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Computed Tomography

• The goal of tomography (from the Greek tomos for section) is to recover the
interior structure of a body using external measurements.

• Various probes, including X-rays, gamma rays, visible light, electrons, protons,
neutrons, sound waves, and nuclear magnetic resonance signals can be used to study a
large variety of objects ranging from complex molecules through astronomical objects.

• The most popular application of tomography is Computed Tomography (CT) for
medical imaging, widely used for medical diagnostic.

→ Over 80 million CT scans were performed in the USA in 2015.
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Computed Tomography

• CT involves the exposure of the patient to x-ray radiation.

This is associated with health risks (radiation-induced carcinogenesis) essentially
proportional to the levels of radiation exposure.
⇒ 2% of cancers in the United States attributed to CT radiation.

• Radiation exposure can be directly reduced, this often leads to a lower SNR and/or
lower image resolution ⇒ trade-off diagnostic quality vs. radiation dose.

• Another technique consists of sparse sampling (e.g., sparse-angle CT reconstruction)

• In some cases, only a “small” region-of-interest (ROI) needs to be reconstructed.
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Computed Tomography acquisition

Tomography: A series of planar images is acquired from different angles around the
patent.

Picture taken from [Vandeghinste, 2014]
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The Radon Transform: Simple Backprojection

In 2D, the measurements can be mathematically represented by the Radon transform
R, which maps a density function f into linear projections.

A line ` can be parametrized with
respect to eθ = (cos θ, sin θ) ∈ S1

and t ∈ R:

`(θ, t) = {y = (u, v) ∈ R2 : eθ·y = t}.

In 1917, Johann Radon proved that an object can be reconstructed exactly from an
infinite number of projections, when taken over 360◦ around the object.
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The Radon Transform of the Shepp Logan phantom

Shepp Logan image Radon transform (sinogram)
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The Radon Transform: Simple Backprojection

Radon transform: For each θ ∈ S1 and t ∈ R

p(θ, t) = Rf (θ, t) =

∫
`(θ,t)

f (y) dy

Backprojection (mathematically incorrect):

f (y) = R∗{p} =

∫ π

0
p(θ, u cos θ + v sin θ)dθ

Why incorrect?

To explain: Fourier Slice Theorem needed

Consequence: image reconstruction techniques required!

A. Pižurica and B. Goossens (UGent) Image Reconstruction Tutorial: Part 2 FWO-WOG TIVSPE 2019 10 / 46



The Radon Transform: The Fourier Slice Theorem

Fourier Slice Theorem: the 1D Fourier transform of a parallel projection of an object
f (y) obtained at an angle θ equals one line in the 2D Fourier transform of f (y) at the
same angle θ.

Picture taken from [Vandeghinste, 2014]
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CT reconstruction by Filtered Backprojection

Backprojection blur is caused by a polar sampling pattern in Fourier space.

Picture taken from [Vandeghinste, 2014]

The density of samples near the center is a factor 1/r higher than at the outer regions,
with r the radial distance to the center.
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CT reconstruction by Filtered Backprojection

Solution: uniform sampling density requires the Fourier transform of each projection
to be multiplied with a ramp filter proportional with this 1/r factor:

f (y) = R∗(q ? R{f (y)})

where the filter q has Fourier
transform:

F{q}(ω) =
∣∣∣ ω
2π

∣∣∣G (ω)

with G (ω) a smoothing filter (e.g., sinc filter, cosine filter, Parzen filter, a Hamming
window, Hann window, ...). The smoothing filter directly influences the quality of the
reconstructed image in terms of noise, resolution, contrast and other measures.
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Simple versus Filtered Backprojection

Illustration of the difference between simple backprojection and filtered Backprojection

Picture taken from [Vandeghinste, 2014]
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Filtered Backprojection (FBP) characteristics

The most commonly used image reconstruction method in CT due to
1 being very fast
2 having low memory requirements
3 yielding good results on many data

Originally defined for parallel-beam geometry; extensions exist for current systems
(e.g., fan-beam, cone-beam, helical cone-beam).

