-tree; PSNR = 28.78 dB)

Right: LaSAL [Panić et al., 2017] (MRF-based; PSNR = 33.43 dB)
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Example: CS-MRI with MRF priors

Reconstructions from 20% measurements, with radial sampling

Left: reconstructions; Right: error images; Top: LaSAL, Bottom: WaTMRI
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Outline
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Sparse optimization

Solution strategies: greedy methods vs. convex optimization

Optimization methods in sparse image reconstruction

2 Structured sparsity

Wavelet-tree sparsity

Markov Random Field (MRF) priors

3 Machine learning in image reconstruction

Main ideas and current trends
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Machine learning in image reconstruction

Covered in many recent workshops, special sessions and special issues of journals:

Three main direction have been proposed

learned postprocessing or learned denoisers;

learn a regularizer and use it in a classical variational regularization scheme;

learning the full reconstruction operator
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Machine learning in image reconstruction: Special issues

IEEE Signal Processing

Magazine,

November 2017

Deep Learning for Visual

Understanding, Part 1
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Machine learning in image reconstruction: Special issues

IEEE Signal Processing

Magazine,

January 2018

Deep Learning for Visual

Understanding, Part 2
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Learning fast approximations of sparse coding

Core idea: time-unfolded version of an iterative reconstruction algorithm, like IST,

truncated to a fixed number of iterations.

Representatives: LISTA [Gregor and LeCun, 2010],[Moreau and Bruna, 2017]
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Deep CNN models in image reconstruction

A central question is whether one can combine elements of model and data driven

approaches for solving ill-posed inverse problems.

[McCann et al., 2017]
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Summary

Sparse optimization is a fundamental concept in inverse problems like image

reconstruction.

We covered some basic components of sparse image recovery algorithms,

including ADMM-based methods.

The concept of structured sparsity was underlined with particular attention to

using Markov Random Field priors in sparse image recovery.

A new frontier: machine learning in image reconstruction. Great potential, a

huge variability of approaches.
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A. Pǐzurica (UGent) Sparse Optimization in Image Reconstruction B-Q Minded 2020 51 / 51



IEEE Transactions on Image Processing, 12(8):906–916.

Figueiredo, M. and Wright, S. (2013).

Applications of sparse optimization.

Goldstein, T. and Osher, S. (2009).

The split Bregman method for `1-regularized problems.

SIAM Journal on Imaging Sciences, 2(2):323–343.

Gozcu, B. e. a. (2018).

Learning-based compressive MRI.

IEEE Transactions on Medical Imaging, 37(6).

Gregor, K. and LeCun, Y. (2010).

Learning fast approximations of sparse coding.

In Proceedings of the 27th International Conference on Machine Learning.

He, L. and Carin, L. (2009).

Exploiting structure in wavelet-based bayesian compressive sensing.

IEEE Transactions on Signal Processing, 57(9):3488–3497.

A. Pǐzurica (UGent) Sparse Optimization in Image Reconstruction B-Q Minded 2020 51 / 51



Hestenes, M. R. (1969).

Multiplier and gradient methods.

Journal of Optimization Theory and Applications, 4(5):303–320.

Jacob, L., G., O., and Vert, J. (2009).

Group Lasso with overlap and graph Lasso.

In Proceedings of the 26th International Conference on Machine Learning.

Lustig, M., Donoho, D., and Pauly, J. M. (2007).

Sparse MRI: The application of compressed sensing for rapid MR imaging.

Magnetic Resonance in Medicine, 58(6):1182–1195.

Mallat, S. and Zhang, Z. (1993).

Matching pursuits with time-frequency dictionaries.

IEEE Transactions on Image Processing, 41(12):3397–3415.

McCann, M., Jin, K., and Unser, M. (2017).

Convolutional neural networks for inverse problems in imaging.

IEEE Signal Processing Magazine, 34(6):85–95.
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