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Abstract

The objective of image fusion is to combine information from multiple images of thesame

scene. The result of image fusion is a single image which is more suitable for human and machine

perception or further image processing tasks. In this paper, a generic image fusion framework

based on multiscale decomposition is studied. This framework provides freedom to choose differ-

ent multiscale decomposition methods and different fusion rules. The frameworkincludes all of

the existing multiscale-decomposition-based fusion approaches we found in the literature which

did not assume a statistical model for the source images. Different image fusion approaches are

investigated based on this framework. Some evaluation measures are suggested and applied to

compare the performance of these fusion schemes for a digital camera application. The compar-

isons indicate that our framework includes some new approaches which outperform the existing

approaches for the cases we consider.



1 Introduction

There has been a growing interest in the use of multiple sensors to increase thecapabilities of

intelligent machines and systems. Due to this, multisensor fusion has become anarea of intense

research activity in the past few years [1, 2, 3, 4, 5]. Multisensor fusion refers to the synergistic

combination of different sources of sensory information into one representational format. The

information to be fused may come from multiple sensors monitored over a common period of time

or from a single sensor monitored over an extended time period. Many sensors produce images.

We use the term image fusion to denote a process generating a single image which contains a

more accurate description of the scene than any of the individual source images. This fused image

should be more useful for human visual or machine perception. This type of image fusion is also

called pixel-level multisensor fusion [6]. The different images to be fused can come from different

sensors of the same basic type or they may come from different types of sensors. The sensors used

for image fusion need to be accurately coaligned so that their images will be in spatial registration.

In recent years, image fusion has become an important and useful technique for imageanalysis

and computer vision [6, 7, 8, 9, 10].

A simple image fusion method is to take the average of the source images pixel bypixel. How-

ever, along with simplicity comes several undesired side effects including reduced contrast. In

recent years, many researchers recognized that multiscale transformsare very useful for analyzing

the information content of images for the purpose of fusion. Multiscale representation of a signal

was first studied by Rosenfeld [11], Witkin [12] and others. Researchers such as Marr [13], Burt

and Adelson [14] and Linderberg [15] established that multiscale information can be useful in a

number of image processing applications. More recently, wavelet theory has emerged as a well de-

veloped yet rapidly expanding mathematical foundation for a class of multiscale representations.

At the same time, some sophisticated image fusion approaches based on multiscale representations
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began to emerge and receive increased attention. Most of these approaches were based on com-

bining the multiscale decompositions (MSDs) of the source images. Fig. 1 illustrates the block

diagram of a generic image fusion scheme based on multiscale analysis. The basic idea is to per-

form a multiscale transform (MST) on each source image, then construct a composite multiscale

representation from these. The fused image is obtained by taking an inverse multiscale transform

(IMST).

Registered 
Source Images

Multiscale 
Representations

Fused multiscale
Representation

IMST

MST

MST

Fused 
Image

PROCESS
FUSION

Figure 1: Block diagram of a generic image fusion scheme

The following examples illustrate the use of image fusion in some practical applications. Fig.

2 shows a pair of digital camera images. In one image, the focus is on the Pepsi can. In the

other image, the focus is on the testing card. In the fused image, the Pepsi can, the table, and the

testing card are all in focus. The fused image was obtained using the method illustrated in Fig. 1,

using techniques to be described in detail later in the paper. Fusing images fromdifferent types of

sensors is also of interest, but is a considerably more complicated problem. Fig. 3 shows a pair

of visual and 94 GHz millimeter-wave (MMW) images1. The visual image provides the outline

and the appearance of the people while the MMW image shows the existence of a gun. From the

fused image, there is considerable evidence to suspect that the person on the right has a concealed

gun beneath his clothes. This fused image may be very helpful to a police officer, for example,
1The source images were obtained from Thermotex Corporation.
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who must respond promptly. Concealed weapon detection is an increasingly important topic in the

general area of law inforcement and image fusion has been identified as a key technology to enable

progress on this topic [16, 17]. Other application areas of image fusion include remote sensing

[18], medical imaging [19], quality and defect inspection [20], drug serveillence and intelligent

robots [4].

(a). Image 1 (focus on left) (b). Image 2 (focus on right) (c).Fused image (all focus)�
Figure 2: Fusion result for multi-focus images

(a). Image 1 (Visual) (b). Image 2 (Radiometric) (c). Fused image�
Figure 3: Fusion result for visual and radiometric images

The goal of this paper is to present a framework for classifying MSD image fusionschemes.

The framework is applicable to all of the existing schemes we have encounteredin an extensive�Obtained using scheme 7 in Table 8
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literature search and it naturally suggests some new schemes which have not yet been considered.

These new schemes are found to outperform the existing schemes in many cases ofinterest. The

framework allows one to relate different image fusion schemes and understand when each will

provide better performance. The framework we present has not been discussed in the literature

we encountered in our search and this framework should encourage more directed research on the

topic of image fusion. Illustrative examples are provided here under controlled conditions which

allow meaningful performance comparisons of the various schemes. The performancemeasures

used in this paper provide some quantitative comparison among different fusion schemes. Such

comparisons have been lacking. While the performance measures used here may not be best for all

image fusion applications, they are reasonable for fusing images for the digital camera application,

which is the focus of this performance analysis section. Due to the difficult natureof multiple sen-

sor fusion problems, we avoid them in this paper, which is one of the first papers to quantitatively

assess image fusion performance.

