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@ Model-based iterative reconstruction algorithms
@ Sparse optimization
@ Solution strategies: greedy methods vs. convex optimization
@ Optimization methods in sparse image reconstruction

e Structured sparsity
@ Wavelet-tree sparsity
@ Markov Random Field (MRF) priors

© Machine learning in image reconstruction
@ Main ideas and current trends
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A fairly general formulation

Reconstruct a signal (image) x € X from data y € Y where
y=T(x)+n

X and Y are Hilbert spaces, 7 : X — Y is the forward operator and n is noise.
A common model-driven approach is to minimize the negative log-likelihood L:

min L(7(x),

min £(7(x). )

Typically, ill-posed and leads to over-fitting. Variational regularization, also called
model-based iterative reconstruction seeks to minimize a regularized objective
function

min £(7(x). y) + 7é(x)

¢: X — RU{—00,00} is a regularization functional. 7 > 0 governs the influence of
the a priori knowledge against the need to fit the data.
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Linear inverse problems

Many image reconstruction problems can be formulated as a linear inverse problem.
A noisy indirect observation y, of the original image x is then

y=Ax+n

Matrix A is the forward operator. x € R"; y,n € R™ (or x € C"; y,n € C™).
Here, image pixels are stacked into vectors (raster scanning). In general, m # n.

Some examples
@ CT: A is the system matrix modeling the X-ray transformation
o MRI: A'is (partially sampled) Fourier operator
@ OCT: A is the first Born approximation for the scattering
@ Compressed sensing: A is a measurement matrix (dense or sparse)
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Linear inverse problems

For the linear inverse problem y = Ax + n, model-based reconstruction seeks to solve:

1

min §|]AX —y|5 + TH(x) (Tikhonov formulation)

X
Alternatively,

min(x) subject to [|Ax —y[3 <e (Morozov formulation)
X

min |Ax —y||3 subject to @(x) < & (lvanov formulation)
X

Under mild conditions, these are all equivalent [Figueiredo and Wright, 2013], and
which one is more convenient is problem-dependent.
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@ Model-based iterative reconstruction algorithms
@ Sparse optimization
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Sparse optimization

@ A common assumption: x is sparse in a well-chosen transform domain.

@ We refer to a wavelet representation meaning any wavelet-like multiscale
representation, including curvelets and shearlets..

x=W0, 0 cRY, W e R™I

The columns of W are the
elements of a wavelet frame
(an orthogonal basis or an
overcomplete dictionary)

@ The main results hold for learned dictionaries, trained on a set of representative
examples to yield optimally sparse representation for a particular class of images.
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Compressed sensing

Considery = Ax+n, with y,ne€R™, x=W0, xcR" 0cRY m<n

6 = arg mein%HAll’G—Y\@—i-Td)(e), x=wo
Yy :- A 6
|-

xr = Ve | J

Commonly: mein||9||0 st. |[AWO —y[3<e  or mein LIAWO — yl3 + 76|

[Candes et al., 2006], [Donoho, 2006], [Lustig et al., 2007]
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Compressed sensing: recovery guarantees

Consider y = Ax+n, with yyneR™ x=W0, x€R", m<n

Matrix ® = AW has K-restricted isometry property (K-RIP) with constant ex < 1 if
V K-sparse (having only K non-zero entries) ©:

(1 —ex)llBlf3 < [ ®8]]3 < (1 +ex)llO]f3

Suppose matrix A € R™*" is formed by subsampling a given sampling operator
A € R™". The mutual coherence between A and W:

u(A, W) = max|a v
If m > Cu?(A, W)Knlog(n), for some constant C > 0, then
1 ,
min SIIAWE — ()3 + 7(|8]1

recovers x with high probability, given the K-RIP holds for ® = AW.
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Analysis vs. synthesis formulation

Considery = Ax+n, with yeR”, x=Ww0, xeR", 0¢eR

Synthesis approach:
o1
min S [|AWe — |3 + 7¢(6)

Analysis approach:
1
min = 1A = y 2 + T¢(x)
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Analysis vs. synthesis formulation

Consider y = Ax+n, with yeR™, x=wW0, xeR", 0€cR
Synthesis approach:

min S 1AW — B + 76(0)
or in a constrained form:

mein $(0) subject to [|AWE — y||3 < e

Analysis approach:
o1
min > [ Ax — y[13 + T¢(x)
or in a constrained form:

min ¢(x) subject to ||Ax —y[3 <€
X
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Analysis vs. synthesis formulation

Considery = Ax+n, with yeR”, x=Ww0, xeR", 0¢eR

Synthesis approach:
o1
min S [|AWe — |3 + 7¢(6)
or in a constrained form:

mein $(0) subject to [|AWE — y|3 < e

Analysis approach that also applies to wavelet regularization
o1
min 1A — |3 + 79(Px)
or in a constrained form:

min ¢(Px) subject to ||Ax —y|3 <e
X
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Analysis vs. synthesis formulation