Exact solution in absense of noise, complete data and for uniform spatial
resolution

In practice, these conditions usually do not apply ⇒ iterative reconstruction
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Iterative Reconstruction Methods

Solve linear systems numerically

y = Wf ⇒ f =?

• f: the input image, arranged as a vector (e.g., using column stacking)

• y: the output sinogram, arranged as a vector

• W: system matrix of elements wij , which relates the contribution of every pixel
(voxel) j in f to every detector element i .

Linear system too large to solve directly ⇒ instead, use iterative solvers.
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Algebraic Iterative Reconstruction (ART)

Algebraic Iterative Reconstruction (ART), by Gordon, Bender and Herman in 1970:

f(k+1) = f(k) + λk
yi −wT

i f(k)

wT
i wi

wi

with wi = (wi1,wi2, ...,wiJ) the i-th row of the system matrix W.

Intuitively, the current image estimate f(k) is forward projected and compared to the
measured data. The error due to mis-estimation is redistributed to the current
estimate, bringing it closer to the final solution.
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Filtered Backprojection vs ART

Example with 3% noise and projection angles 15◦, 30◦, 45◦, ..., 180◦

Incorporate constraints (e.g., non-negativity)
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Iterative reconstruction techniques: the good...

Compared to Filtered Backprojection, iterative reconstruction offers:

Improved image quality (in particular in presence of noise and limited data), at a
higher computational cost (compute on GPU).

More flexibility to adapt the reconstruction to incomplete data, noise
characteristics and image prior knowledge.

Several improvements of ART have been proposed, including Simultaneous
Iterative Reconstruction Technique (SIRT) [Herman and Lent, 1976], Image
Space Reconstruction Algorithm (ISRA), Maximum Likelihood for Transmission
Tomography (MLTR) [Yu et al., 2000], ...

In 2015, Siemens integrated their own Sinogram Affirmed Iterative Reconstruction
(SAFIRE) algorithm in their CT scanners.
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Iterative reconstruction techniques: the bad...

Iterative reconstruction techniques faces several challenges, especially in presence of
noise / undersampling:

Data fidelity (ŷ ≈ y), even with regularization is not enough to guarantee a good
image!
⇒ Problem is not always uniquely solvable
⇒ Given a projection error ||ŷ − y||2 we want to control the image reconstruction
error ||̂f − f̂||2
⇒ Challenging problem, due to the null-space of W

Sometimes, iterative reconstruction algorithms are stopped after a fixed number
of iterations (best image quality(?)), rather than at convergence.
⇒ Study of the relation between reconstruction parameters, noise and image
quality is very important!
⇒ Research domain: medical image quality assessment and optimization.

A. Pižurica and B. Goossens (UGent) Image Reconstruction Tutorial: Part 2 FWO-WOG TIVSPE 2019 21 / 46



Sparsity-Inducing Reconstruction Algorithm (SIRA)

Joint work with Demetrio Labate and Bernhard Bodmann from Univ. of Houston.
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ROI Computed Tomography

ROI Computed Tomography is concerned with reconstructing an ROI within the field
of view using ROI-focused scanning only.

Challenge: since projections are truncated, the reconstruction problem may become
severely ill-posed.
→ Interior problem (projections are known only for rays intersecting an ROI strictly
inside the field of view) is in general not uniquely solvable.
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ROI Computed Tomography

Existing methods for local ROI CT reconstruction require restrictions on the
geometry and location of the ROI or some prior knowledge about the density
function.

Differentiated Back-Projection [Clackdoyle et al., 2004]
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ROI Computed Tomography

Known subregion [Kudo et al., 2008]

Special assumption [Yang et al., 2010], [Klann et al., 2015]
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ROI Computed Tomography

Remark: even when local reconstruction is theoretically guaranteed, the practical
solution might be numerically unstable.
⇒ There is no theoretical guarantee in the presence of noise.

Our ROI CT reconstruction method includes performance guarantees in the setting of
noisy projection data.

