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Abstract

The objective of image fusion is to combine information from multiple images oktme
scene. The result of image fusion is a single image which is more suitable fonramdanachine
perception or further image processing tasks. In this paper, a generic image fresnework
based on multiscale decomposition is studied. This framework provides freeddmdse differ-
ent multiscale decomposition methods and different fusion rules. The framémabukles all of
the existing multiscale-decomposition-based fusion approaches we found iretatuli¢ which
did not assume a statistical model for the source images. Different imaige fgproaches are
investigated based on this framework. Some evaluation measures aretedgges applied to
compare the performance of these fusion schemes for a digital camera applicEtie compar-
isons indicate that our framework includes some new approaches which outperformstiegexi

approaches for the cases we consider.



1 Introduction

There has been a growing interest in the use of multiple sensors to increasaptdalities of
intelligent machines and systems. Due to this, multisensor fusion has beccmneaanf intense
research activity in the past few years [1, 2, 3, 4, 5]. Multisensor fusters to the synergistic
combination of different sources of sensory information into one representatioma&tf. The
information to be fused may come from multiple sensors monitored over a comiod pétime
or from a single sensor monitored over an extended time period. Many sensors prnodges .
We use the term image fusion to denote a process generating a single image whahscant
more accurate description of the scene than any of the individual source imagefusgd image
should be more useful for human visual or machine perception. This type of image fusieaq is al
called pixel-level multisensor fusion [6]. The different images to bedwsa come from different
sensors of the same basic type or they may come from different types of sensoren$tes sised
for image fusion need to be accurately coaligned so that their images willdgatial registration.
In recent years, image fusion has become an important and useful technique foranadygss
and computer vision [6, 7, 8, 9, 10].

A simple image fusion method is to take the average of the source images ppigkhyHow-
ever, along with simplicity comes several undesired side effectsidimal reduced contrast. In
recent years, many researchers recognized that multiscale transh@awery useful for analyzing
the information content of images for the purpose of fusion. Multiscale represantdta signal
was first studied by Rosenfeld [11], Witkin [12] and others. Researchers sudaia [13], Burt
and Adelson [14] and Linderberg [15] established that multiscale informatioreaiseful in a
number of image processing applications. More recently, wavelet theory hagezhaes a well de-
veloped yet rapidly expanding mathematical foundation for a class of multisgadesentations.

At the same time, some sophisticated image fusion approaches based orateuktigresentations
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began to emerge and receive increased attention. Most of these approaché&msest on com-
bining the multiscale decompositions (MSDs) of the source images. Fig. 1lallestthe block
diagram of a generic image fusion scheme based on multiscale analysis. Th&lbass to per-
form a multiscale transform (MST) on each source image, then construct posttermultiscale

representation from these. The fused image is obtained by taking an inveltsscaie transform

(IMST).
MST
FUSION [ IMST
PROCESY o
MST
- Fused multiscale Fused
Representation Image
Registered Multiscale

Source Images Representations

Figure 1: Block diagram of a generic image fusion scheme

The following examples illustrate the use of image fusion in some pracfiications. Fig.
2 shows a pair of digital camera images. In one image, the focus is on the Pepsincthe
other image, the focus is on the testing card. In the fused image, the Peps$iectahle, and the
testing card are all in focus. The fused image was obtained using the mdtsbichted in Fig. 1,
using techniques to be described in detail later in the paper. Fusing imagedifferant types of
sensors is also of interest, but is a considerably more complicated problgm3 Bhows a pair
of visual and 94 GHz millimeter-wave (MMW) imagesThe visual image provides the outline
and the appearance of the people while the MMW image shows the existence of a gun. From the
fused image, there is considerable evidence to suspect that the person on thesraghbheealed

gun beneath his clothes. This fused image may be very helpful to a police ofticexdmple,

The source images were obtained from Thermotex Corporation
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who must respond promptly. Concealed weapon detection is an increasingly intpopta in the
general area of law inforcement and image fusion has been identified as alkeyltey to enable
progress on this topic [16, 17]. Other application areas of image fusion includeea®osing

[18], medical imaging [19], quality and defect inspection [20], drug senrekeand intelligent
robots [4].

(a). Image 1 (focus on left) (b). Image 2 (focus onright)  f)sed image (all focus)

Figure 2: Fusion result for multi-focus images

(a). Image 1 (Visual) (b). Image 2 (Radiometric) (c). Fusedge*

Figure 3: Fusion result for visual and radiometric images

The goal of this paper is to present a framework for classifying MSD image fisglbemes.

The framework is applicable to all of the existing schemes we have encoumteaedextensive

*Obtained using scheme 7 in Table 8



literature search and it naturally suggests some new schemes which have lmetiyeonsidered.
These new schemes are found to outperform the existing schemes in many casexest. The
framework allows one to relate different image fusion schemes and unagnstaen each will
provide better performance. The framework we present has not been discuskediiarature
we encountered in our search and this framework should encourage more dirset@dineon the
topic of image fusion. lllustrative examples are provided here under controlledtmmsdwhich
allow meaningful performance comparisons of the various schemes. The performaasares
used in this paper provide some quantitative comparison among different fusianesch&uch
comparisons have been lacking. While the performance measures used here may stitdralbe
image fusion applications, they are reasonable for fusing images for the degitera application,
which is the focus of this performance analysis section. Due to the difficult naftuneltiple sen-
sor fusion problems, we avoid them in this paper, which is one of the first papersnbtgtizely
assess image fusion performance.

