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Part I

Proof of convergence: KKT criterion

1 Introduction

In the paper “Efficient `∞ point triangulation through polyhedron collapse” we have presented
a novel algorithm for point triangulation based on the `∞ norm. Here we will show that the
KKT criterion is fulfilled if and only if our algorithm terminates.

The proof necessarily consists of two elements:

• Necessity: If the KKT criterion is fulfilled, our algorithm terminates.

• Sufficiency: If our algorithm terminates, the KKT criterion is fulfilled.

We will split up each of the proofs into four cases based on the number of active inequalities:
two, three, four, and more than four.

We start by repeating the KKT criterion for our specific scenario. We denote the gradients
of the lth constraint of camera k as nk,l. When N constraints are active, we index them with
i ∈ {1, . . . , N}.

@ improving direction

⇐⇒ ∃λ ∈ RN � 0 :

0 =
∑
i

λini

1 =
∑
i

λi
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2 Two active inequalities

In this case, the termination criterion for the proposed algorithm is that the two corresponding
gradients are eachother’s inverse.

2.1 Necessity

If the KKT criterion is fulfilled, we have:

∃λ1 ≥ 0, λ2 ≥ 0

0 = λ1n1 + λ2n2

1 = λ1 + λ2

Rembember that these gradients are non-zero and unit vectors. Without loss of generality, we
assume that λ1 is larger than zero.

0 = λ1n1 + λ2n2

=⇒ λ1n1 = −λ2n2

=⇒ n1 =

(
1− 1

λ1

)
n2

=⇒ n1 = λn2 where λ < 0

As both vectors are unit vectors and λ is strictly negative, the vectors are eachother’s inverse. �

2.2 Sufficiency

If n1 = −n2 then the choice λ1 = 1/2 and λ2 = 1/2 fulfills the KKT criterion. �

3 Three active inequalities

In this case, the termination condition in the proposed algorithm is that the three gradients are
coplanar and that:

n1 · (n2 + n3) ≤ 0

n2 · (n1 + n3) ≤ 0

n3 · (n1 + n2) ≤ 0

(1)

3.1 Necessity

From the KKT constraints we get

0 = λ1n1 + λ2n2 + λ3n3

=⇒

{
λ1n1 · n2 = −λ2 − λ3n2 · n3

λ1n1 · n3 = −λ3 − λ2n2 · n3

=⇒ λ1n1 · (n2 + n3) = −(λ2 + λ3)(1 + n2 · n3)

In case λ1 = 0, it follows that n2 = −n3 and n1 · (n2 + n3) = 0. If this is not the case, we see
that n1 · (n2 + n3) ≤ 0. Mutatis mutandis for the two other inequalities from (1). �
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3.2 Sufficiency

For brevity, we will use the notation µi,j = ni · nj . Starting from the system
µ1,2 + µ1,3 ≤ 0

µ1,2 + µ2,3 ≤ 0

µ1,3 + µ2,3 ≤ 0

(2)

We see that at least two of µ1,2, µ1,3 and µ2,3 should be lower than or equal to zero. Without
loss of generality, assume that µ2,3 ≤ µ1,3 ≤ µ1,2 and thus µ2,3 ≤ 0 and µ1,3 ≤ 0.

Case 1: µ2,3 = −1

We can construct the required convex combination as 1
2n2 + 1

2n3 = 0.

Case 2: µ2,3 ∈ ]−1, 0]

We will now construct a convex combination of the three gradients that equals the null vector.

λ1n1 + λ2n2 + n3 = 0

=⇒

{
λ1 + λ2µ1,2 = −µ1,3

λ1µ1,2 + λ2 = −µ2,3

(3)

The way in which this system was procured is valid if and only if the constructed convex
combination of gradients is not orthogonal to both n1 and n2. However, for this to be the case
(because the three gradients are coplanar) these two vectors have to be parallel. But this is not
possible because µ1,2 ∈ ]−1, 0].

Solving the system (3), we arrive at:[
λ1
λ2

]
=

1

1− µ2
1,2

[
1 −µ1,2

−µ1,2 1

] [
−µ1,3

−µ2,3

]
Both coefficients are positive. We prove this for the first coefficient:

λ1 =
1

1− µ2
1,2

(
µ1,2µ2,3 − µ1,3

)
From µ1,3 + µ1,2 ≤ 0 and µ2,3 ≤ µ1,3 we know that

0 ≤ (µ2,3 − µ1,3)(µ1,3 + µ1,2)

=⇒ µ2,3µ1,2 ≥ µ1,3 + µ1,3(µ1,3 − µ2,3 + µ1,2 − 1)

Now, because µ1,3 ≤ 0, µ1,3 + µ1,2 ≤ 0 and µ2,3 ≥ −1, we know that the second term on the
right hand side is positive:

µ2,3µ1,2 ≥ µ1,3 =⇒ λ1 ≥ 0

Mutatis mutandis we can prove the sign of λ1.