Novelty:
- we treat image and projection data jointly in the recovery
- a robust width prior assumption that relies on sparsity norms and measurement
models supported by the theory of compressed sensing.
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ROI Reconstruction problem

W → projection operator (e.g., Radon transform, fan-beam transform)
it maps a density function f into linear projections defined in the
tangent space of the circle T = {(θ, t) : θ ∈ [0, 2π), t ∈ R}

S ⊂ R2 → ROI (image space)
P(S) = {(θ, t) ∈ T : `(θ, t) ∩ S 6= 0} → ROI (projection space)
M = χP(S) → ROI mask (projection space)
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ROI Reconstruction problem

ROI reconstruction problem

Find f on S given y0(θ, t) = M(θ, t)Wf (θ, t)

or

ROI reconstruction problem (with noise)

Find f on S given y0(θ, t) = M(θ, t) (Wf (θ, t) + ν(θ, t))

In the presence of noise, ‖MWf − y0‖2 > 0 and an arbitrary extension y of y0 may fail
to be in the range of W .
Hence we formulate two constraints:

‖My − y0‖2 ≤ α (data fidelity)

‖y −Wf ‖2 ≤ β (data consistency)

In the presence of noise, α and β cannot be both set to 0 in general.
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ROI Reconstruction problem
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ROI Reconstruction problem
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Robust Width Property

Robust Width Property (RWP) [Cahill and Mixon, 2014]

• A sort of “Generalization” of the Restricted Isometry Property (RIP) which is
commonly used in compressed sensing.

• Geometric criterion to guarantee that – under the assumption that the solution space
is sparse (in compressible rather than hard sense) – convex optimization yields an
accurate approximate solution to an underdetermined, noise-affected linear system.

• We will apply this framework to the ROI problem and verify that this criterion holds.

• We start by defining the appropriate approximation space...
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Robust Width Property - Compressed Sensing space

A compressed sensing (CS) space
(
H,A, ‖·‖]

)
with bound L consists of a Hilbert

space H, a subset A ⊆ H and a norm or semi-norm ‖·‖] on H such that

1 0 ∈ A
2 For every a ∈ A and z ∈ H, there exists a decomposition

z = z1 + z2

such that
‖a + z1‖] = ‖a‖] + ‖z1‖]

with
‖z2‖] ≤ L‖z2‖2
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Robust Width Property - Definition

A linear operator Φ : H → H̃ satisfies the (ρ, η) robust width property (RWP) over

the ball B] =
{
x ∈ H : ‖x‖] ≤ 1

}
if

‖x‖2 < ρ ‖x‖]
for every x ∈ H such that ‖Φx‖2 ≤ η‖x‖2.

• Geometric interpretation

- width property: nullspace of Φ intersects B] with small width.
- robust width property: any slight perturbation of the nullspace of Φ satisfies the
width property, ensuring stability of the minimizer.
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Main Theorem [Goossens et al., 2019]

Let H =
{

(y , f ) : ‖ (y , f ) ‖H = ‖f ‖2
2 + ‖y‖2

2 <∞
}

, A ⊂ H

E = {(y , f ) ∈ H : y = Wf , My = y0} and Φ =

(
I −W
M 0

)
Suppose

(
H,A, ‖·‖]

)
is a CS space and Φ: H → H̃ satisfies the (ρ, η)-RWP over the

ball B]. Then, for every
(
y \, f \

)
∈ E , a solution

(y?, f ?)=argmin(y ,f )∈H ‖(y , f )‖] s.t. ‖My − y0 − ν‖2 ≤ α, ‖y −Wf ‖2 ≤ β

satisfies:

‖f ? − f \‖2 ≤ C1

√
α2 + β2 + C2ργ and ‖y? − y \‖2 ≤ C1

√
α2 + β2 + C2ργ,

where C1 = 2/η and C2 = infa∈A
∥∥(y \, f \)− a

∥∥
]
,

provided ρ ≤
(

2γ
γ−2L

)−1
for some γ > 2.
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Main Theorem [Goossens et al., 2019]

Remarks
• If the ROI problem has a unique solution (y?, f ?) ∈ H, then Theorem shows that
this solution is close to any

(
y \, f \

)
∈ A, with error controlled by

√
α2 + β2.

• If we do not know whether the ROI problem has a unique solution, but
(
y \, f \

)
∈ E

(= space of consistent functions satisfying data fidelity), also in this case our solution
(y?, f ?) is close to

(
y \, f \

)
.