The framework involves five different aspects of image fusion, the most loéglese, for
example, is the MSD method. In previous research, the most commonly used MSD nfethods
image fusion were the pyramid transform (PT) [21, 22, 23, 24, 25, 26, 27] and the diseretketv
transform (DWT) [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. In this paper, a type of shiftanva
discrete wavelet transform is also suggested for image fusion. Thidsvaftant discrete wavelet
transform uses an over-complete version of the wavelet basis, whictlésl @ discrete wavelet
frame (DWF). This paper is one of the first to consider the DWF for image fusiomofrashemes
based on DWF will be called DWF fusion schemes. In many cases the DVithh fasshemes
outperform the previous schemes. More detailed discussion of the existing worlkyedeintil
we discuss our framework for MSD image fusion. Once the framework is presentedse lucid

discussion can be provided.



MSD-based fusion schemes provide much better performance than the simptelmstiudied

previously. Their good performance appears to be due to the following facts:

e The human visual system is especially sensitive to local contrast chargesdges [23].
Apparently, rapid contrast changes contain extremely useful information fdrnuman ob-

server.
e MSD provides information on the magnitude of rapid contrast changes in the image.
e MSD provides both spatial and frequency domain localization.

Different combinations of MSD methods and fusion procedures yield different peaforen
A careful study of this issue has been lacking. In fact, there has been \krglitdy comparing
various MSD fusion algorithms, even at a basic level. Here we attengpbtade such a study. In
our study, we wanted to focus mainly on fusing the MSD coefficients. For thismeag consider
only a few basic types of MSD methods in our comparisons. They are the Laplacianigyra
transform (LPT) method [14], the Daubechies’s D8 orthonormal DWT [39] and thespmmeling
DWEF. Studying these three methods should provide some general insight into how MSD meth-
ods perform and into the relative performance of pyramid, wavelet transfochoeer-complete
wavelet transform approaches for image fusion. A more complete performancedtitiyD
methods, which might include a larger number of MSD methods, might be carried outtat a la
date. In our experiments, we apply two levels of MSD in every fusion schaiMefound that
different levels of MSD appeared to provide different fusion performance ammktensive study
on the influence of decomposition level is another topic which should receive futtiay. sin
this paper, we only focus on MSD-based image fusion methods, where the fusioroisreetfat
the pixel level. Other types of image fusion schemes, such as feature apoddasion schemes

are not considered. In the image fusion approaches we studied, the fusion is penfathuad

5



assuming any statistical model for the observed images. There are otheaelpgs which focus
on using stochastic models or the statistical properties of the observed ifd@gekl]. These
approaches are also not considered here. The performance measures we ptagepaper are
based on fusing images for the digital camera application and so in our perfa@roamparisons
only visual images are considered. Fusion evaluation for schemes using other tgpesafs is
a more complicated issue which we will not address here. In all test easassume the source
images to be in perfect registration. Misregistration could easily béoibie of another full paper,
so we do not discuss it here for brevity.

The paper is organized as follows. Section 2 presents a generic framewdWSrbased
image fusion schemes. Some frequently used MSD methods such as LPT, DWT dharBW
briefly reviewed. Different alternatives in the fusion procedure are theordeed. Some existing
image fusion schemes are also discussed within this generic framewatiorsé presents some
experimental results. Some performance measures are suggested and teetdiffernatives in
the fusion procedure are compared using these performance measures. Somasinagehemes
which provide better performance than existing methods are uncovered. Sestiom4arizes the

paper.

2 A generic framework for image fusion schemes

Fig. 4 illustrates a generic framework for image fusion schemes. At sagiple position, we

will make a decision on how the MSD representations of the source images shouldd®us
construct the MSD representation of the fused image. This decision is basegliantiay we call

the activity level measurement. The activity level measuremennatieto determine the quality

of each source image. Some grouping methods and combining methods are also used to obtain

the composite MSD representation of the fused image. A consistency vesifigabcedure is
6
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Figure 4: The generic framework of image fusion schemes

then performed which incorporates the idea that a composite MSD coefficientikglyrib be
generated in a completely different manner from all its neighbors.

There are multiple alternatives in the procedures noted by the dashed boxgs4n Bifferent
combinations of these alternatives lead to different fusion schemes. Weewi discuss each

procedure in Fig. 4 in more detail.

2.1 Multiscale decomposition

A pyramid structure [14] is an efficient organization methodology for implementingfiscale
representation and computation. A pyramid structure can be described asdaianlbf images
at different scales which together represent the original image. Burt ang@udebnsidered an
implementation of a pyramid structure called the Laplacian pyramid B4d¢h level of the Lapla-
cian pyramid is recursively constructed from its lower level by thifeing four basic procedures:
blurring (low-pass filtering), subsampling (reduce size), interpolation (@kpasize), and differ-
encing (to subtract two images pixel-by-pixel) in the order we have given. Thlsreed and
subsampled image is produced by the first two procedures at each decompositioftese par-

tial results, taken from different decomposition levels, can be usedrstict a pyramid known
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as the Gaussian pyramid. In both the Laplacian and Gaussian pyramidswts level of the
pyramid is constructed from the original image.