The framework involves five different aspects of image fusion, the most basicof these, for

example, is the MSD method. In previous research, the most commonly used MSD methodsfor

image fusion were the pyramid transform (PT) [21, 22, 23, 24, 25, 26, 27] and the discrete wavelet

transform (DWT) [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. In this paper, a type of shift-invariant

discrete wavelet transform is also suggested for image fusion. This shift-invariant discrete wavelet

transform uses an over-complete version of the wavelet basis, which is called a discrete wavelet

frame (DWF). This paper is one of the first to consider the DWF for image fusion. Fusion schemes

based on DWF will be called DWF fusion schemes. In many cases the DWF fusion schemes

outperform the previous schemes. More detailed discussion of the existing work is delayed until

we discuss our framework for MSD image fusion. Once the framework is presented,a more lucid

discussion can be provided.
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MSD-based fusion schemes provide much better performance than the simple methods studied

previously. Their good performance appears to be due to the following facts:� The human visual system is especially sensitive to local contrast changes, i.e. edges [23].

Apparently, rapid contrast changes contain extremely useful information for thehuman ob-

server.� MSD provides information on the magnitude of rapid contrast changes in the image.� MSD provides both spatial and frequency domain localization.

Different combinations of MSD methods and fusion procedures yield different performance.

A careful study of this issue has been lacking. In fact, there has been very little study comparing

various MSD fusion algorithms, even at a basic level. Here we attempt toprovide such a study. In

our study, we wanted to focus mainly on fusing the MSD coefficients. For this reason, we consider

only a few basic types of MSD methods in our comparisons. They are the Laplacian pyramid

transform (LPT) method [14], the Daubechies’s D8 orthonormal DWT [39] and the corresponding

DWF. Studying these three methods should provide some general insight into how MSD meth-

ods perform and into the relative performance of pyramid, wavelet transform and over-complete

wavelet transform approaches for image fusion. A more complete performance studyof MSD

methods, which might include a larger number of MSD methods, might be carried out at a later

date. In our experiments, we apply two levels of MSD in every fusion scheme.We found that

different levels of MSD appeared to provide different fusion performance and so extensive study

on the influence of decomposition level is another topic which should receive further study. In

this paper, we only focus on MSD-based image fusion methods, where the fusion is performed at

the pixel level. Other types of image fusion schemes, such as feature or decision fusion schemes

are not considered. In the image fusion approaches we studied, the fusion is performedwithout
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assuming any statistical model for the observed images. There are other approaches which focus

on using stochastic models or the statistical properties of the observed images[40, 41]. These

approaches are also not considered here. The performance measures we present inthis paper are

based on fusing images for the digital camera application and so in our performance comparisons

only visual images are considered. Fusion evaluation for schemes using other types ofsensors is

a more complicated issue which we will not address here. In all test caseswe assume the source

images to be in perfect registration. Misregistration could easily be thetopic of another full paper,

so we do not discuss it here for brevity.

The paper is organized as follows. Section 2 presents a generic framework forMSD-based

image fusion schemes. Some frequently used MSD methods such as LPT, DWT and DWF are

briefly reviewed. Different alternatives in the fusion procedure are then described. Some existing

image fusion schemes are also discussed within this generic framework. Section 3 presents some

experimental results. Some performance measures are suggested and the different alternatives in

the fusion procedure are compared using these performance measures. Some image fusion schemes

which provide better performance than existing methods are uncovered. Section 4summarizes the

paper.

2 A generic framework for image fusion schemes

Fig. 4 illustrates a generic framework for image fusion schemes. At eachsample position, we

will make a decision on how the MSD representations of the source images should be used to

construct the MSD representation of the fused image. This decision is based on aquantity we call

the activity level measurement. The activity level measurement attempts to determine the quality

of each source image. Some grouping methods and combining methods are also used to obtain

the composite MSD representation of the fused image. A consistency verification procedure is

6



Activity Level
  Measurement

MSD
Methods Representation

   MSDSource Grouping
Method

Combining
Method Representation

   MSDFusedConsistancy
Verification

Weighted
Average

No
Grouping

Grouping

Multiscale
Grouping

Single-scale

Region-based

No
Pixel-based

Window-based

Region-based

Window-based

Verification

Verification

Verification

PT

DWT

DWF

Choose  max

Figure 4: The generic framework of image fusion schemes

then performed which incorporates the idea that a composite MSD coefficient is unlikely to be

generated in a completely different manner from all its neighbors.

There are multiple alternatives in the procedures noted by the dashed boxes in Fig. 4. Different

combinations of these alternatives lead to different fusion schemes. We will next discuss each

procedure in Fig. 4 in more detail.

2.1 Multiscale decomposition

A pyramid structure [14] is an efficient organization methodology for implementingmultiscale

representation and computation. A pyramid structure can be described as a collection of images

at different scales which together represent the original image. Burt and Adelson considered an

implementation of a pyramid structure called the Laplacian pyramid [14].Each level of the Lapla-

cian pyramid is recursively constructed from its lower level by the following four basic procedures:

blurring (low-pass filtering), subsampling (reduce size), interpolation (expand in size), and differ-

encing (to subtract two images pixel-by-pixel) in the order we have given. Thus ablurred and

subsampled image is produced by the first two procedures at each decomposition level. These par-

tial results, taken from different decomposition levels, can be used to construct a pyramid known
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as the Gaussian pyramid. In both the Laplacian and Gaussian pyramids, the lowest level of the

pyramid is constructed from the original image.