Considery = Ax+n, with yeR”, x=Ww0, xeR", 0¢eR

Synthesis approach:
o1
min S [|AWe — |3 + 7¢(6)
or in a constrained form:

min¢(0) subject to [AWE — y[5 < ¢

Analysis approach that also applies to wavelet regularization
1
min > [|Ax — | + 7¢(Px)
or in a constrained form:

min(Px) subject to [|Ax —y||2 < ¢
X

P: a wavelet transform operator or P = | (standard analysis)
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@ Model-based iterative reconstruction algorithms

@ Solution strategies: greedy methods vs. convex optimization
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Solution strategies: greedy methods vs. convex optimization

Solution strategy is problem-dependent. For non-convex problems like
min|jx|lo subject to [|[Ax —y|3 <€
X

Greedy algorithms, e.g.,

@ Matching Pursuit (MP) [Mallat and Zhang, 1993]
@ OMP|[Tropp, 2004], CoSaMP [Needell and Tropp, 2009]
o IHT [Blumensath and Davies, 2009]

or convex relaxation can be applied leading to:
min||x|; subject to [|Ax —y||3 <€
X

1
min EHAX — y||§ + T¢(x)
known as LASSO [Tibshirani, 1996] or BPDN [Chen et al., 2001] problem.
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Greedy methods: OMP

OMP algorithm for solving min||x|[o subject to Ax =y
X

Require: k =1,r() =y A =
1: repeat
2. Ak =argmax; |A; - r(9)]
3 AR = A=D g (A
4 x() = arg miny||Ap X — ¥|l2
5: 9(k) = A/\kx(k)
6: p(k+1) — (k) — y(k)
7: k=k+1
8: until stopping criterion satisfied

A; is the j-th column of A, and Aj a sub-matrix of A with columns indicated in A.
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@ Model-based iterative reconstruction algorithms

@ Optimization methods in sparse image reconstruction
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Proximal operator

Many state-of-the-art image reconstruction algorithms solve problems of the kind
1 5
min 5 1|1Ax = yII3 + 7¢(Px)

making use of the proximity operator i.e., the Moreau proximal mapping
[Combettes and Wajs, 2005]

o1
prox,,(y) = argmin §||X — 3+ 7é(x)
X

For certain choices of ¢(x), this operator has a closed-form, e.g.,

@ ¢(x) = [|x|l1 = prox,,, (y) = soft(y, T) component-wise soft thresholding
@ ¢(x) = [[x|lo = prox,,, (y) = hard(y, v27) component-wise hard thresholding

Another common regularization function is total variation (TV):

e ¢(x) = ||x||7v = prox, 1y (y) Chambolle’s algorithm [Chambolle, 2004]
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lterative shrinkage/thresholding (IST)

The standard algorithm for solving
1 )
min > | Ax — |3 + T(x)
is iterative shrinkage/thresholding (IST) algorithm [Figueiredo and Nowak, 2003],

[Daubechies et al., 2004]:

1
x*t1 = prox, 4 (xk ~5 A7(AxK —y) )
—_———

gradient of the data
fidelity term
Its key ingredient is the proximity operator prox,(y) = argmin%”x — yII% + TP(x)
X

A general approach in [Daubechies et al., 2004]: ¢(x) is a weighted £, norm of the
coefficients of x with respect to a wavelet basis.
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lterative shrinkage/thresholding (IST) and extensions

The standard algorithm for solving
o1 5
min S11Ax = yII3 + 7¢/(x)

is iterative shrinkage/thresholding (IST) algorithm [Figueiredo and Nowak, 2003],
[Daubechies et al., 2004]:

1
x*t1 = prox, 4 (xk — = AF(AX* —y) )
—_— —

/Y

gradient of the data
fidelity term

Different accelerated versions:
@ TwIST [Bioucas-Dias and Figueiredo, 2007]
@ FISTA [Beck and Teboulle, 2009]
@ SpaRSA [Wright et al., 2009]
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Variable splitting

A very old idea (back to at least [Courant, 1943]): Represent miny f1(x) + f2(Gx) as
min f1(x) + f2(z) subject to Gx =1z
X

The rationale: it may be easier to solve the constrained problem.