It is now straightforward to construct the convex combination:

1

1 + λ1 + λ2
(λ1n1 + λ2n2 + n3) = 0

�
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4 Four active inequalities

In case four inequalities are active, the proposed algorithm terminates if there is a triplet that
fulfils that causes termination (per the rules for three active inequalities), or if

n1 · d234 ≤ 0

n2 · d134 ≤ 0

n3 · d124 ≤ 0

n4 · d123 ≤ 0

(4)

In which dijk equals the improving direction constructed from the triplet {i, j, k} as

d′ijk = n1 × n2 + n2 × n3 + n1 × n3

sijk = (n1 · d′ijk)/
∥∥n1 · d′ijk

∥∥
dijk = sijkd

′
ijk

in case the triplet is not coplanar, or as the average of two of the triplet’s vectors if these vectors
are coplanar such that the scalar product of any of the triplet’s vectors with its improving
direction is strictly positive.

4.1 Necessity

In case one of the λi = 0 (without loss of generality, assume λ4) the proof reduces to the proof
given in Section 3.1.

Therefore, we can assume for the rest of this section that λi > 0, ∀i. We rewrite one of the
elements of the KKT criterion as follows:

0 = λ1n1 + λ2n2 + λ3n3 + λ4n4

=⇒ λ1(n1 · d123) + λ2(n2 · d123) + λ3(n3 · d123) + λ4(n4 · d123)
(5)

As the construction of d123 differs depending on the coplanarity of the constiting vectors, we
split up into the two possibilities.

The triplet {1, 2, 3} is coplanar
In this case, d123 equals the average of two of the vectors in the triplet {1, 2, 3}. Without
loss of generality, assume that d123 = 1

2n1 + 1
2n2. From (5) we arrive at:

=⇒ λ4 n4 · d123 = −1

2
(λ1 + λ2)(1 + n1 · n2)−

1

2
λ3(n1 · n3 + n2 · n3)

The two vectors from {1, 2, 3} are chosen such that n1 ·n3 +n2 ·n3 ≥ 0 and therefore the
right hand side is non-positive. As λ4 > 0 we conclude that n4 · d123 ≤ 0.

The triplet {1, 2, 3} is not coplanar
Continuing from (5) we arrive at:

=⇒ n4 · d123 = −(λ1 + λ2 + λ3)
‖n1 · d123‖

λ4

This step is possible because n1 · d′123 = n2 · d′123 = n3 · d′123. This follows from the
properties of the cross product and the triple product. As the right hand side is negative,
so is n4 · d123.

Mutatis mutandis we prove the other inequalities in (4). �
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4.2 Sufficiency

If any of the triplets fulfil the termination requirements of a triplet, the algorithm terminates.
Say, without loss of generality, that the triplet {1, 2, 3} fulfils the requirements. In that case
we can choose λ4 = 0 and select λ1 through λ3 according to the procedure in Section 3.2. We
will therefore assume throughout the rest of this section that none of the triplets fulfil the
termination requirements on their own.

At least one triplet is coplanar

This is not possible: in this case the quadruplet fulfils its constraints only if a coplanar triplet
fulfils its constraints. If a triplet is coplanar and does not fulfil its constraints, all of its vectors lie
in the same half-plane and hence we can express one of them as a positively weighted combination
of the other two.

Without loss of generality, say the triplet {1, 2, 3} is coplanar and that we can express n3 =
κ1n1 + κ2n2, κi ≥ 0. This results in a conflict:

n3 · d124 = κ1n1 · d124 + κ2n2 · d124

This expression should be negative because of (4), yet the right hand side is a strictly positively
weighed sum of strictly positive values. Hence, it is not possible for a triplet to be coplanar and
for the quadruplet to still fulfil its constraints without that triplet fulfilling its constraints as
well.

None of the triplets is coplanar

We construct a convex combination as combination of the requirements

0 = λ1n1 + λ2n2 + λ3n3 + λ4n4

and

1 = λ1 + λ2 + λ3 + λ4 (6)

From the first equality we derive four equalities by taking the scalar product of both sides with
the improving directions of each of the possible triplets. This results in the following system:

n1 · d234 n2 · d234 n3 · d234 n4 · d234
n1 · d134 n2 · d134 n3 · d134 n4 · d134
n1 · d124 n2 · d124 n3 · d124 n4 · d124
n1 · d123 n2 · d123 n3 · d123 n4 · d123

 . λ = 0

Again we make a distinction depending on the coplanarity of the vectors: either at least one
triplet is coplanar, or none of the triplets is coplanar.

