

Artificial intelligence in art conservation and preservation: Experience from the Ghent Altarpiece

Aleksandra Pižurica

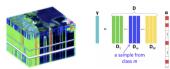
Department Telecommunications and Information Processing Ghent University

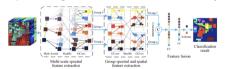
Technical Art History Series – Digital Imaging Methods for Cultural Heritage organized by the Rijksmuseum, the Computational Imaging group at CWI Amsterdam, and the Venice Centre for Digital and Public Humanities

25 May 2021

Department of Telecommunications and Information Processing

TELIN Welcome to the Department of Telecommunications and Information Processing

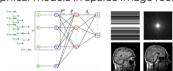


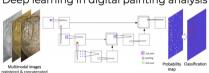


Welcome to GAIM, the Group for Artificial Intelligence and Sparse Modelling in the department TELIN of the Faculty of Engineering and Architecture at Ghent University

Sparse modelling in high-dimensional data analysis

Deep learning in sensor fusion and HSI analysis


Signal & image processing - machine learning - information theory

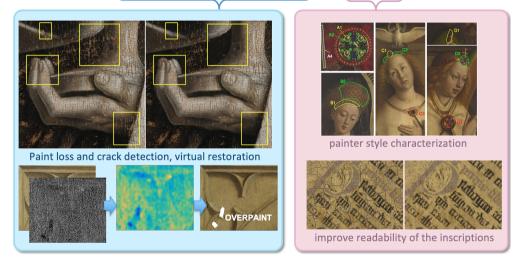


Welcome to GAIM, the Group for Artificial Intelligence and Sparse Modelling in the department TELIN of the Faculty of Engineering and Architecture at Ghent University

Graphical models in sparse image recovery

Deep learning in digital painting analysis

Signal & image processing - machine learning - information theory


GHENT

LINIVERSITY

Research group GAIM

Al Supporting Conservation & Restoration, and Analysis, of Paintings

The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.

The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.

Restoration of the Ghent Altarpiece 2012-2019

Restoration of the *Ghent Altarpiece* 2012-2019

SCIENCE

The New York Times

A Master Work, the Ghent Altarpiece, Reawakens Stroke by Stroke

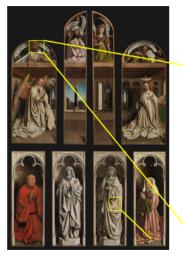
Restoration of the *Ghent Altarpiece* 2012-2019

Art restorers Bart Devolder and Hélène Dubois

Ghent Altarpiece restoration - Phase 1

= Overpaint © KIK-IRPA

Ghent Altarpiece restoration - Phase 1



Ghent Altarpiece restoration – Phase 2 (inner panels)

The *Mystic Lamb* – before and after the restoration.

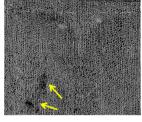
Paint losses revealed after cleaning

Why do we need automatic paint loss detection?

Paint loss detection is crucial for

- documenting purpose
- virtual restoration
- decision making in the actual restoration process

Currently done manually:


- labor intensive
- only rough indication
- prone to errors

©Ghent, Kathedrale Kerkfabriek, Lukasweb

Crack detection

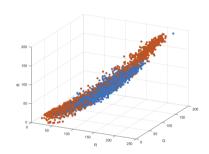
Diagnostics, overpaint detection.

Input for virtual crack filling. Improving readability of inscriptions.

Challenges: Information extraction from multimodal data

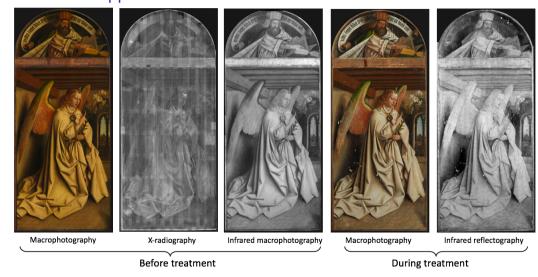
Extracting useful information from multiple modalities, with

- huge data
- imperfect alignment
- scarce annotations
- erroneous annotations

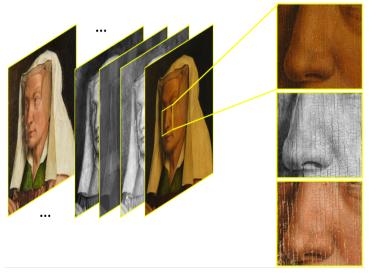


©Ghent, Kathedrale Kerkfabriek, Lukasweb

Paint loss detection problem - difficulties



©Ghent, Kathedrale Kerkfabriek, Lukasweb


A scatter plot of RGB values for randomly selected paint loss and background pixels in the macrophotography after cleaning (red: paint loss; blue: background).