In computing the Laplacian and Gaussian pyramids, the blurring is achievegl aisonvolu-
tion maskw which should obey certain constraints [42]. @} be thekth level of the Gaussian
pyramid for the imagé&. ThenG, = I and fork > 0,

Gy = [w* Gg_1]2 (1)
where|-];» denotes downsampling of the signal by a factor oiz2.(7, j) = G(2i,2j5), i,j =
0, ..., % — 1 foran M x M image). Thekth level of the Laplacian pyramid is defined as the

weighted difference between successive levels of the Gaussian pyramid
Lk = Gk — 4w * [G]H,]]TQ (2)

where[-];, denotes upsampling»(2i, 2j) = G(i,j), G42(2i+1,2j+1) = 0,4, =0,.... M —1
for an M x M image). Here, convolution by has the effect of interpolating the inserted zero
samples.

An image can be reconstructed by the reverse procedureGLis¢ the recovered Gaussian
pyramid. Reconstruction requires all levels of the Laplacian pyramid,edisas the top level of
the Gaussian pyramié y. Thus the procedure is to s&ty = Gy, and fork < N,

Gy = Ly + 4w * [Gialpo 3)
which can be used to comput®,, the reconstructed version of the original ima@g.

There are some alternative pyramid decomposition methods for image fusiorgstiangra-
dient pyramid (GP) and the ratio-of-lowpass pyramid (RoLP). A gradientrpigrdor an imagd
can be obtained by applying a gradient operator to each level of the Gaussiangyeaneisen-
tation. The image can be completely represented by a set of four such gradienigsyrerhich
represent horizontal, vertical and the two diagonal directions [26]. The rafioagfass pyramid,

which was introduced by Toet [23], is very similar to a Laplacian pyrammngtdad of using the
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difference of the successive Gaussian pyramid levels to form the Liaplpgramid, the ratio of
the successive lowpass filtered images is generated to form the a0 @&lb-of-lowpass pyramid.
The wavelet representation introduced by Mallat [43, 39, 44] suggests thatfitoerefy rea-
sons, successive layers of the pyramid should include only the additional detaiit, ave not
already available at preceding levels. Taking this approach leads to usat@gfilters to perform
the wavelet transform. Fig. 5 illustrates the- 1th stage of 2-D DWT introduced in [43], where
the particular pair of analysis filtefsandg correspond to a particular type of wavelet uséd.’
is the original image. The processing is recursively applied for each decaimpdsvel. Fig. 5
shows the processing for thie+ 1 decomposition level. Thus, in the next decomposition level,

LL™*!is processed to produdel.’*2, LH*?, HL'*? and H H'*2,

Circular convolve row by row - Circular convolve column by column
h 12 —>! e
h 21 )
g ]¢ ) il LH i+1
h 1¢ 2 HL|+1
g 31 .
g 1|2 S Rt
Notations:
X | Convolve with X; 2¢ 1 | Keep 1 column out of 2 1¢2 Keep 1 row out of 2;

Figure 5: One stage of 2-D DWT decomposition

It is well known that the DWT yields a shift variant signal representation.tiBy we mean
that a simple integer shift of the input signal will usually result in a nontriviatlification of the
DWT coefficients. This shift-variant property is introduced by the subsamplioggss illustrated
in Fig. 5. Thus, an image fusion scheme based on the DWT will also be shift depentatt is

undesirable in practice (especially considering misregistration probledrse approach to solve
9



the problem is introduced in [45], which is related to the concept of discreteletdvames (DWF)
[46, 47]. In contrast to the standard DWT, in each decomposition stage, DWHileded analysis

filters and drops the downsampling process. Fig. 6 illustrates-théth stage of 2-D DWF.

Circular convolve row by row . Circular convolve column by column

i+1

Y

Y

i+1

Y

Notations:

Insert 2i -1 zeros between

X | :Convolve with X; X1 2i. e
every sample in signal x.

Figure 6: One stage of 2-D DWF decomposition

Fig. 5 and 6 show that after one stage of processing, an image is decomposed inte-four f
guency bands: low-low (LL), low-high (LH), high-low (HL) and high-high (HH). ThadDWT or
DWF with N decomposition levels will hav& = 3x N 41 such frequency bands. The DWT will
have a pyramid hierarchy. The sizes of frequency bands will decrease as tmepbsition goes
on. For the DWF, each frequency band will have the same size. Fig. 7 shows tis¢r@eires
of the above multiscale transforms with two decomposition levels. The ldadks in different
frequency bands correspond to the same group of pixels in the original image, whicatesdic
the spatial localization of the transform. For a transform withevels of decomposition, there is
always only one low frequency ban@{ or LL% in Fig. 7), the rest of bands are high frequency

bands in each decomposition levels, which provide detailed image informatebffiesent scales
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[43].

2 2
a4 LL® | LH® | 1y
| | | |
1 HL? [HH?
L ~y | | | |
HL HH'
LO
V- 4 .
LPT DWT

1 1 1
LIZLH? HE HH LH' HL HH

R

DWF

Figure 7: MSD structures and grouping method

Besides the MSD analysis, another key issue in MSD-based image fusion i® Houn the

fused MSD representation from the MSD representations of the source imagesalMhe pro-

cessing to achieve this goal a fusion rule. Some general alternatives foruming a fusion rule

are illustrated in Fig. 4. These include the choice of an activity levelsomesnent, coefficient

grouping method, coefficient combining method and consistency verification method. réken

ing fusion decisions, one common method is to select the MSD coefficient withrge activity

level. This makes the assumption that larger activity implies more irdbdon. Of course this

may not always be true. In some cases one may have knowledge of interference afia sjpe

(possibly producing high energy at specific frequencies) and it may be possible tdexahss in

the activity level calculation.