Per the construction of the improving direction, the scalar product of a gradient and the
improving direction of any of the triplets it is in is strictly positive. We divide each of the rows
by the corresponding scalar product of the improving direction and one of the vectors in its
triplet. The resulting system is:

n1 · d234/n2 · d234 1 1 1
1 n2 · d134/n1 · d134 1 1
1 1 n3 · d124/n1 · d124 1
1 1 1 n4 · d123/n1 · d123

 . λ = 0
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Denote the entry on the diagonal for the ith row as φi. We now subtract each of the rows from
equation (6) in order to arrive at

1− φ1 0 0 0
0 1− φ2 0 0
0 0 1− φ3 0
0 0 0 1− φ4

 . λ =


1
1
1
1


From (4) it follows that φi ≤ 0, ∀i. The required convex combination is acquired by normalisation
of λi = 1

1−φi . �

4.3 More than four active inequalities

In case four inequalities are active, the proposed algorithm terminates if there is a triplet that
fulfils that causes termination (per the rules for three active inequalities) or if for each triplet
the corresponding improving direction has a negative scalar product with at least one of the
gradients.

4.4 Necessity

If exactly three λi or non-zero, the corresponding triplet fulfils the constraints per section 3.1.
We therefore assume more than three of them are non-zero.

Starting from the expression in the KKT criterion that∑
i

λini = 0, λi ≥ 0

For each triplet τ , we split up the summation:∑
i/∈τ

λini = −
∑
i∈τ

λini

The right hand side is non-positive: each gradient has a strictly positive scalar product with the
improving direction of any triplet it belongs to and the weights are non-negative.

The left hand side, on the other hand, has at least one strictly positive weight (as more than
three λi are non-zero). The left hand side must be non-positive, and all of its weights are
non-negative (with at least one strictly positive weight). As a result, one of the terms being
weighed must be non-positive. �

4.5 Sufficiency

We show that it is possible to reduce this case to the case of four active inequalities: it is always
possible to choose four inequalities such that those four also fulfil their constraints.

In order to do so, we assume that there is an ordering on the set of triplets which we index with
τ . We then construct a matrix A as in section (4.2) so that

(Aτ,i) = ni · dτ
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The matrix R is constructed by concatenating a row of 1’s at the bottom:

R =

[
A

1

]

The addition of the last row has increased the rank at most by 1. The rank of R is therefore at
most 4.

Then the current case is equivalent to the case of four active inequalities, for which the proof is
given in section (4.2).

Assume that the set SN = {n1,n2,n3,n4} spans the column space of R (as each column
corresponds to one of the gradients, and each row corresponds to one of the triplets).

Construct the matrix R4 by selecting the four columns corresponding with SN and the four rows
corresponding with all possible triplets in this quadruplet in addition to the final row. Now we
need only show that rank(R4) = rank(R).

We can do this by showing that the set ST of improving directions for the triplets formed from
the gradients in SN spans the set ΩT of all improving directions from the possible triplets of
ΩN , the set of all gradients for the active inequalities.

Geometrically, the improving directions are the central lines (bisectors) of the cones defined
by triplets formed from SN . If the vectors in SN are not coplanar (and hence, span R3), then
the central lines are not coplanar either and hence also span R3. For the planar option, if the
vectors are not colinear, the central lines are not colinear and span the plane. If all vectors are
colinear, then the improving directions all lie on the same line and hence span this line. �
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Part II

The proposed cost function as MLE

We assume that

• the noise is additive white noise independent over the cameras characterized by the
distribution n for each coordinate independently.

• the camera descriptions are accurately known.

Then the probability of making the set of observations {ũ1, . . . , ũK} given the ground truth
location r is

p (ũ1, . . . , ũK |r) =

K∏
k=1

pk(ũk|rk)

=
K∏
k=1

n

(
x̃k −

Xk

Zk

)
n

(
ỹk −

Yk
Zk

)

Assuming that the noise follows a uniform distribution with radius L we get:

n(x) ∼


1

2L
if |x| ≤ L

0 elsewhere

We approach the radius of the distribution as an unknown that needs to be estimated as well.
In that case, maximising the probability results in:

max
r,L

K∏
k=1

n

(
x̃k −

Xk

Zk

)
n

(
ỹk −

Yk
Zk

)
As there are definitely values of L for which this probability is not zero, we wish to estimate the
best such value and the corresponding point r:

max
r,L

(
1

2L

)2K

subject to

∣∣∣∣x̃k − Xk

Zk

∣∣∣∣ ≤ L, ∣∣∣∣ỹk − Yk
Zk

∣∣∣∣ ≤ L
≡ min

r,L
(L) subject to

∣∣∣∣x̃k − Xk

Zk

∣∣∣∣ ≤ L, ∣∣∣∣ỹk − Yk
Zk

∣∣∣∣ ≤ L
This is exactly the cost function we arrive at by using the `∞ norm in both the reprojection
error and the combined error. Note that the radius of the distribution is estimated by the value
of γ in the paper.
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