A multimodal approach

©Ghent, Kathedrale Kerkfabriek, Lukasweb

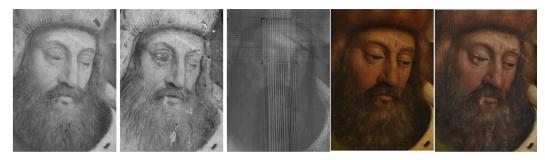
Registration of multimodal images

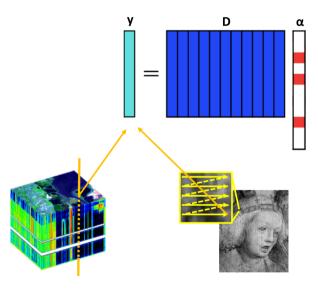
Crack patterns can be employed as landmarks.

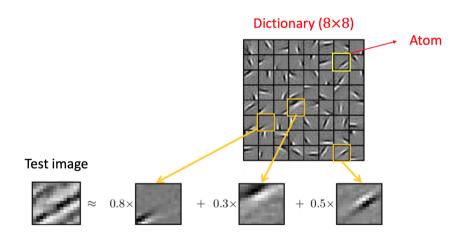
Paint loss detection data sets - John the Evangelist

Paint loss detection data sets - prophet Zachary

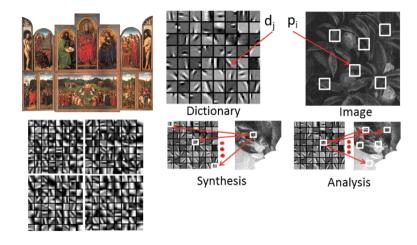
Annotations by art restorers

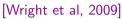

Annotations by art restorers

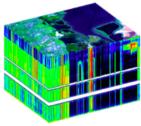

Multimodal Data

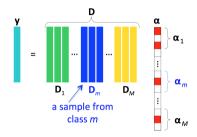

©Ghent, Kathedrale Kerkfabriek, Lukasweb

- Annotations done on macrophotographs during the treatment;
- Dictionaries for sparse representation classification constructed from the available multimodal data. The available modalities may differ from one panel to another.

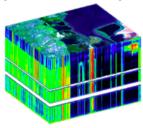

Sparse representation

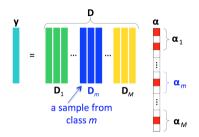

Sparse coding and dictionary learning



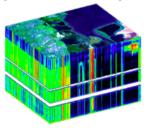

Application in Painter Style Characterization

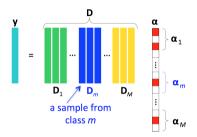
[Hughes et al, 2009], [Latić and Pižurica, 2014]



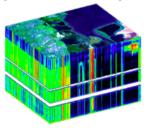


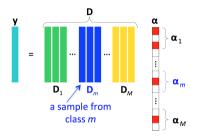
① Construct structured dictionary $D = [D_1...D_n]$ from the annotated samples

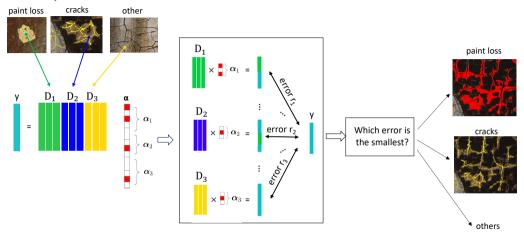

[Wright et al, 2009]



- **①** Construct structured dictionary $D = [D_1...D_n]$ from the annotated samples
- $oldsymbol{0}$ Find the coefficients lpha by solving the sparse coding problem


[Wright et al, 2009]




- **①** Construct structured dictionary $D = [D_1...D_n]$ from the annotated samples
- $oldsymbol{\circ}$ Find the coefficients α by solving the sparse coding problem
- \odot Calculate the errors when representing the input y with each sub-dictionary D_i

[Wright et al, 2009]

- Construct structured dictionary $D = [D_1...D_n]$ from the annotated samples
- **②** Find the coefficients α by solving the sparse coding problem
- \odot Calculate the errors when representing the input y with each sub-dictionary D_i
- Assign y to the class that gives the smallest error

S. Huang, B. Cornelis, B. Devolder, M. Martens and A. Pižurica. Multimodal Target Detection by Sparse Coding: Application to Paint Loss Detection in Paintings. IEEE Transactions on Image Processing, 2020.

