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@ Model-based iterative reconstruction algorithms
@ Sparse optimization
@ Solution strategies: greedy methods vs. convex optimization
@ Optimization methods in sparse image reconstruction

e Structured sparsity
@ Wavelet-tree sparsity
@ Markov Random Field (MRF) priors

© Machine learning in image reconstruction
@ Main ideas and current trends
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A fairly general formulation

Reconstruct a signal (image) x € X from data y € Y where
y=T(x)+n

X and Y are Hilbert spaces, 7 : X — Y is the forward operator and n is noise.
A common model-driven approach is to minimize the negative log-likelihood L:

min L(7(x),

min £(7(x). )

Typically, ill-posed and leads to over-fitting. Variational regularization, also called
model-based iterative reconstruction seeks to minimize a regularized objective
function

min £(7(x). y) + 7é(x)

¢: X — RU{—00,00} is a regularization functional. 7 > 0 governs the influence of
the a priori knowledge against the need to fit the data.
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Linear inverse problems

Many image reconstruction problems can be formulated as a linear inverse problem.
A noisy indirect observation y, of the original image x is then

y=Ax+n

Matrix A is the forward operator. x € R"; y,n € R™ (or x € C"; y,n € C™).
Here, image pixels are stacked into vectors (raster scanning). In general, m # n.

Some examples
@ CT: A is the system matrix modeling the X-ray transformation
o MRI: A'is (partially sampled) Fourier operator
@ OCT: A is the first Born approximation for the scattering
@ Compressed sensing: A is a measurement matrix (dense or sparse)
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Linear inverse problems

For the linear inverse problem y = Ax + n, model-based reconstruction seeks to solve:

1

min §|]AX —y|5 + TH(x) (Tikhonov formulation)

X
Alternatively,

min(x) subject to [|Ax —y[3 <e (Morozov formulation)
X

min |Ax —y||3 subject to @(x) < & (lvanov formulation)
X

Under mild conditions, these are all equivalent [Figueiredo and Wright, 2013], and
which one is more convenient is problem-dependent.
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@ Model-based iterative reconstruction algorithms
@ Sparse optimization
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Sparse optimization

@ A common assumption: x is sparse in a well-chosen transform domain.

@ We refer to a wavelet representation meaning any wavelet-like multiscale
representation, including curvelets and shearlets..

x=W0, 0 cRY, W e R™I

The columns of W are the
elements of a wavelet frame
(an orthogonal basis or an
overcomplete dictionary)

@ The main results hold for learned dictionaries, trained on a set of representative
examples to yield optimally sparse representation for a particular class of images.
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Compressed sensing

Considery = Ax+n, with y,ne€R™, x=W0, xcR" 0cRY m<n

6 = arg mein%HAll’G—Y\@—i-Td)(e), x=wo
Yy :- A 6
|-

xr = Ve | J

Commonly: mein||9||0 st. |[AWO —y[3<e  or mein LIAWO — yl3 + 76|

[Candes et al., 2006], [Donoho, 2006], [Lustig et al., 2007]
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Compressed sensing: recovery guarantees

Consider y = Ax+n, with yyneR™ x=W0, x€R", m<n

Matrix ® = AW has K-restricted isometry property (K-RIP) with constant ex < 1 if
V K-sparse (having only K non-zero entries) ©:

(1 —ex)llBlf3 < [ ®8]]3 < (1 +ex)llO]f3

Suppose matrix A € R™*" is formed by subsampling a given sampling operator
A € R™". The mutual coherence between A and W:

u(A, W) = max|a v
If m > Cu?(A, W)Knlog(n), for some constant C > 0, then
1 ,
min SIIAWE — ()3 + 7(|8]1

recovers x with high probability, given the K-RIP holds for ® = AW.
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Analysis vs. synthesis formulation

Considery = Ax+n, with yeR”, x=Ww0, xeR", 0¢eR

Synthesis approach:
o1
min S [|AWe — |3 + 7¢(6)

Analysis approach:
1
min = 1A = y 2 + T¢(x)
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Analysis vs. synthesis formulation

Consider y = Ax+n, with yeR™, x=wW0, xeR", 0€cR
Synthesis approach:

min S 1AW — B + 76(0)
or in a constrained form:

mein $(0) subject to [|AWE — y||3 < e

Analysis approach:
o1
min > [ Ax — y[13 + T¢(x)
or in a constrained form:

min ¢(x) subject to ||Ax —y[3 <€
X
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Analysis vs. synthesis formulation