• In case we only obtain an approximate solution
(
ỹ?, f̃ ?

)
with∥∥∥(ỹ?, f̃ ?)∥∥∥

]
≤ ‖(y?, f ?)‖] + δ then a refinement of this theorem gives that

(
ỹ?, f̃ ?

)
is

close to
(
y \, f \

)
, with a controllable approximation error.
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Sparsity-Inducing Reconstruction Algorithm (SIRA)

We construct a CS space (H,A, ‖·‖]) where H =
{

(y , f ) : y ∈ `2(Z2) f ∈ `2(Z2)
}
,

the sparsity norm is

‖(y , f )‖] =

∑
j

(∑
i

∣∣∣(Ty)ij

∣∣∣)2

+

(∑
i

∣∣∣(TWf )ij

∣∣∣)2
1/2

where T is the discrete wavelet transform on `2(Z2).
Hence the transform basis functions are ridgelets.

The solution space is

A =
{

(y , f ) ∈ `2(Z2) | ∀j∈ Z :
(

(Ty):,j , (TWf ):,j

)
is a K -sparse vector

}
Hypotheses of Theorem, including RWP, can be satisfied.
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Ridgelets: example

Picture taken from [Fadili and Starck, 2012]
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Sparsity-Inducing Reconstruction Algorithm (SIRA)

To solve our constrained optimization problem on (y , f ) we use an algorithmic
procedure called Sparsity-Inducing Reconstruction Algorithm (SIRA) that relies on
the Bregman iteration and Bregman divergence.

• We prove that SIRA reaches an approximately sparse solution in a finite number of
steps, within a predictable distance from the ideal noiseless solution of the ROI
problem.

• We found experimentally that the relationship between the ROI radius and the RWP
parameters (α, β, L) suggests that the ROI reconstruction performance (in the
projection space and image spaces) depends on the ROI radius.

•Accurate reconstruction is guaranteed even for relatively small ROI radii.
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Numerical results

An X-O CT system was used to obtain in vivo preclinical data

Preclinical - lungs Preclinical - abdomen.
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Numerical results

For benchmark comparison, we have considered

Least-squares conjugate gradient (LSCG)
[Hestenes and Stiefel, 1952, Kawata and Nalcioglu, 1985], restricted to the
projection ROI P(S).

Differentiated back-projection (DBP) [Noo et al., 2004], where the Hilbert
inversion is performed in the image domain using the 2D Riesz transform.

Maximum Likelihood Estimation Method (MLEM) [Shepp and Vardi, 1982],
restricted to the projection ROI P(S)

Compressed Sensing with respectively TV [Kudo et al., 2013] and ridgelet-based
regularization
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Numerical results

Preclinical - lungs Preclinical - abdomen
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Numerical results

(a) SIRA-FIDEL α = 0, β = 0.25u (b) SIRA α = 1
30
u, β = 4

3
u (c) LSCG

PSNRROI = 30.47dB PSNRROI = 35.49dB PSNRROI = 20.80dB

(d) CS-TV (e) CS-ridgelet (f) Full view LSCG reconstruction
PSNRROI = 21.33dB PSNRROI = 28.60dB

ROI reconstruction results for a fixed radius of 64 pixels (or 3.2 mm). (a), (b): SIRA
with different values of α, β; (c): LSCG; (d): CS-TV, (e): CS-ridgelet, (f) Full view
LSCG reconstruction (reference).
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Numerical results (different ROI radius)

Top row: SIRA (α = 0, β = 0.15), bottom row: LSCG.
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Conclusion

After almost 50 years of CT reconstruction, it is still a challenging topic!

The past decade: progress made by application of compressed sensing and sparsity
techniques in combination with improvements in computing capabilities (e.g.,
GPU)

Robust Width Property: compressed sensing framework, applied to our problem,
allow achieving performance guarantees for the image reconstruction error.

Requires treating the unknown projection data and image jointly during the
reconstruction.

Future: further improvements expected by a combination of sparsity/CS
techniques and deep learning techniques.
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