To simplify the description of the different alternatives availabledamfing a fusion rule, we

make an assumption that there are just two source imagesd Y, and the fused image i3.

We note that all the methods described in this paper can also be extended twitasesre than

two source images. Generally for an imagee denote the MSD representation ias and the

activity level asA;. Thus we shall encountdpx, Dy, Dz, Ax andAy. Letp = (m,n,k,l)
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indicate the index corresponding to a particular MSD coefficient, whene indicate the spatial
position in a given frequency banklthe decomposition level aridhe frequency band of the MSD
representation. The LPT does not use frequency bantdissmt used. Thu®;(p) andA;(p) are

the MSD value and activity level of the corresponding coefficient respegtivel

2.2 Activity level measurement

The activity level of an MSD coefficient reflects the local energy in theesgpanned by the
term in this expansion corresponding to this coefficient. There are three daskegbmethods to
compute the activity levell;(p) at positionp: coefficient-based measure, window-based measure
and region based measure. The coefficient-based activity (CBA) measungisler each coeffi-
cient separately. The activity level is described by the absolute valuguares of corresponding

coefficient in the MSD representation. Here we use the absolute value

A1(p) = [D1(p)| (4)

The window-based activity (WBA) measures employ a small (typically 3x8x&) window
centered at the current coefficient position. We also have several éikesbere. One option is
the weighted average method (WA-WBA):

AB) = Y wls)Di(m+s,n+1k.1) (5)
sESteT
wherew(s, t) is a weight and-, . ,.rw(s,t) = 1, S andT are sets of horizontal and vertical
indices that describe the current window, the sums avandt range over all samples in the
window.

Another option is the rank filter method (RF-WBA). DefiRank (i) () to pick theith largest

value in the sef). Then RF-WBA uses

A1(B) = Rank(i)(Q) with Q = {|Dy(m + s.n+t,k,1)| : s € S,t € T} (6)
12



whereS andT are as defined in (5).

A popular choice is to use RF-WBA to pick the maximum value, i.ei tet1. In this way, a
high activity value indicates the presence of a prominent feature in the lceal do reduce the
influence of impulse noise, we may alsodet 2 ori = 3. In our experiments, we choose- 1.
One might also consider more general nonlinear processing of the coefficients imth@mito
compute activity that combine ranking and filtering [48].

The regions used in region-based activity (RBA) measurement are sioandows with odd
shapes. One RBA method was introduced in [38], where each region corresponds te@rpbj
part of an object. In [38], a Canny edge detector [49] is applied to the low frequemzy G or
LL¥) of the K level MSD to produce an edge image. Region segmentation is performed on the
same band using the edge information and a labeling algorithm. The output is a labaggsin
which each different value represents a different region. Note that therémméncy band of the
MSD can be considered as a smoothed and subsampled version of the original irmage.tle
spatial localization property, any regi@®r in the low frequency band has a corresponding group
of coefficients in each high frequency band. This is illustrated in Fig. 7. Weeléfie group of
coefficients in all high frequency bands corresponding to re@iérasC(R*). The activity level
of the regionR* in the imagd, A;(R*), is computed as follows

MR = Y AlD) ™)
k pec(rk)
whereN, is the total number of the coefficients@fR*). A;(p) is obtained by CBA measurement.
After all of the region activity levels are obtained, the activity levebath MSD coefficient is de-
termined as follows. Notice that the spatial location of each coeffianatiie MSD representation
will be either on an edge or inside a region. For the coefficient whose spatiadocatn an edge,
its activity level will be measured by the CBA or the RF-WBA method. For thefficient whose

spatial location in a region, it will take activity level of this regionigsown activity measure.
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While we consider only (7) in our performance comparison, a slight generalizatiof) efquld
compute activity over the region using a ranking or averaging as in (5) or (6) or somigation

of these [48].

2.3 Coefficient grouping method

We notice that after the MSD process, each coefficient will have a setreispmnding coefficients
in other frequency bands and other decomposition levels, as illustrated intyygh& dark square.
All the shaded coefficients in Fig. 7 relate to the same group of pixels irotines image. For the
majority of image fusion approaches, when determining the composite MSD refatse, these

coefficients are not associated with each other. We call these schergesuping (NG) schemes.
If the corresponding coefficients in the same decomposition scale are jointlyaioes to take the

same decision, we call this a single-scale grouping (SG) scheme. This issa@stictive case.

The most restrictive case is to consider all the corresponding MSD sanogiethér and ensure
that they make the same fusion decision. We call this a multiscale groupinygth@me. For the
LPT-based image fusion, the NG and SG are the same since there is only one fycogietdn

each decoposition level.