Considery = Ax+n, with yeR”, x=Ww0, xeR", 0¢eR

Synthesis approach:
o1
min S [|AWe — |3 + 7¢(6)
or in a constrained form:

mein $(0) subject to [|AWE — y|3 < e

Analysis approach that also applies to wavelet regularization
o1
min 1A — |3 + 79(Px)
or in a constrained form:

min ¢(Px) subject to ||Ax —y|3 <e
X
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Analysis vs. synthesis formulation

Considery = Ax+n, with yeR”, x=Ww0, xeR", 0¢eR

Synthesis approach:
o1
min S [|AWe — |3 + 7¢(6)
or in a constrained form:

min¢(0) subject to [AWE — y[5 < ¢

Analysis approach that also applies to wavelet regularization
1
min > [|Ax — | + 7¢(Px)
or in a constrained form:
min(Px) subject to [|Ax —y||2 < ¢
X

P: a wavelet transform operator or P = | (standard analysis)
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@ Model-based iterative reconstruction algorithms

@ Solution strategies: greedy methods vs. convex optimization
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Solution strategies: greedy methods vs. convex optimization

Solution strategy is problem-dependent. For non-convex problems like
min|jx|lo subject to [|[Ax —y|3 <€
X

Greedy algorithms, e.g.,

@ Matching Pursuit (MP) [Mallat and Zhang, 1993]
@ OMP|[Tropp, 2004], CoSaMP [Needell and Tropp, 2009]
o IHT [Blumensath and Davies, 2009]

or convex relaxation can be applied leading to:
min||x|; subject to [|Ax —y||3 <€
X

1
min EHAX — y||§ + T¢(x)
known as LASSO [Tibshirani, 1996] or BPDN [Chen et al., 2001] problem.
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Greedy methods: OMP

OMP algorithm for solving min||x|[o subject to Ax =y
X

Require: k =1,r() =y A =
1: repeat
2. Ak =argmax; |A; - r(9)]
3 AR = A=D g (A
4 x() = arg miny||Ap X — ¥|l2
5: 9(k) = A/\kx(k)
6: p(k+1) — (k) — y(k)
7: k=k+1
8: until stopping criterion satisfied

A; is the j-th column of A, and Aj a sub-matrix of A with columns indicated in A.
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Greedy methods: OMP

OMP algorithm for solving min||x||p subject to Ax =y
X

Require: k=1,r) =y A0 =9

1: repeat

2. MK = argmax; |A; - r(k)| identify the 'important’ column of A

30 AR = A=) g (A augment the index set

4. x) = argminy||Ap,x — y2 solve the least square problem

5. gk = A/\kx(k) express the portion of y being explained by A/\kx(k)
6 rlk+1) = (k) — §(k) ypdate the residual by removing the explained portion of y
7 k=k+1

8: until stopping criterion satisfied

A; is the j-th column of A, and Aj a sub-matrix of A with columns indicated in A.
"Important column’ = that with max absolute value of correlation with the residual
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@ Model-based iterative reconstruction algorithms

@ Optimization methods in sparse image reconstruction
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Proximal operator

Many state-of-the-art image reconstruction algorithms solve problems of the kind
1 5
min 5 1|1Ax = yII3 + 7¢(Px)

making use of the proximity operator i.e., the Moreau proximal mapping
[Combettes and Wajs, 2005]

o1
prox,,(y) = argmin §||X — 3+ 7é(x)
X

For certain choices of ¢(x), this operator has a closed-form, e.g.,

@ ¢(x) = [|x|l1 = prox,,, (y) = soft(y, T) component-wise soft thresholding
@ ¢(x) = [[x|lo = prox,,, (y) = hard(y, v27) component-wise hard thresholding

Another common regularization function is total variation (TV):

e ¢(x) = ||x||7v = prox, 1y (y) Chambolle’s algorithm [Chambolle, 2004]
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lterative shrinkage/thresholding (IST)

The standard algorithm for solving
o1 5
min 5[[Ax = y[13 + T(x)

is iterative shrinkage/thresholding (IST) algorithm [Figueiredo and Nowak, 2003],
[Daubechies et al., 2004]:

1
x*t1 = prox, 4 (xk ~5 A7(AxK —y) )
—_———

gradient of the data
fidelity term
Its key ingredient is the proximity operator prox,(y) = argmin%”x — yII% + TP(x)
X

A general approach in [Daubechies et al., 2004]: ¢(x) is a weighted £, norm of the
coefficients of x with respect to a wavelet basis.
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lterative shrinkage/thresholding (IST) and extensions

The standard algorithm for solving
o1 5
min S11Ax = yII3 + 7¢/(x)

is iterative shrinkage/thresholding (IST) algorithm [Figueiredo and Nowak, 2003],
[Daubechies et al., 2004]:

1
x*t1 = prox, 4 (xk — = AF(AX* —y) )
—_— —

/Y

gradient of the data
fidelity term

Different accelerated versions:
@ TwIST [Bioucas-Dias and Figueiredo, 2007]
@ FISTA [Beck and Teboulle, 2009]
@ SpaRSA [Wright et al., 2009]
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Variable splitting

A very old idea (back to at least [Courant, 1943]): Represent miny f1(x) + f2(Gx) as
min f1(x) + f2(z) subject to Gx =1z
X

The rationale: it may be easier to solve the constrained problem.