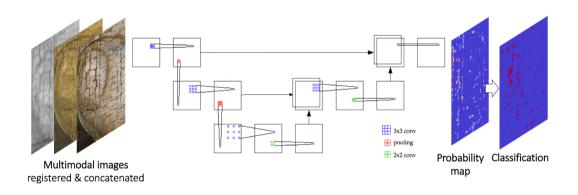

Paint Loss Detection Results

Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb

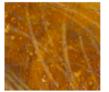
A multiscale deep learning method for paint loss detection

L. Meeus, S. Huang, B. Devolder, M.Martens, and A. Pižurica (2018). Deep Learning for Paint Loss Detection: A Case Study on the Ghent Altarpiece. IP4AI.

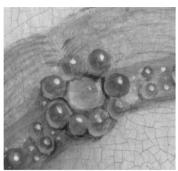
A multiscale deep learning method for paint loss detection

Size: 5954×7546 ; processed in < 1 minute

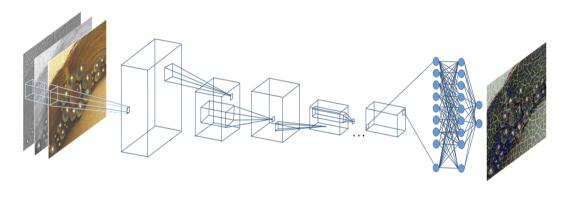
Deep learning in crack detection

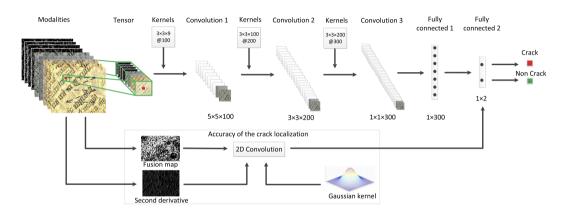


Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017]. However, crack detection in paintings is much more challenging!

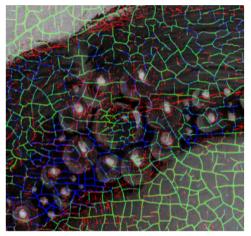


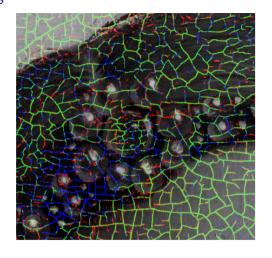
Crack detection from multimodal data




detail of the panel Singing Angels

A deep learning method for crack detection in paintings

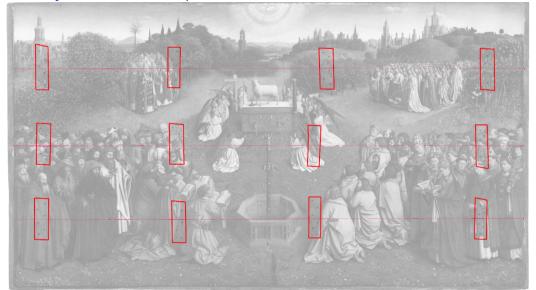

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. Pižurica (2018). A deep learning approach to crack detection in panel paintings. IP4AI.

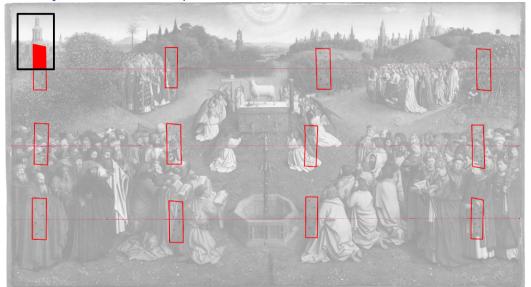

Crack detection in paintings

R. Sizyakin, B. Cornelis, L.Meeus, H. Dubois, M. Martens, V. Voronin, and A. Pižurica . Crack Detection in Paintings Using Convolutional Neural Networks. IEEE Access, 2020.