2.4 Coefficient combining method

When combining the source MSD representations to produce the composite MSD regiresent
there are at least two alternatives. One is the choose-max (CM) schdnoh means just pick
the coefficient with larger activity level and discard the othefZ i the fused image, this can be
described a®z(p) = D;(p), wherei=X or Y depending on which source image satisfies

Ai(B) = maz(Ax(B), Ay (P)) (8)

Another combining scheme is the weighted average (WA) scheme. At each pgsitiba
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composite MSD can be obtained by

Dz(P) = wx () Dx(P) + wy () Dy (B) 9)
The weightswx andwy may depend on the activity levels of the source MSD coefficients and
the similarity between the source images at the current position. Suphdgt < Ay (p). One
popular way to determinex andwy was suggested by Burt [26]. At first, a match measure

Mxv (p) is defined as a normalized correlation averaged over a neighborhgbd of
2 ZsES,tETW(SJ t>DX(m + S: n + t: k: l)DY(m + S: n + ta ka l)
A%(P) + A5 (P)

wherew(s, t), Ax and Ay are as defined in (5). li/xy is smaller than a threshold, thenwx =

Mxy (B) = (10)

0 andwvy =1, else ifMxvy > « then

R 1(1—MXY
YX=5 Tyl T,

)and wy =1 — wx (12)
We consider only these two schemes here since they are the simplest and apgiEeaequently

in the literature. In general, nonlinear combining and ranking schemes couldealssed.

2.5 Consistency verification

Consistency verification attempts to exploit the idea that it is vernplitteat a good fusion method
will compute neighboring coefficients in the composite MSD in a similar mannéiléit is easy
to imagine applying consistency verification to other combining schemes, wedjpipis only to
CM combining schemes in our tests. For CM combining, consistency verificatiespiscially
simple, it ensures that a composite MSD coefficient does not come from a difsen@rmie image
from most or all of its neighbors.

Li [37] applied consistency verification using an majority filter. Spealficif the center com-
posite MSD coefficient comes from imagewhile the majority of the surrounding coefficients
come from imag¢Y, the center sample is then changed to come from invade [37], 3x3 or 5x5

windows are used for the neighborhood. We call this method window-based verifiQAtRW).
15



In our own research, we employed the region-based verification (RBV) appraat edge
image and a region image are first generated as described in section 2.2 tivigudih the MSD
coefficients as edge samples and region samples based on their correspondiog ppaia edge
and region images. For region samples we apply the majority filter over thespanding region.
For the edge samples, we apply a constraint to the majority filter. The deoisitve center sample

will not be changed unless this decision is different from that of all the neighborimglsa.

2.6 Existing schemes in the framework

Abbreviation Description

CBA Coefficient-based activity level measurement

CM Choose-max coefficient combining method

DWF Discrete wavelet frame, a shift-invariant DWT

DWT Discrete wavelet thansform

LPT Laplacian pyramid transform

MG Multisacle gouping

NV No consistency verification

PT Pyramid transform

RBA Region-based activity measurement

RBV Region-based consistency verification

RF-WBA Rank-filter-based window-based activity measurement
SG Single-scale grouping

WA Weighted average coefficient combining method
WA-WBA Weighted-average-based window-based activity measunefne
WBA Window-based activity measurement

wBvV Window-based consistency verification

Table 1: Some frequently used abbreviations in this paper.

We have now discussed each procedure in the image fusion framework itbgstrdtig. 4. Table 1
summarizes the abbreviations we introduced in early sections, which wikgadntly used in the
following sections. Table 2 illustrates some existing image fusion schaneshows how they can
be described by our framework. Some new approaches can also be derived frorarttes/érk.

This can be achieved by choosing different alternatives for some proceduréle fallowing
16



section, we study performance of different fusion schemes based on the gesreeavivrk.

Reference MSD Method | Activity Measure| Grouping| Combining| Verification
[21, 22] PT (LPT) CBA NG CM NV
[23, 24, 25] PT (RoLP) CBA NG CM NV
[26, 27] PT (GP) WA-WBA NG WA NV
[28, 29, 30, 32] DWT CBA NG CM NV
[31, 35] DWT CBA NG CM WBV
[33, 36] DWT WA-WBA NG WA NV
[34] DWT WA-WBA SG CM NV
[37] DWT RF-WBA NG CM WBV
[38] DWT RBA MG CM WBV

Table 2: Some existing fusion schemes and their specificatithe image fusion framework.

3 Performance comparison for different fusion schemes

In the past, image fusion results were usually evaluated visually. Qatrdly accessing the
performance in practical applications is a complicated issue because éheadgosite images is
normally unknown. One way to achieve this in a controlled setting is to genaaateof distorted
source images from a known test image, then compare the fused image and the @sgjinzage.
This approach is reasonable to judge performance for cases where the sourceconagé&em the
same type of sensors, which is our focus here. In our tests we consider only visgakimaich
one might argue are the most prevalent and basic image type. The tests aregbrtieldvant for
the digital camera application we discussed in the Introduction. We designeditvefig method
in our experiments.

From a test image, two out-of-focus images are created by radial blurring.bllineng is
taken along a radial line, centered at a point we selected. This centermigaplbbe the clearest
part of the image, just like the focus point of a camera. Thus, we can take blareggs with

different focus points as the source images. We take the original image asdtenoef image. To
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(a). Image 1 (focus on right) (b). Image 2 (focus on left) Reference image (all focus)