In computing the Laplacian and Gaussian pyramids, the blurring is achieved using a convolu-

tion mask! which should obey certain constraints [42]. LetGk be thekth level of the Gaussian

pyramid for the imageI. ThenG0 � I and fork > 0,Gk = [! �Gk�1]#2 (1)

where [�]#2 denotes downsampling of the signal by a factor of 2 (G#2(i; j) = G(2i; 2j), i; j =0; :::; M2 � 1 for anM � M image). Thekth level of the Laplacian pyramid is defined as the

weighted difference between successive levels of the Gaussian pyramidLk = Gk � 4! � [Gk+1]"2 (2)

where[�]"2 denotes upsampling (G"2(2i; 2j) = G(i; j); G"2(2i+1; 2j+1) = 0, i; j = 0; :::;M�1
for anM �M image). Here, convolution byw has the effect of interpolating the inserted zero

samples.

An image can be reconstructed by the reverse procedure. LetĜ be the recovered Gaussian

pyramid. Reconstruction requires all levels of the Laplacian pyramid, as well as the top level of

the Gaussian pyramid̂GN . Thus the procedure is to setĜN = GN , and fork < N ,Ĝk = Lk + 4! � [Ĝk+1]"2 (3)

which can be used to computêG0, the reconstructed version of the original imageG0.
There are some alternative pyramid decomposition methods for image fusion, suchas the gra-

dient pyramid (GP) and the ratio-of-lowpass pyramid (RoLP). A gradient pyramid for an imageI
can be obtained by applying a gradient operator to each level of the Gaussian pyramid represen-

tation. The image can be completely represented by a set of four such gradient pyramids, which

represent horizontal, vertical and the two diagonal directions [26]. The ratio-of-lowpass pyramid,

which was introduced by Toet [23], is very similar to a Laplacian pyramid. Instead of using the
8



difference of the successive Gaussian pyramid levels to form the Laplacian pyramid, the ratio of

the successive lowpass filtered images is generated to form the so called ratio-of-lowpass pyramid.

The wavelet representation introduced by Mallat [43, 39, 44] suggests that, for efficiency rea-

sons, successive layers of the pyramid should include only the additional details, which are not

already available at preceding levels. Taking this approach leads to using aset of filters to perform

the wavelet transform. Fig. 5 illustrates thei + 1th stage of 2-D DWT introduced in [43], where

the particular pair of analysis filtersh andg correspond to a particular type of wavelet used.LL0
is the original image. The processing is recursively applied for each decomposition level. Fig. 5

shows the processing for thei + 1 decomposition level. Thus, in the next decomposition level,LLi+1 is processed to produceLLi+2, LH i+2, HLi+2 andHH i+2.
2  1h

2  1g

i
LL

i+1
LL

i+1LH

i+1HL

i+1HH

X 2  1 1  2

1  2h

1  2g

1  2h

1  2g

Notations:

Keep 1 column out of 2Convolve with X; ; Keep 1 row out of 2;

Circular convolve row by row Circular convolve column by column

Figure 5: One stage of 2-D DWT decomposition

It is well known that the DWT yields a shift variant signal representation. Bythis we mean

that a simple integer shift of the input signal will usually result in a nontrivial modification of the

DWT coefficients. This shift-variant property is introduced by the subsampling process illustrated

in Fig. 5. Thus, an image fusion scheme based on the DWT will also be shift dependent, which is

undesirable in practice (especially considering misregistration problems). One approach to solve
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the problem is introduced in [45], which is related to the concept of discrete wavelet frames (DWF)

[46, 47]. In contrast to the standard DWT, in each decomposition stage, DWF usesdilated analysis

filters and drops the downsampling process. Fig. 6 illustrates thei+ 1th stage of 2-D DWF.

i+1
LL

i+1LH

i+1HL

i+1HH

2ih

2ig

i
LL

2ih

2ig

2ig

2ih

X Convolve with X;:
2i 1

2ix :
 

every sample in signal x.
Insert      -   zeros between 

Notations:

Circular convolve row by row Circular convolve column by column

Figure 6: One stage of 2-D DWF decomposition

Fig. 5 and 6 show that after one stage of processing, an image is decomposed into four fre-

quency bands: low-low (LL), low-high (LH), high-low (HL) and high-high (HH). Thus, a DWT or

DWF withN decomposition levels will haveM = 3�N+1 such frequency bands. The DWT will

have a pyramid hierarchy. The sizes of frequency bands will decrease as the decomposition goes

on. For the DWF, each frequency band will have the same size. Fig. 7 shows the 2-Dstructures

of the above multiscale transforms with two decomposition levels. The darkblocks in different

frequency bands correspond to the same group of pixels in the original image, which indicates

the spatial localization of the transform. For a transform withK levels of decomposition, there is

always only one low frequency band (GK or LLK in Fig. 7), the rest of bands are high frequency

bands in each decomposition levels, which provide detailed image information at different scales
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[43].
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Figure 7: MSD structures and grouping method

Besides the MSD analysis, another key issue in MSD-based image fusion is howto form the

fused MSD representation from the MSD representations of the source images. We call the pro-

cessing to achieve this goal a fusion rule. Some general alternatives for constructing a fusion rule

are illustrated in Fig. 4. These include the choice of an activity level measurement, coefficient

grouping method, coefficient combining method and consistency verification method. Whenmak-

ing fusion decisions, one common method is to select the MSD coefficient with thelarger activity

level. This makes the assumption that larger activity implies more information. Of course this

may not always be true. In some cases one may have knowledge of interference of a specific type

(possibly producing high energy at specific frequencies) and it may be possible to consider this in

the activity level calculation.