Variable splitting (VS) together with the augmented Lagrangian method (ALM) and
non linear block Gauss-Seidel (NLBGS) leads to a form of Alternating Direction
Method of Multipliers (ADMM). It is this interpretation:

(VS + ALM + NLBGS) — ADMM

that we give in the next few slides, following [Afonso et al., 2010]
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Variable splitting and Augmented Lagrangian Method

A very old idea (back to at least [Courant, 1943]): Represent miny f1(x) + f2(Gx) as

min f1(x) + f2(z) subject to Gx =z
X

Lu(x.2.3) = A(x) + £(z) + AT(6x —2) + £ Gx — 7|3
o N —’

Lagrangian "augmentation”

Basic augmented Lagrangian method (ALM), a.k.a., method of multipliers (MM)),:

(x(k) z(y = ar(gm)in L,(x,z, A1)
X,z

AR = A= ex(F) — 2(R)y

Goes back to at least [Hestenes, 1969], [Powell, 1969]
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Variable splitting and Augmented Lagrangian Method

A very old idea (back to at least [Courant, 1943]): Represent miny f1(x) + f2(Gx) as
min f1(x) + f2(z) subject to Gx =1z

Lu(x.2.3) = A(X) + £(z) + AT(Gx —2) + £ Gx — 7|3
N——_——

"augmentation”

Lagrangian

After simple “complete-the-squares” ALM/MM vyields [Afonso et al., 2010]:

(x4, 209) = argmin (x) + £(z) + 5/1Gx — z - d“ V|3
(<)
d0 = gD _ (Gx(9) — 5
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ADMM as Variable splitting and ALM

Use variable splitting (VS) to represent miny f1(x) + f2(Gx) as
min f1(x) + f2(z) subject to Gx =z
X
ALM/MM vyields :

(x), 2y = argmin f(x) + H(z) + %HGX —z—d V3 (P)
(x.2)

d®) = dk-D — (GxK) — z(K)
Solve (P) with one step of NLBGS — “scaled” ADMM version [Boyd et al., 2011]:
x(K) = argmin fi(x) + %HGX — 207D —g(k=1))2
29 = argmin f(z) + %HGx(k_l) —z—d V3

d0) = gD _ (Gx(0) — 5()
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ADMM algorithm

ADMM algorithm for solving: miny fi(x) + f(Gx)

Require: k =0, > 0,z{%, d{%}
1: repeat
2. x(k) = arginin fi(x) + £)|1Gx — 2~ — d=1))2
3.z = argmin f(z) + %||Gx(k—1) —z—dV)|3

4 dk) = g(k—1) — (Gx(k) — Z(k))
5: k=k+1
6: until stopping criterion is satisfied

Equivalent to split-Bregman method [Goldstein and Osher, 2009].
Connections with Douglas-Raschford splitting [Setzer, 2009].
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ADMM algoritm for linear inverse problems

Instantiate ADMM to our linear inverse problem: miny||Ax — y||3 + T¢(Px)

Require: k =0, > 0,z{%, d{%}
1: repeat
2. x() = argmin||Ax — yII% + 5||Px — z(k=1) _ d(k—1)||%
3. z(K = argmin 7¢(z) + %||Px(k_1) —z— d(k_l)H%: prode,/“(Px(k_l) — d(k_l))

4 dk) = gqk-1) _ (px(k) — z(k))
5: k=k+1
6: until stopping criterion is satisfied
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A variant of ADMM algorithm for more than two functions

Consider minyegn Z-J:l gi(H;x) and map it into the previous: min f1(x) + fo( Gx )

J ~—
| H, 2\ d{
A(x)=0,h(z)=>g(z). G=| : | eRP, 2z = | | dk) = | :
J=1 H, Z(Jk) d(Jk)

Jj=1 J

<) — <ZJ:((HJ')THJ-)1 (,jl(Hf)T(Zj(kl) + dj‘.‘*l)>

) — pros(Hoxt—) — )
219 = proxg, (Hx—1) — d{ ) C-SALSA [Afonso et al., 2011]

d(0) — dk=1) _ (Gx(0) — 5(0)
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Example: MRI reconstruction with shearlet regularization

™, Fully sampled

#" ADMM - DST

A transversal slice of a FLAIR sequence, resampled along a non-Cartesian trajectory
based on an Archimedean spiral (sampling rate 15%). [Aelterman et al., 2011].