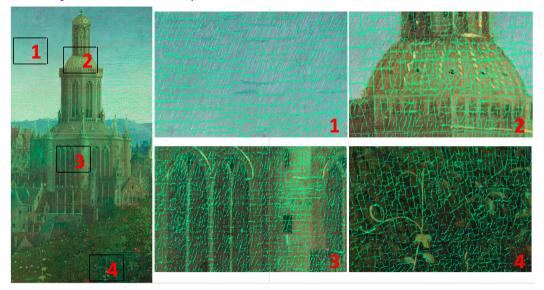
Crack detection: panel Singing Angels

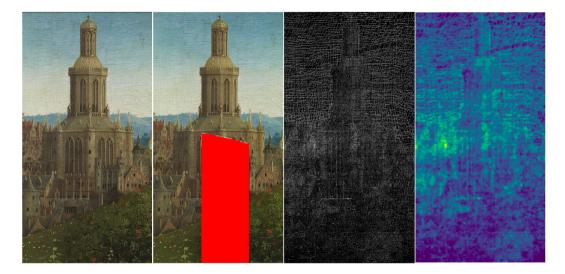
Left: A Bayesian multimodal method (BCTF). Right: CNN-based. red – false detections; blue – missing cracks; green - -correct.

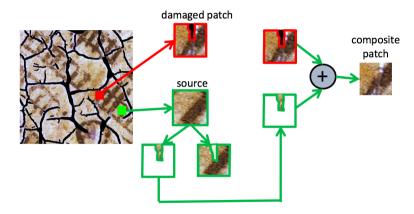

Challenging cases for crack detection

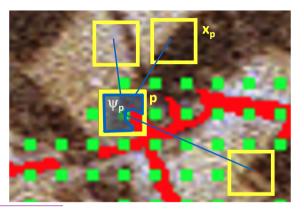



Challenging cases for crack detection

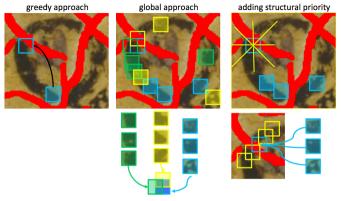








Patch-based inpainting



Inpainting concept

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov random field modeling. *IEEE Transactions on Image Processing* 2015

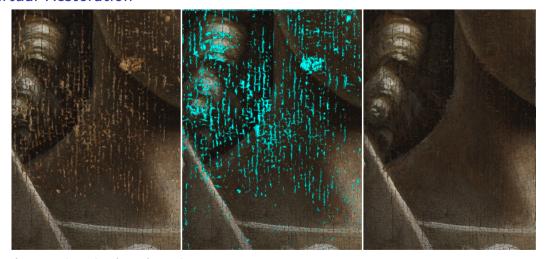
A summary of patch based inpainting

$$P_{i,j} = \mathcal{S}(\phi_i, \phi_j) + \max_k \sum_{l \in N_{i,k}} \mathcal{S}(\phi_i, \phi_l)$$

A. Pižurica et al. Digital Image Processing of the Ghent Altarpiece. Signal Process. Mag. 2015

Crack inpaiting

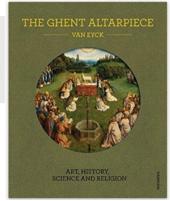
Crack inpaiting



Automatic paint loss detection; inpainting method of [Ružić and Pižurica, TIP, 2015].

Automatic paint loss detection; inpainting method of [Ružić and Pižurica, TIP, 2015].

Automatic paint loss detection; inpainting method of [Ružić and Pižurica, TIP, 2015].

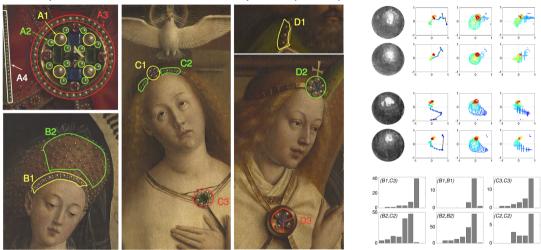



Left: Input; Middle: virtual restoration; Right: actual restoration.

Recent book on the Ghent Altarpiece

THE GHENT ALTARPIECE – ART, HISTORY, SCIENCE AND RELIGION (NEW) Danny Praet, Maximiliaan P.J.

Martens e.a.


Paperback: 304 pages

Publisher: Cannibal Publishing (October 14, 2019)

Restored panels of the Ghent Altarpiece (2021)

Restored panels of the Ghent Altarpiece (2021)

A. Pižurica, L. Platisa, T. Ružic, B. Cornelis, A. Dooms, M. Martens, H. Dubois, B. Devolder, M. De Mey, I. Daubechies, Digital Image Processing of the Ghent Altarpiece: Supporting the painting's study and conservation treatment, IEEE Signal Processing Magazine. July 2015.

Planned for the third restoration phase (from 2022)