To simplify the description of the different alternatives available in forming a fusion rule, we

make an assumption that there are just two source images,X andY, and the fused image isZ.

We note that all the methods described in this paper can also be extended to caseswith more than

two source images. Generally for an imageI we denote the MSD representation asDI and the

activity level asAI. Thus we shall encounterDX, DY, DZ, AX andAY. Let ~p = (m;n; k; l)
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indicate the index corresponding to a particular MSD coefficient, wherem;n indicate the spatial

position in a given frequency band,k the decomposition level andl the frequency band of the MSD

representation. The LPT does not use frequency bands sol is not used. ThusDI(~p) andAI(~p) are

the MSD value and activity level of the corresponding coefficient respectively.

2.2 Activity level measurement

The activity level of an MSD coefficient reflects the local energy in the space spanned by the

term in this expansion corresponding to this coefficient. There are three categories of methods to

compute the activity levelAI(~p) at position~p: coefficient-based measure, window-based measure

and region based measure. The coefficient-based activity (CBA) measuresconsider each coeffi-

cient separately. The activity level is described by the absolute value or square of corresponding

coefficient in the MSD representation. Here we use the absolute valueAI(~p) = jDI(~p)j (4)

The window-based activity (WBA) measures employ a small (typically 3x3 or5x5) window

centered at the current coefficient position. We also have several alternatives here. One option is

the weighted average method (WA-WBA):AI(~p) = Xs2S;t2T !(s; t)jDI(m + s; n+ t; k; l)j (5)

where!(s; t) is a weight and
Ps2S;t2T !(s; t) = 1, S andT are sets of horizontal and vertical

indices that describe the current window, the sums overs and t range over all samples in the

window.

Another option is the rank filter method (RF-WBA). DefineRank(i)(Q) to pick theith largest

value in the setQ. Then RF-WBA usesAI(~p) = Rank(i)(Q) with Q = fjDI(m+ s; n+ t; k; l)j : s 2 S; t 2 Tg (6)
12



whereS andT are as defined in (5).

A popular choice is to use RF-WBA to pick the maximum value, i.e. leti = 1. In this way, a

high activity value indicates the presence of a prominent feature in the local area. To reduce the

influence of impulse noise, we may also leti = 2 or i = 3. In our experiments, we choosei = 1.

One might also consider more general nonlinear processing of the coefficients in the window to

compute activity that combine ranking and filtering [48].

The regions used in region-based activity (RBA) measurement are similar to windows with odd

shapes. One RBA method was introduced in [38], where each region corresponds to an object or

part of an object. In [38], a Canny edge detector [49] is applied to the low frequencyband (GK orLLK) of theK level MSD to produce an edge image. Region segmentation is performed on the

same band using the edge information and a labeling algorithm. The output is a labeled image in

which each different value represents a different region. Note that the low frequency band of the

MSD can be considered as a smoothed and subsampled version of the original image. Due to the

spatial localization property, any regionRk in the low frequency band has a corresponding group

of coefficients in each high frequency band. This is illustrated in Fig. 7. We define the group of

coefficients in all high frequency bands corresponding to regionRk asC(Rk). The activity level

of the regionRk in the imageI, AI(Rk), is computed as followsAI(Rk) = 1Nk X~p2C(Rk)AI(~p) (7)

whereNk is the total number of the coefficients inC(Rk). AI(~p) is obtained by CBA measurement.

After all of the region activity levels are obtained, the activity level ofeach MSD coefficient is de-

termined as follows. Notice that the spatial location of each coefficientin the MSD representation

will be either on an edge or inside a region. For the coefficient whose spatial location is on an edge,

its activity level will be measured by the CBA or the RF-WBA method. For the coefficient whose

spatial location in a region, it will take activity level of this region asits own activity measure.
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While we consider only (7) in our performance comparison, a slight generalization of (7) would

compute activity over the region using a ranking or averaging as in (5) or (6) or some combination

of these [48].

2.3 Coefficient grouping method

We notice that after the MSD process, each coefficient will have a set of corresponding coefficients

in other frequency bands and other decomposition levels, as illustrated in Fig. 7by the dark square.

All the shaded coefficients in Fig. 7 relate to the same group of pixels in the source image. For the

majority of image fusion approaches, when determining the composite MSD representation, these

coefficients are not associated with each other. We call these schemes no-grouping (NG) schemes.

If the corresponding coefficients in the same decomposition scale are jointly constrained to take the

same decision, we call this a single-scale grouping (SG) scheme. This is a more restrictive case.

The most restrictive case is to consider all the corresponding MSD samples together and ensure

that they make the same fusion decision. We call this a multiscale grouping (MG) scheme. For the

LPT-based image fusion, the NG and SG are the same since there is only one frequency band in

each decoposition level.