A. Pizurica (UGent) Sparse Optimization in Image Reconstruction B-Q Minded 2020 29 / 51



Example: CT reconstruction with shearlet regularization

inputimage (512x512)  scale 1 (256x256) scale 0 (512x512)

g

scale 3 (16x16)
25
20

15 scale 2 (64x64)

g 3 3
8 8 8

Rotation Angles (degrees)
g

g
8

g

5 100 150
Sensor Positions (degrees)

N o1
X = argmin §||C 1(Ax—y)Hg + 7||Px||1

Matrix C is a “prewhitener” for the acquisition system [Vandeghinste et al., 2013].
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Example: CT reconstruction with shearlet regularization

SIRT

Top left: reference; Top right: SIRT; Bottom left: ADMM with TV regularization;
Bottom right: ADMM with shearlet regularization [Vandeghinste et al., 2013]
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Modelling structured sparsity

Two main approaches to modelling structured sparsity in image reconstruction

@ in the acquisition stage

@ in the reconstruction stage

In the following we only focus on the second approach.

For the the improved design of the sampling patterns/sampling trajectories making
use of the structured sparsity, see [Roman et al., 2015], [Adcock et al., 2017],
[Gozcu, 2018]
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© Structured sparsity
@ Wavelet-tree sparsity

A. Pizurica (UGent) E i tion in Image Reconstruction B-Q Minded 2020 33 /51



Wavelet tree sparsity

_\

[Jacob et al., 2009], [He and Carin, 2009], [Rao et al., 2011].

Application to MRI [Chen and Huang, 2014].
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Wavelet-tree sparsity

Standard CS approach with £; regularization:

~ 1
6 = min S[|AWO —y||3 + 7(|6]|;

Wavelet-tree sparsity approach:

A group Lasso estimator:

N 1 2
8o, = min 5[ AW —y[3+7 ;”99”2
g

I

lllustration from [Rao et al., 2011]

G — the collection of all parent-child groups;
g is one such group.

Whole groups are set to zero if their £> norm is relatively small.
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© Structured sparsity

@ Markov Random Field (MRF) priors
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Sparse reconstruction with Markov Random Field priors

Consider (a little simpler): y = Ax+n, with y,n € R™, xe€R", s, €{0,1}

. A 1 5
[%, 8] = arg nj(’asx{ ;65,-51 + Z[as,- + log(p(xi|si)] — ?Hy - Ax||2}
iJj i
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Sparse reconstruction with Markov Random Field priors

S.e—e0,
\

Use Markov Random Field (MRF) as a statistical model for the spatial clustering of
important wavelet coefficients [Cevher et al., 2010], [Pizurica et al., 2011]
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Sparse MRI reconstruction with MRF priors
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Sparse MRI reconstruction with MRF priors

minimize ¢(Px) subject to [Ax — ||§ <€
xeCN \
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Sparse MRI reconstruction with MRF priors

Consider: y = Ax+n, with y,neC”, xe€C", x=W0,0cC? s {0 1}
Let Qs = {i € N : 5; = 1}. Define a model for 0 that conforms to the support s:
Ms = {0 € CP : supp(8) = Qs}

Our objective is:
min |[Ax —y||3 subject to Px € Ms
xeCN

or equivalently:
min |Ax —y[3  + to.(supp(Px))
xeCN

to(a) = {O' a€9

+00, otherwise

where

LaSB [PiZurica et al., 2011], GreelLa [Pani¢ et al., 2016], LaSAL [Pani¢ et al., 2017]
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SB-LaSB comparison; random subsampling 50%

45 ..

40 -

35 .

30 -

25 .