Variable splitting (VS) together with the augmented Lagrangian method (ALM) and
non linear block Gauss-Seidel (NLBGS) leads to a form of Alternating Direction
Method of Multipliers (ADMM). It is this interpretation:

(VS + ALM + NLBGS) - ADMM

that we give in the next few slides, following [Afonso et al., 2010]
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Variable splitting and Augmented Lagrangian Method

A very old idea (back to at least [Courant, 1943]): Represent miny f1(x) + f2(Gx) as

min f1(x) + f2(z) subject to Gx =z
X

Lu(x.2.3) = A(x) + £(z) + AT(6x —2) + £ Gx — 7|3
o N —’

Lagrangian "augmentation”

Basic augmented Lagrangian method (ALM), a.k.a., method of multipliers (MM)),:

(x(k) z(y = ar(gm)in L,(x,z, A1)
X,z

AR = A= ex(F) — 2(R)y

Goes back to at least [Hestenes, 1969], [Powell, 1969]
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Variable splitting and Augmented Lagrangian Method

A very old idea (back to at least [Courant, 1943]): Represent miny f1(x) + f2(Gx) as
min f1(x) + f2(z) subject to Gx =1z

Lu(x.2.3) = A(X) + £(z) + AT(Gx —2) + £ Gx — 7|3
N——_——

"augmentation”

Lagrangian

After simple “complete-the-squares” ALM/MM vyields [Afonso et al., 2010]:

(x4, 209) = argmin (x) + £(z) + 5/1Gx — z - d“ V|3
(<)
d0 = gD _ (Gx(9) — 5
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ADMM as Variable splitting and ALM

Use variable splitting (VS) to represent miny f1(x) + f2(Gx) as
min f1(x) + f2(z) subject to Gx =z
X
ALM/MM vyields :

(x), 2y = argmin f(x) + H(z) + %HGX —z—d V3 (P)
(x.2)

d®) = dk-D — (GxK) — z(K)
Solve (P) with one step of NLBGS — “scaled” ADMM version [Boyd et al., 2011]:
x(K) = argmin fi(x) + %HGX — 207D —g(k=1))2
29 = argmin f(z) + %HGx(k_l) —z—d V3

d0) = gD _ (Gx(0) — 5()
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ADMM algorithm

ADMM algorithm for solving: miny fi(x) + f(Gx)

Require: k =0, > 0,z{%, d{%}
1: repeat
2. x(k) = arginin fi(x) + £)|1Gx — 2~ — d=1))2
3.z = argmin f(z) + %||Gx(k—1) —z—dV)|3

4 dk) = g(k—1) — (Gx(k) — Z(k))
5: k=k+1
6: until stopping criterion is satisfied

Equivalent to split-Bregman method [Goldstein and Osher, 2009].
Connections with Douglas-Raschford splitting [Setzer, 2009].
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ADMM algoritm for linear inverse problems

Instantiate ADMM to our linear inverse problem: miny||Ax — y||3 + T¢(Px)

Require: k =0, > 0,z{%, d{%}
1: repeat
2. x() = argmin||Ax — yII% + 5||Px — z(k=1) _ d(k—1)||%
3. z(K = argmin 7¢(z) + %||Px(k_1) —z— d(k_l)H%: prode,/“(Px(k_l) — d(k_l))

4 dk) = gqk-1) _ (px(k) — z(k))
5: k=k+1
6: until stopping criterion is satisfied
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A variant of ADMM algorithm for more than two functions

Consider minyegn Z-J:l gi(H;x) and map it into the previous: min f1(x) + fo( Gx )

J ~—
| H, 2\ d{
A(x)=0,h(z)=>g(z). G=| : | eRP, 2z = | | dk) = | :
J=1 H, Z(Jk) d(Jk)

Jj=1 J

<) — <ZJ:((HJ')THJ-)1 (,jl(Hf)T(Zj(kl) + dj‘.‘*l)>

) — pros(Hoxt—) — )
219 = proxg, (Hx—1) — d{ ) C-SALSA [Afonso et al., 2011]

d(0) — dk=1) _ (Gx(0) — 5(0)
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Example: MRI reconstruction with shearlet regularization

™, Fully sampled

#" ADMM - DST

A transversal slice of a FLAIR sequence, resampled along a non-Cartesian trajectory
based on an Archimedean spiral (sampling rate 15%). [Aelterman et al., 2011].
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Example: CT reconstruction with shearlet regularization

inputimage (512x512)  scale 1 (256x256) scale 0 (512x512)

g

scale 3 (16x16)
25
20

15 scale 2 (64x64)

g 3 3
8 8 8

Rotation Angles (degrees)
g

g
8

g

5 100 150
Sensor Positions (degrees)

N o1
X = argmin §||C 1(Ax—y)Hg + 7||Px||1

Matrix C is a “prewhitener” for the acquisition system [Vandeghinste et al., 2013].
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Example: CT reconstruction with shearlet regularization

SIRT

Top left: reference; Top right: SIRT; Bottom left: ADMM with TV regularization;
Bottom right: ADMM with shearlet regularization [Vandeghinste et al., 2013]
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Modelling structured sparsity

Two main approaches to modelling structured sparsity in image reconstruction

@ in the acquisition stage

@ in the reconstruction stage

In the following we only focus on the second approach.