2.4 Coefficient combining method

When combining the source MSD representations to produce the composite MSD representation,

there are at least two alternatives. One is the choose-max (CM) scheme, which means just pick

the coefficient with larger activity level and discard the other. IfZ is the fused image, this can be

described asDZ(~p) = Di(~p), wherei=X or Y depending on which source image satisfiesAi(~p) = max(AX(~p); AY(~p)) (8)

Another combining scheme is the weighted average (WA) scheme. At each position~p, the
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composite MSD can be obtained byDZ(~p) = !X(~p)DX(~p) + !Y (~p)DY(~p) (9)

The weights!X and!Y may depend on the activity levels of the source MSD coefficients and

the similarity between the source images at the current position. SupposeAX(~p) < AY(~p). One

popular way to determine!X and!Y was suggested by Burt [26]. At first, a match measureMXY(~p) is defined as a normalized correlation averaged over a neighborhood of~pMXY(~p) = 2Ps2S;t2T !(s; t)DX(m+ s; n+ t; k; l)DY(m+ s; n+ t; k; l)A2X(~p) + A2Y(~p) (10)

where!(s; t); AX andAY are as defined in (5). IfMXY is smaller than a threshold�, then!X =

0 and!Y = 1, else ifMXY � � then!X = 12 � 12(1�MXY1� � ) and !Y = 1� !X (11)

We consider only these two schemes here since they are the simplest and appear most frequently

in the literature. In general, nonlinear combining and ranking schemes could alsobe used.

2.5 Consistency verification

Consistency verification attempts to exploit the idea that it is very likely that a good fusion method

will compute neighboring coefficients in the composite MSD in a similar manner. While it is easy

to imagine applying consistency verification to other combining schemes, we applied this only to

CM combining schemes in our tests. For CM combining, consistency verification isespecially

simple, it ensures that a composite MSD coefficient does not come from a differentsource image

from most or all of its neighbors.

Li [37] applied consistency verification using an majority filter. Specifically if the center com-

posite MSD coefficient comes from imageX while the majority of the surrounding coefficients

come from imageY, the center sample is then changed to come from imageY. In [37], 3x3 or 5x5

windows are used for the neighborhood. We call this method window-based verification(WBV).
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In our own research, we employed the region-based verification (RBV) approach. An edge

image and a region image are first generated as described in section 2.2. We distinguish the MSD

coefficients as edge samples and region samples based on their corresponding position in the edge

and region images. For region samples we apply the majority filter over the corresponding region.

For the edge samples, we apply a constraint to the majority filter. The decisionon the center sample

will not be changed unless this decision is different from that of all the neighboring samples.

2.6 Existing schemes in the framework

Abbreviation Description
CBA Coefficient-based activity level measurement
CM Choose-max coefficient combining method
DWF Discrete wavelet frame, a shift-invariant DWT
DWT Discrete wavelet thansform
LPT Laplacian pyramid transform
MG Multisacle gouping
NV No consistency verification
PT Pyramid transform
RBA Region-based activity measurement
RBV Region-based consistency verification
RF-WBA Rank-filter-based window-based activity measurement
SG Single-scale grouping
WA Weighted average coefficient combining method
WA-WBA Weighted-average-based window-based activity measurement
WBA Window-based activity measurement
WBV Window-based consistency verification

Table 1: Some frequently used abbreviations in this paper.

We have now discussed each procedure in the image fusion framework illustrated in Fig. 4. Table 1

summarizes the abbreviations we introduced in early sections, which will be frequently used in the

following sections. Table 2 illustrates some existing image fusion schemes and shows how they can

be described by our framework. Some new approaches can also be derived from this framework.

This can be achieved by choosing different alternatives for some procedures. Inthe following
16



section, we study performance of different fusion schemes based on the generic framework.

Reference MSD Method Activity Measure Grouping Combining Verification
[21, 22] PT (LPT) CBA NG CM NV
[23, 24, 25] PT (RoLP) CBA NG CM NV
[26, 27] PT (GP) WA-WBA NG WA NV
[28, 29, 30, 32] DWT CBA NG CM NV
[31, 35] DWT CBA NG CM WBV
[33, 36] DWT WA-WBA NG WA NV
[34] DWT WA-WBA SG CM NV
[37] DWT RF-WBA NG CM WBV
[38] DWT RBA MG CM WBV

Table 2: Some existing fusion schemes and their specification in the image fusion framework.

3 Performance comparison for different fusion schemes

In the past, image fusion results were usually evaluated visually. Quantitatively accessing the

performance in practical applications is a complicated issue because the ideal composite images is

normally unknown. One way to achieve this in a controlled setting is to generatepairs of distorted

source images from a known test image, then compare the fused image and the original test image.

This approach is reasonable to judge performance for cases where the source imagescome from the

same type of sensors, which is our focus here. In our tests we consider only visual images, which

one might argue are the most prevalent and basic image type. The tests are particularly relevant for

the digital camera application we discussed in the Introduction. We designed the following method

in our experiments.

From a test image, two out-of-focus images are created by radial blurring. Theblurring is

taken along a radial line, centered at a point we selected. This centering point will be the clearest

part of the image, just like the focus point of a camera. Thus, we can take blurredimages with

different focus points as the source images. We take the original image as the reference image. To
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(a). Image 1 (focus on right) (b). Image 2 (focus on left) (c).Reference image (all focus)

Figure 8: Radial blurred images and the reference image

accomplish the blurring, a Gaussian smoothing kernel was used as a convolution mask. The form

of the filter was changed as a function of the spatial location where mask is applied. In particular,

the standard deviation of the smoothing kernel was increased in proportion to the distance between

the current pixel and the selected centering point. Fig. 8 shows an example. 16 different reference

images were employed in our tests. These images are shown in Fig. 9. In our results we present

average performance over the 16 test cases.