PSNR [dB]

A. Pizurica (UGent)
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v

40

50
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Example: CS-MRI with MRF priors

20% measurements, with variable density random sampling

Left: zero fill (PSNR = 19.87 dB)
Middle: WaTMRI [Chen and Huang, 2014] (wavelet-tree; PSNR = 28.78 dB)
Right: LaSAL [Panic¢ et al., 2017] (MRF-based; PSNR = 33.43 dB)
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Example: CS-MRI with MRF priors

Reconstructions from 20% measurements, with radial sampling

Left: reconstructions; Right: error images; Top: LaSAL, Bottom: WaTMRI
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© Machine learning in image reconstruction
@ Main ideas and current trends
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Machine learning in image reconstruction

Covered in many recent workshops, special sessions and special issues of journals:

EmB IEEE / IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 6, JUNE 2018 1289
NPSS = Ll

Image Reconstruction Is a New Frontier
of Machine Learning

Ge Wang", Fellow, IEEE, Jong Chu Ye"“', Senior Member, IEEE, Klaus Mueller”, Senior Member, IEEE,
and Jeffrey A. Fessler™, Fellow, IEEE

Three main direction have been proposed
@ learned postprocessing or learned denoisers;
@ learn a regularizer and use it in a classical variational regularization scheme;

@ learning the full reconstruction operator
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Machine learning in image reconstruction: Special issues

DEEP LEARNING FOR VISUAL UNDERSTANDING

Michael T. MeCann, Kyong Hwan Jin,
and Michael Unser

Convolutional Neural Networks
for Inverse Problems in Imaging

A review

networks (CNNs) to solve inverse problems in imaging, It has
recently become feasible to train deep CNN's on large databas-

es of images, and they have shown outstanding performance on

object classification nd segmentation tasks. Motivated by these

successes, rescarchers have begun to apply CNN to the resalu-

tion of bl h as denaising, ion, super-

resolution, and medical image reconstruction, and they have

started to report improvements over state-of-the-art methods,

including sparsity-based techniques such as compressed sensing.

Here, we review the recent experimental work in these areas,

with a focus on the critical design decisions:

® From where do the training data come?

® What is the architecture of the CNN?

= How is the leamning problem formulated and solved?

We also mention a few key theoretical papers that offer perspec-

tives on why CNNs are appropriate for inverse problems, and we

In this article, we review recent uses of convolutional neural

point to some next steps in the field.

arse Optimization in Image Reconstruction

IEEE Signal Processing
Magazine,
November 2017

Deep Learning for Visual
Understanding, Part 1

B-Q Minded 2020



Machine learning in image reconstruction: Special issues

DEEP LEARNING FOR VISUAL UNDERSTANDING:
PART 2

Alice Lucas, Michael lliadis, Rafael Molina,
and Aggelos K. Katsaggelos

Using Deep Neural Networks IEEE Signal Processing
for Inverse Problems in Imaging Magazine,

Beyond analytical methods J anua ry 2 0 ]_ 8

Deep Learning for Visual
radivjfmally. analytical mglhods have b‘een used u) solve .
Tlmagmg ‘problems such as image restoration, inpainting, and U n d e I’St an d n g , P a rt 2

superresolution (SR). In recent years, the fields of machine.
and deep learning have gained a lot of momentum in solving
such imaging problems, often surpassing the performance pro-
vided by analytical approaches. Unlike analytical methods for
‘which the problem is explicitly defined and domain-knowledge
carefully engineered into the solution, deep neural networks
(DNNs) do not benefit from such prior knowledge and instead
make use of large data sets to learn the unknown solution to
the inverse problem. In this article, we review deep-learning
techniques for solving such inverse problems in imaging. More

A. Pizuri (UGent) Sparse Optimization in Image Reconstruction B-Q Minded 2020 48 / 51



Learning fast approximations of sparse coding

Core idea: time-unfolded version of an iterative reconstruction algorithm, like IST,
truncated to a fixed number of iterations.
Representatives: LISTA [Gregor and LeCun, 2010],[Moreau and Bruna, 2017]

X W, 1 -z

S

X=W]
S sl S Fem A4 S feml ]
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Deep CNN models in image reconstruction

A central question is whether one can combine elements of model and data driven
approaches for solving ill-posed inverse problems.

S rBP
.
Subsampled Sinogram

Skip connection

4 < # of channels
U-net
NEE
spatial dimension:512x512
647 128128 256128 128
256 x 256
128 256 256 512 256 256] > 3x3conv.+BN
HH L
128x128 i L + 2x2max pooling
kip connection
(256" 512 512 1024 5 _'s12 i i
and concatenation
saxse_N-HE-IH .

+ 3x3up-conv2.
TR e ez ez ST +BN+RelU
32:31“#) - Tx1conv. [I\/IcCann et aI., 2017]
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@ Sparse optimization is a fundamental concept in inverse problems like image
reconstruction.

@ We covered some basic components of sparse image recovery algorithms,
including ADMM-based methods.

@ The concept of structured sparsity was underlined with particular attention to
using Markov Random Field priors in sparse image recovery.

@ A new frontier: machine learning in image reconstruction. Great potential, a
huge variability of approaches.
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