For the the improved design of the sampling patterns/sampling trajectories making
use of the structured sparsity, see [Roman et al., 2015], [Adcock et al., 2017],
[Gozcu, 2018]
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© Structured sparsity
@ Wavelet-tree sparsity
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Wavelet tree sparsity

_\

[Jacob et al., 2009], [He and Carin, 2009], [Rao et al., 2011].

Application to MRI [Chen and Huang, 2014].
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© Structured sparsity

@ Markov Random Field (MRF) priors
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Sparse reconstruction with Markov Random Field priors

S.0—e0,
AN

Use Markov Random Field (MRF) as a statistical model for the spatial clustering of
important wavelet coefficients [Cevher et al., 2010], [Pizurica et al., 2011]
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Sparse reconstruction with Markov Random Field priors

Consider (a little simpler): y = Ax+n, with y,n € R™, xe€R", s, €{0,1}

o 2 1 >
[% 8] = argmax { ;[35@ + 2 _loesi +log(p(xils)] = 55 lly — Ax|3}
1,J I
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Sparse MRI reconstruction with MRF priors

Consider: y = Ax+n, with y,neC”, xe€C", x=W0,0cC? s {0 1}
Let Qs = {i € N : 5; = 1}. Define a model for 0 that conforms to the support s:
Ms = {0 € CP : supp(8) = Qs}

Our objective is:
min |[Ax —y||3 subject to Px € Ms
xeCN

or equivalently:
min |Ax —y[3  + to.(supp(Px))
xeCN

to(a) = {O' a€9

+00, otherwise

where

LaSB [PiZurica et al., 2011], GreelLa [Pani¢ et al., 2016], LaSAL [Pani¢ et al., 2017]
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SB-LaSB comparison; random subsampling 50%

45 ..

40 -

35 .

30 -

25 .

PSNR [dB]

SB (split-Bregman) and LaSB implemented with the same

A. Pizurica and B. Goossens (UGent)

Iteration

30

LaSB (1=10,l,,=0) |
—_SB (=00, I,,=0)
——LaSB (I=1,l5=1)
o SB (=1, Iy =1)

v

40 50
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Example: CS-MRI with MRF priors

20% measurements, with variable density random sampling

Left: zero fill (PSNR = 19.87 dB)
Middle: WaTMRI [Chen and Huang, 2014] (wavelet-tree; PSNR = 28.78 dB)
Right: LaSAL [Panic¢ et al., 2017] (MRF-based; PSNR = 33.43 dB)
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Example: CS-MRI with MRF priors

Reconstructions from 20% measurements, with radial sampling

Left: reconstructions; Right: error images; Top: LaSAL, Bottom: WaTMRI
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© Machine learning in image reconstruction
@ Main ideas and current trends
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Machine learning in image reconstruction

Covered in many recent workshops, special sessions and special issues of journals:

EmB IEEE / IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 6, JUNE 2018 1289
NPSS = Ll

Image Reconstruction Is a New Frontier
of Machine Learning

Ge Wang", Fellow, IEEE, Jong Chu Ye"“', Senior Member, IEEE, Klaus Mueller”, Senior Member, IEEE,
and Jeffrey A. Fessler™, Fellow, IEEE

Three main direction have been proposed
@ learned postprocessing or learned denoisers;
@ learn a regularizer and use it in a classical variational regularization scheme;

@ learning the full reconstruction operator
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Learning fast approximations of sparse coding

Core idea: time-unfolded version of an iterative reconstruction algorithm, like IST,
truncated to a fixed number of iterations.
Representatives: LISTA [Gregor and LeCun, 2010],[Moreau and Bruna, 2017]

X W, 1 -z

S

X=W]
S sl S Fem A4 S feml ]
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Deep CNN models in image reconstruction

A central question is whether one can combine elements of model and data driven
approaches for solving ill-posed inverse problems.

S rBP
.
Subsampled Sinogram

Skip connection

4 < # of channels
U-net
NEE
spatial dimension:512x512
647 128128 256128 128
256 x 256
128 256 256 512 256 256] > 3x3conv.+BN
HH L
128x128 i L + 2x2max pooling
kip connection
(256" 512 512 1024 5 _'s12 i i
and concatenation
saxse_N-HE-IH .

+ 3x3up-conv2.
TR e ez ez ST +BN+RelU
32:31“#) - Tx1conv. [I\/IcCann et aI., 2017]
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@ Sparse optimization is a fundamental concept in inverse problems like image
reconstruction.

@ This tutorial covered some basic components of sparse image recovery
algorithms, including ADMM-based methods.

@ The concept of structured sparsity was underlined with particular attention to
using Markov Random Field priors in sparse image recovery.

@ A new frontier: machine learning in image reconstruction. Great potential, a
huge variability of approaches.
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