3.1 Evaluation criteria

Three evaluation criteria we used

1. The root mean square error (RMSE) between the reference imageR and the fused imageZ
(i; j denote pixel location)RMSE = sPNi=1PNj=1[R(i; j)� Z(i; j)]2N2 (12)

2. The mutual information (MI) between the reference imageR and the fused imageZMI(R;Z) = LXi1=1 LXi2=1hR;Z(i1; i2)log2 hR;Z(i1; i2)hR(i1)hZ(i2) (13)
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Figure 9: The 16 test images

wherehR;Z indicates the normalized joint graylevel histogram of imagesR andZ, hR; hZ
are the normalized marginal histograms of the two images, andL is the number of graylevels.

3. The percentage of correct decisionsPc = NcNt � 100 (14)

whereNc is the number of correct decisions andNt is the total number of decisions. For CM

combining,Nt is the size of MSD representation. For the WA combining, bothNc andNt
are counted based only on those cases when!X in (9) is equal 0 or 1. In our examples,!X
was 0 or 1 very often (1/2 the time or more).

3.2 Experimental results

We compared the different alternatives for each procedure of the generic framework described in

Fig. 4, and the results are shown by table 3 through 7. In these tables, the first column shows

the combinations of alternatives for the procedures other than the one under consideration,the
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second column lists the different alternatives for the current procedure. Column 3 to 5 show the

performance using the criteria we introduced in Section 3.1. All the abbreviationsare described in

Table 1.

3.2.1 Comparing schemes using different MSD methods

To compare the performance of schemes using different MSD methods, we consideredsome dif-

ferent combinations of alternatives for the other fusion procedures for each of the LPT, DWT and

DWF MSD methods. The results are shown in Table 3. Recall that all the results in this section

show the performance average over the 16 images in Fig. 9.

From the results in Table 3, we observe that different MSD methods appear to provide differ-

ent image fusion performance. Without considering spatial and scale grouping and consistency

verification, LPT-based schemes provide best performance in terms ofRMSE andMI . This is

interesting since one could argue that thePc criteria is not as informative asRMSE andMI . In

particular,Pc always weights errors equally regardless of their importance. In fact some errors may

cause unnoticable difference in the fused image. When spatial and scale grouping and consistency

verification are considered, we see from Table 3 that the LPT schemes are nolonger best. These

observations appear to be related to the good spatial localization of the LPT approach in the cases

we considered. By this we mean that, in the LPT case, each pixel in the reconstructed image is

significantly effected by only a few coefficients, so that an error in a given coefficient has less of an

effect on the fused image. In the DWT and DWF, an error in a given coefficient has a greater effect

on the final image, but grouping and consistency verification generally make theseerrors much

less likely. We see from Table 3 that the DWF and DWT-based schemes appear to outperform the

LPT-based schemes when spatial grouping, scale grouping and consistency verification are used.
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Combinations MSD method RMSE MI Pc(%)
CBA + LPT 4.09 3.79 55.9

1 NG+ DWT 4.99 3.36 54.5
CM+NV DWF 4.39 3.59 55.9
WA-WBA+ LPT 4.35 3.94 59.7

2 NG+ DWT 4.77 3.46 57.9
WA+NV DWF 4.41 3.79 61.2
RF-WBA+ LPT 2.89 5.23 71.8

3 MG+ DWT 3.55 4.46 72.3
CM+NV DWF 3.08 4.87 74.7
RBA+ LPT 2.88 4.95 75.2

4 MG+ DWT 2.72 5.02 78.3
CM+WBV DWF 2.67 5.21 81.2

Table 3: Performance of the schemes using different MSD methods.

3.2.2 Comparing schemes using different activity level measures

To compare the performance of schemes using different activity level measurements, we tested

CBA (coefficient-based activity), RF-WBA (rank filter window-based activity), WA-WBA (weighted

average window-based activity) and RBA (region-based activity) measurements with different

combinations of alternatives for the other fusion procedures. The results are shown in Table 4.

From these results, we observe that applying spatial grouping in computing the activity-level mea-

surement appears to improve fusion performance. RBA measurement generallyappears to be the

best method. RF-WBA measurement provides similar performance with WA-WBA measurement.

We note that the test images in Figure 9 are not very noisy. If noise is added, the relative perfor-

mance of the RF-WBA and WA-WBA schemes may depend on the characteristics ofthe noise.

Based on [48] WA-WBA may be better for Gaussian noise and RF-WBA may be better for impul-

sive noise.

21



Combinations Activity Measures RMSE MI Pc(%)
LPT+ CBA 4.03 3.87 56.7
NG+ RF-WBA 3.77 4.03 62.9

1
WA+ WA-WBA 4.35 3.94 59.7
NV RBA 3.39 4.52 65.9
DWT+ CBA 4.72 3.63 62.7
MG+ RF-WBA 3.55 4.46 72.3

2
CM+ WA-WBA 3.43 4.51 70.8
NV RBA 2.72 5.02 78.3
DWF+ CBA 3.17 4.20 69.6
MG+ RF-WBA 2.82 5.14 79.3

3
CM+ WA-WBA 2.98 5.17 78.6
WBV RBA 2.67 5.21 81.2

Table 4: The performance of the schemes using different activity level measures.