Figure 8: Radial blurred images and the reference image

accomplish the blurring, a Gaussian smoothing kernel was used as a convolusionTha form
of the filter was changed as a function of the spatial location where mask ig@ppliparticular,
the standard deviation of the smoothing kernel was increased in proportion totdneceibetween
the current pixel and the selected centering point. Fig. 8 shows an exampldfetérdireference
images were employed in our tests. These images are shown in Fig. 9. Irsolis ige present

average performance over the 16 test cases.
3.1 Evaluation criteria

Three evaluation criteria we used

1. The root mean square error (RMSE) between the reference iRagel the fused imagaé

(z, j denote pixel location)

e (12)
2. The mutual information (MI) between the reference imRgand the fused imagé
Lo . hr.z (i1, i2)
MIR;Z) = > > hrazlii,is)logg— "~ (13)

i1=1iy=1 hR(il)hZ(i2)
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Figure 9: The 16 test images

wherehg z indicates the normalized joint graylevel histogram of imaBeandZ, hg, hz

are the normalized marginal histograms of the two images/asdhe number of graylevels.
3. The percentage of correct decisions

N,
P.==—‘x1 14
=7, <10 (14

t
wherelN, is the number of correct decisions aiVgis the total number of decisions. For CM
combining, NV, is the size of MSD representation. For the WA combining, b&thand N,
are counted based only on those cases whem (9) is equal 0 or 1. In our examplesx

was 0 or 1 very often (1/2 the time or more).

3.2 Experimental results

We compared the different alternatives for each procedure of the generieviakdescribed in
Fig. 4, and the results are shown by table 3 through 7. In these tables, the finsincehows

the combinations of alternatives for the procedures other than the one under considénation,
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second column lists the different alternatives for the current procedure. @dum 5 show the
performance using the criteria we introduced in Section 3.1. All the abbreviarerdescribed in

Table 1.

3.2.1 Comparing schemes using different MSD methods

To compare the performance of schemes using different MSD methods, we considerediif-
ferent combinations of alternatives for the other fusion procedures for each oPt(heDWT and
DWF MSD methods. The results are shown in Table 3. Recall that all theégesuhis section
show the performance average over the 16 images in Fig. 9.

From the results in Table 3, we observe that different MSD methods appear tdg@uiffer-

ent image fusion performance. Without considering spatial and scale grouping ansteonsi

verification, LPT-based schemes provide best performance in terlR348 F and M . This is

interesting since one could argue that fecriteria is not as informative aBM SE andM 1. In
particular,P, always weights errors equally regardless of their importance. In fact soore enay
cause unnoticable difference in the fused image. When spatial and scale graupcwnaistency
verification are considered, we see from Table 3 that the LPT schemes bmegso best. These
observations appear to be related to the good spatial localization of the LRFaappn the cases
we considered. By this we mean that, in the LPT case, each pixel in tbesteected image is
significantly effected by only a few coefficients, so that an error in agogefficient has less of an
effect on the fused image. In the DWT and DWF, an error in a given coeftibigs a greater effect
on the final image, but grouping and consistency verification generally make géhvese much
less likely. We see from Table 3 that the DWF and DWT-based schemes dappedperform the

LPT-based schemes when spatial grouping, scale grouping and consistencytierificaused.
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Combinations | MSD method| RMSE | MI | P.(%)
CBA + LPT 4.09 3.79| 55.9
1| NG+ DWT 4.99 3.36| 54.5
CM+NV DWF 4.39 3.59| 55.9
WA-WBA+ LPT 435 |3.94| 59.7
2 | NG+ DWT 4.77 3.46| 57.9
WA+NV DWF 441 |3.79| 61.2
RF-WBA+ LPT 2.89 5.23| 71.8
3| MG+ DWT 3.55 446 | 72.3
CM+NV DWF 3.08 4.87| 74.7
RBA+ LPT 288 |4.95| 75.2
4 | MG+ DWT 2.72 5.02| 78.3
CM+WBV DWF 2.67 5.21| 81.2

Table 3: Performance of the schemes using different MSD oalsth
3.2.2 Comparing schemes using different activity level meares

To compare the performance of schemes using different activity level neasats, we tested
CBA (coefficient-based activity), RF-WBA (rank filter window-basethaty), WA-WBA (weighted
average window-based activity) and RBA (region-based activity) measuatemath different
combinations of alternatives for the other fusion procedures. The results are shdwable 4.
From these results, we observe that applying spatial grouping in computing théyaetal mea-
surement appears to improve fusion performance. RBA measurement geappiyrs to be the
best method. RF-WBA measurement provides similar performance with WA-YiiBasurement.
We note that the test images in Figure 9 are not very noisy. If noise is added|dtieerperfor-
mance of the RF-WBA and WA-WBA schemes may depend on the characteristics nbise.
Based on [48] WA-WBA may be better for Gaussian noise and RF-WBA may ber hetimpul-

sive noise.
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Combinations| Activity Measures| RMSE | MI | P.(%)
LPT+ CBA 4.03 3.87| 56.7
1 NG+ RF-WBA 3.77 4.03| 62.9
WA+ WA-WBA 4.35 3.94| 59.7
NV RBA 3.39 452 | 65.9
DWT+ CBA 472 | 3.63| 62.7
5 MG+ RF-WBA 355 |4.46| 723
CM+ WA-WBA 343 | 451| 70.8
NV RBA 272 |5.02| 78.3
DWF+ CBA 3.17 | 4.20| 69.6
3 MG+ RF-WBA 2.82 5.14| 79.3
CM+ WA-WBA 2.98 5.17| 78.6
WBV RBA 2.67 5.21| 81.2

Table 4: The performance of the schemes using differentigctevel measures.
3.2.3 Comparing schemes using different coefficient groupg methods

To compare the performance of schemes using different coefficient grouping mettreotksted

NG (no-grouping), SG (single-scale grouping) and MG (multiscale grouping) decision methods
with different combinations of alternatives for the other fusion procedures. 8héts are shown

in Table 5. From the results, we observe that MG always provides fusion perfoeniaprove-
ment. The improvement apparently comes from the fact that significant imagede tend to be
stable with respect to variations in scale. These features tend ¢oshawn-zero lifetime in scale
space [15]. Thus, when comparing the corresponding image features in multiple soagss,

considering the components in all scales together provides a more robust fusiegystra

3.2.4 Comparing schemes using different coefficient combimg methods

To compare the performance of schemes using different coefficient combining metleo@sted
the CM (choose-max) decision methods and the WA (weighted average) decisioodsietith
different combinations of alternatives for the other fusion procedures. Thegeselishown in

Table 6. From these results, neither the CM nor the WA decision methods are detsgrsand
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Combinations | Grouping| RMSE | MI | P.(%)
LPT+ NG 409 |3.79| 55.9
1| CBA+ SG 409 |3.79| 55.9
WA+NV MG 3.47 452| 61.7
DWT+ NG 481 | 3.43| 57.3
2 | RF-WBA+ SG 456 | 3.53| 63.9
CM+WBV MG 342 | 471 74.2
DWT+ NG 4.77 3.46| 579
3 | WA-WBA+ SG 461 | 3.55| 61.3
WA+NV MG 346 |4.49| 70.5
DWF+ NG 439 |3.59| 559
4 | CBA+ SG 409 |3.78| 57.7
CM+NV MG 335 [4.01| 67.1

Table 5: Performance of the schemes using different grgugétision methods.

the difference in performance is small. This is consistent with a facstated below (14), that
weights of 0 and 1 are often chosen. We belive that the small observed difareperformance
with CM and WA is due to the lack of noise in the original images in Figure 9. If nisiselded,

these findings may be different.

Combinations Decision| RMSE | M1 | P.(%)
1 LPT+WA-WBA+ CM 4.01 3.91| 60.5
NG+NV WA 4.35 3.94| 59.7
5 DWT+RF-WBA+ CM 355 | 4.46| 72.3
MG+NV WA 3.63 |441| 711
3 DWT+WA-WBA+ CM 343 | 451| 70.8
MG+NV WA 3.46 4.49| 705
4 DWF+CBA+ CM 3.35 4.01| 67.1
MG+NV WA 341 4.14| 684

Table 6: Performance of the schemes using different comdpimiethods.

3.2.5 Comparing different consistency verification method

To compare the performance of schemes using different consistency venifioatthods, we con-
sidered using the different combinations of alternatives for the other fusionquroee We tested

these combinations with NV (no verification), with WBV (window-based fieation) and with
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RBV (region-based verification) respectively. The results are showtalile 7. These results
illustrate that consistency verification is helpful for improving the fusioriggenance. RBV out-

performed WBV and NV in all cases.

Combinations | verifications| RMSE | M1 | P.(%)
LPT+ NV 401 |391| 60.5
1| WA-WBA+ WBV 3.92 | 3.98| 60.9
NG+CM RBV 3.17 | 488| 67.8
DWT+ NV 3.55 446 | 72.3
2 | RF-WBA+ WBV 3.42 471 74.2
MG+CM RBV 2.69 525| 78.8
DWF+ NV 3.08 | 487 74.7
3 | RF-WBA+ WBV 282 | 514 793
MG+CM RBV 258 |522| 81.2

Table 7: Performance of the schemes using different camsigtverification methods.

3.3 Comparing some existing fusion schemes and some proposed approaches

Table 8 shows some fusion schemes which have been studied by previous resaasutigeL PT
or DWT MSD methods. These appear to be the best exsiting methods we found in titerider
These schemes all fit into the framework discussed in Section 2. Tabs® &labws the experi-
mental results obtained for these schemes. The approach suggested in [38] prawitidsetter

performance than the other schemes in Table 8.

Schemesg Combinations of fusion method| References RMSE | MI | P.(%)
1 LPT+CBA+NG+CM+NV [21, 22] 409 | 3.79| 55.9
2 DWT+CBA+NG+CM+NV [28, 29, 30,32]] 5.04 | 3.33| 54.7
3 DWT+CBA+NG+CM+WBV [31, 35] 483 | 3.45| 56.7
4 DWT+WA-WBA+NG+WA+NV | [33, 36] 477 | 3.46| 57.9
5 DWT+WA-WBA+SG+CM+NV | [34] 465 | 3.52| 60.6
6 DWT+RF-WBA+NG+CM+WBYV | [37] 481 | 3.43| 57.3
7 DWT+RBA+MG+CM+WBV [38] 272 |5.02| 78.3

Table 8: Some existing image fusion schemes and their pedioce.

Based on the fusion framework illustrated in Fig. 4, we propose some new imagm f
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schemes that appear to outperform the schemes in Table 8 for the test casesidered. These

approaches and their fusion performance are shown in Table 9.