3.2.3 Comparing schemes using different coefficient grouping methods

To compare the performance of schemes using different coefficient grouping methods, we tested

NG (no-grouping), SG (single-scale grouping) and MG (multiscale grouping) decision methods

with different combinations of alternatives for the other fusion procedures. The results are shown

in Table 5. From the results, we observe that MG always provides fusion performance improve-

ment. The improvement apparently comes from the fact that significant image features tend to be

stable with respect to variations in scale. These features tend to have a non-zero lifetime in scale

space [15]. Thus, when comparing the corresponding image features in multiple sourceimages,

considering the components in all scales together provides a more robust fusion strategy.

3.2.4 Comparing schemes using different coefficient combining methods

To compare the performance of schemes using different coefficient combining methods, we tested

the CM (choose-max) decision methods and the WA (weighted average) decision methods with

different combinations of alternatives for the other fusion procedures. The results are shown in

Table 6. From these results, neither the CM nor the WA decision methods are alwaysbetter and
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Combinations Grouping RMSE MI Pc(%)
LPT+ NG 4.09 3.79 55.9

1 CBA+ SG 4.09 3.79 55.9
WA+NV MG 3.47 4.52 61.7
DWT+ NG 4.81 3.43 57.3

2 RF-WBA+ SG 4.56 3.53 63.9
CM+WBV MG 3.42 4.71 74.2
DWT+ NG 4.77 3.46 57.9

3 WA-WBA+ SG 4.61 3.55 61.3
WA+NV MG 3.46 4.49 70.5
DWF+ NG 4.39 3.59 55.9

4 CBA+ SG 4.09 3.78 57.7
CM+NV MG 3.35 4.01 67.1

Table 5: Performance of the schemes using different grouping decision methods.

the difference in performance is small. This is consistent with a fact westated below (14), that

weights of 0 and 1 are often chosen. We belive that the small observed difference in performance

with CM and WA is due to the lack of noise in the original images in Figure 9. If noiseis added,

these findings may be different.

Combinations Decision RMSE MI Pc(%)
LPT+WA-WBA+ CM 4.01 3.91 60.5

1
NG+NV WA 4.35 3.94 59.7
DWT+RF-WBA+ CM 3.55 4.46 72.3

2
MG+NV WA 3.63 4.41 71.1
DWT+WA-WBA+ CM 3.43 4.51 70.8

3
MG+NV WA 3.46 4.49 70.5
DWF+CBA+ CM 3.35 4.01 67.1

4
MG+NV WA 3.41 4.14 68.4

Table 6: Performance of the schemes using different combining methods.

3.2.5 Comparing different consistency verification methods

To compare the performance of schemes using different consistency verification methods, we con-

sidered using the different combinations of alternatives for the other fusion procedures. We tested

these combinations with NV (no verification), with WBV (window-based verification) and with
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RBV (region-based verification) respectively. The results are shown inTable 7. These results

illustrate that consistency verification is helpful for improving the fusion performance. RBV out-

performed WBV and NV in all cases.

Combinations verifications RMSE MI Pc(%)
LPT+ NV 4.01 3.91 60.5

1 WA-WBA+ WBV 3.92 3.98 60.9
NG+CM RBV 3.17 4.88 67.8
DWT+ NV 3.55 4.46 72.3

2 RF-WBA+ WBV 3.42 4.71 74.2
MG+CM RBV 2.69 5.25 78.8
DWF+ NV 3.08 4.87 74.7

3 RF-WBA+ WBV 2.82 5.14 79.3
MG+CM RBV 2.58 5.22 81.2

Table 7: Performance of the schemes using different consistency verification methods.

3.3 Comparing some existing fusion schemes and some proposed approaches

Table 8 shows some fusion schemes which have been studied by previous researchers using LPT

or DWT MSD methods. These appear to be the best exsiting methods we found in the literature.

These schemes all fit into the framework discussed in Section 2. Table 8 also shows the experi-

mental results obtained for these schemes. The approach suggested in [38] providesmuch better

performance than the other schemes in Table 8.

Schemes Combinations of fusion method References RMSE MI Pc(%)
1 LPT+CBA+NG+CM+NV [21, 22] 4.09 3.79 55.9
2 DWT+CBA+NG+CM+NV [28, 29, 30, 32] 5.04 3.33 54.7
3 DWT+CBA+NG+CM+WBV [31, 35] 4.83 3.45 56.7
4 DWT+WA-WBA+NG+WA+NV [33, 36] 4.77 3.46 57.9
5 DWT+WA-WBA+SG+CM+NV [34] 4.65 3.52 60.6
6 DWT+RF-WBA+NG+CM+WBV [37] 4.81 3.43 57.3
7 DWT+RBA+MG+CM+WBV [38] 2.72 5.02 78.3

Table 8: Some existing image fusion schemes and their performance.

Based on the fusion framework illustrated in Fig. 4, we propose some new image fusion
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schemes that appear to outperform the schemes in Table 8 for the test cases weconsidered. These

approaches and their fusion performance are shown in Table 9.

MSD Activity Measure Grouping Combining Verification RMSE MI Pc(%)
LPT RF-WBA MG CM RBV 2.74 5.18 77.8
DWT RF-WBA MG CM RBV 2.69 5.25 78.8
DWF RF-WBA MG CM RBV 2.58 5.22 81.2

Table 9: Some new image fusion schemes and their performance.