MSD | Activity Measure| Grouping | Combining | Verification | RMSE | MI | P.(%)
LPT RF-WBA MG CM RBV 2.74 5.18| 77.8
DWT RF-WBA MG CM RBV 2.69 525| 78.8
DWF RF-WBA MG CM RBV 2.58 5.22| 81.2

Table 9: Some new image fusion schemes and their performance

All of the new schemes in Table 9 generally provide approximately equal or betferrpance
than the previous methods listed in Table 8. The new schemes which employ the mINDWa-
are strictly better than all the schemes in Table 8. Complexity and meraquirement should
also be considered. The computational complexity depends mainly on the MSD methodetsed. L
N refer to the size of the image ardto the number of the decomposition levels used. For the
Laplacian pyramid and the DWF decomposition, the complexit® (8Vlog/N). For DWT, the
complexity isO(N). LPT-based schemes will need a little more storage memory than DWBbas
schemes, and DWF based schemes will use rougihtymes more storage memory than that of

DWT-based schemes.

3.4 More image fusion examples

While this study has focused mainly on performance analysis using syntheticadlyeded source
images, we have also studied realistically generated images for a nofipéeresting applica-
tions (see Fig. 2 and Fig. 3). Here it is much more difficult to compare varilgosithms, so

instead we present results for the best algorithms identified in Section 3a3féar applications.
As discussed in Section 3 we have particular interest in the fusion of-foclis digital camera
images. Inexpensive cameras may have difficulty obtaining images whiah-freus everywhere
in some situations. Image fusion approaches have already been shown to beauaedidl tsuch

problems [50]. [50] discusses algorithms to control both focus and camera positiometatgean
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image sequence which is used to obtain a fused composite image. The image fysmaches
we studied here can work for any source images available, they don’t rely orolbeditcamera
motion. Fig. 10 showes an example. (a) and (b) are two original images, takedi¢pyal camera,
which have different focus. (c) is the image obtained using the auto-focus functibe chmera.
(d) is the result using the above image fusion approach. In all of our experiments ay i,

image fusion using the best algorithms identified in Table 9 performs bettethibauto-focus of

the camera.
(a). Image 1 (focus on the clock), (b). Image 2 (focus on thdestt)l

Figure 10: Digital camera image fusion

In the following, we illustrate deblurring and cloud removal as two other appbns of image
fusion. In Fig. 11, the tank in the left image is motion blurred and the background inititéem

image is not in focus, while the fused image on the right has much better qualiig.l42, some
26



parts of the fighter plane body are blocked by the clouds in both of the source images,h&hile t

fused image provides a much clearer picture of the fighter.

(a). Tank is motion blurred (b). Background is not clear f)sed imagé

Figure 11: Fusion result for motion blurred images
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(a). Clouds block the head (b). Clouds block the back (c)eBimage

Figure 12: Fusion result for images with occlusion

4 Discussions

In this paper, some MSD-based image fusion approaches have been studied gathénia image

fusion framework. The study was focused on how to use the MSD data of the sources itnage

tObtained using the third scheme in Table 9
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produce a fused MSD representation which should be more informative to the abgemean
or computer). Studies of this type have been lacking in the previous research. Exmsrshow
that region-based fusion and multiscale grouping can almost always improvenége ifusion
performance for any of the MSD methods we considered.

The framework we suggest in this paper can not only describe the existing image fusi
schemes, but it also introduces some new approaches. Such new approaches hakevineen s
to outperform previous approaches.

There are some natural extensions to the research in this paper which bdeamascthis

research progresses.

MSD methods

In this paper, we just discussed some basic MSD methods for image fusion, incliRilng L
Daubechies’s D8 orthonormal DWT and the corresponding DWF. We found that among these
basic MSD methods, DWF appears to provide the best performance at the cost of higher
computational and storage expenses. An extensive study of other existing or emeg&jing M

methods for the purpose of image fusion should be a topic of future research.

Decomposition levels

In our study, we found the number of decomposition levels used can influence image fusion
performance. However, using more decomposition levels will not necespariuce better
results. Methods for choosing the appropriate number of decomposition level showatrecei

further attention.

Activity measure

In this paper, we use the absolute value of MSD coefficients as the basicyactedisure.

There are other ways to calculate activity, some of which may involve jporating a pri-
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ori information. It would be desirable to search for the activity level meas that most

accurately reflect the relative importance of each MSD coefficient.

Combining method

There are some combining methods that we have not considered here. Some of these would
be interesting to study. For example, one might require that all coefficientstfrersame

frequency band come from the same source image.

Extra information

Our research employed the assumption that we do not have any further inforrabtian
the source images other than the pixel values. If prior knowledge is availablactivity
measure, combining method and consistency verification can all use such atiforno
improve fusion performance. Using prior information in the fusion is an imporssue that

should be studied.

Performance measure

The methods used for testing fusion performance in Section 3 focus on digitalacapyi-
cations. They may not be best for other image fusion applications. Designing procémures

fusion performance assessment for other applications is another topic of interest

The research discussed in this paper was aimed at producing better owagdk. We assume
that a more informative description of the scene will necessarily impttoegerformance of fur-
ther image processing tasks. However, we acknowledge that if one knew the goalovktth#
processing, one might be able to tune the fusion towards this specific goal, which midgbot be
example, locating a particular object.

In this paper, we are promoting MSD-based pixel-level image fusion. Noteathaire not

advocating this type of fusion at the exclusion of other types of fusion. We believe ffeaedt
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types of fusion can often be applied in conjunction with one another and that furtiearckson
this topic is worthwhile and promising.

Another problem which has not been discussed here is image registration. Hogntaha
source images prior to image fusion is also an important issue. In most previalisss the
images to be fused are assumed to be registered. In practice, regissatifficult to achieve and

further study on registration and robust image fusion techniques appear to beguistifi
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