All of the new schemes in Table 9 generally provide approximately equal or better performance

than the previous methods listed in Table 8. The new schemes which employ the DWT and DWF

are strictly better than all the schemes in Table 8. Complexity and memoryrequirement should

also be considered. The computational complexity depends mainly on the MSD method used. LetN refer to the size of the image andL to the number of the decomposition levels used. For the

Laplacian pyramid and the DWF decomposition, the complexity isO(NlogN). For DWT, the

complexity isO(N). LPT-based schemes will need a little more storage memory than DWT-based

schemes, and DWF based schemes will use roughly3L times more storage memory than that of

DWT-based schemes.

3.4 More image fusion examples

While this study has focused mainly on performance analysis using synthetically generated source

images, we have also studied realistically generated images for a numberof interesting applica-

tions (see Fig. 2 and Fig. 3). Here it is much more difficult to compare various algorithms, so

instead we present results for the best algorithms identified in Section 3.3 fora few applications.

As discussed in Section 3 we have particular interest in the fusion of multi-focus digital camera

images. Inexpensive cameras may have difficulty obtaining images which are in-focus everywhere

in some situations. Image fusion approaches have already been shown to be useful to avoid such

problems [50]. [50] discusses algorithms to control both focus and camera positions to generate an
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image sequence which is used to obtain a fused composite image. The image fusion approaches

we studied here can work for any source images available, they don’t rely on controlled camera

motion. Fig. 10 showes an example. (a) and (b) are two original images, taken bya digital camera,

which have different focus. (c) is the image obtained using the auto-focus function ofthe camera.

(d) is the result using the above image fusion approach. In all of our experiments of this type,

image fusion using the best algorithms identified in Table 9 performs better thanthe auto-focus of

the camera.

(a). Image 1 (focus on the clock), (b). Image 2 (focus on the student)

(c). Auto-focus image, (d). Fused image (all focus)y

Figure 10: Digital camera image fusion

In the following, we illustrate deblurring and cloud removal as two other applications of image

fusion. In Fig. 11, the tank in the left image is motion blurred and the background in the middle

image is not in focus, while the fused image on the right has much better quality. InFig. 12, some
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parts of the fighter plane body are blocked by the clouds in both of the source images, while the

fused image provides a much clearer picture of the fighter.

(a). Tank is motion blurred (b). Background is not clear (c).Fused imagey
Figure 11: Fusion result for motion blurred images

(a). Clouds block the head (b). Clouds block the back (c). Fused imagey
Figure 12: Fusion result for images with occlusion

4 Discussions

In this paper, some MSD-based image fusion approaches have been studied within ageneric image

fusion framework. The study was focused on how to use the MSD data of the source images toyObtained using the third scheme in Table 9
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produce a fused MSD representation which should be more informative to the observer (human

or computer). Studies of this type have been lacking in the previous research. Experiments show

that region-based fusion and multiscale grouping can almost always improve the image fusion

performance for any of the MSD methods we considered.

The framework we suggest in this paper can not only describe the existing image fusion

schemes, but it also introduces some new approaches. Such new approaches have been shown

to outperform previous approaches.

There are some natural extensions to the research in this paper which became clear as this

research progresses.

MSD methods

In this paper, we just discussed some basic MSD methods for image fusion, including LPT,

Daubechies’s D8 orthonormal DWT and the corresponding DWF. We found that among these

basic MSD methods, DWF appears to provide the best performance at the cost of higher

computational and storage expenses. An extensive study of other existing or emerging MSD

methods for the purpose of image fusion should be a topic of future research.

Decomposition levels

In our study, we found the number of decomposition levels used can influence image fusion

performance. However, using more decomposition levels will not necessarily produce better

results. Methods for choosing the appropriate number of decomposition level should receive

further attention.

Activity measure

In this paper, we use the absolute value of MSD coefficients as the basic activity measure.

There are other ways to calculate activity, some of which may involve incorporating a pri-
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ori information. It would be desirable to search for the activity level measures that most

accurately reflect the relative importance of each MSD coefficient.

Combining method

There are some combining methods that we have not considered here. Some of these would

be interesting to study. For example, one might require that all coefficients fromthe same

frequency band come from the same source image.

Extra information

Our research employed the assumption that we do not have any further informationabout

the source images other than the pixel values. If prior knowledge is available, the activity

measure, combining method and consistency verification can all use such information to

improve fusion performance. Using prior information in the fusion is an important issue that

should be studied.

Performance measure

The methods used for testing fusion performance in Section 3 focus on digital camera appli-

cations. They may not be best for other image fusion applications. Designing proceduresfor

fusion performance assessment for other applications is another topic of interest.

The research discussed in this paper was aimed at producing better overallimages. We assume

that a more informative description of the scene will necessarily improvethe performance of fur-

ther image processing tasks. However, we acknowledge that if one knew the goal of theoverall

processing, one might be able to tune the fusion towards this specific goal, which might be, for

example, locating a particular object.

In this paper, we are promoting MSD-based pixel-level image fusion. Note thatwe are not

advocating this type of fusion at the exclusion of other types of fusion. We believe that different
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types of fusion can often be applied in conjunction with one another and that further research on

this topic is worthwhile and promising.

Another problem which has not been discussed here is image registration. How to align the

source images prior to image fusion is also an important issue. In most previous studies, the

images to be fused are assumed to be registered. In practice, registration is difficult to achieve and

further study on registration and robust image fusion techniques appear to be justified.
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