
sensors

Article

MATE: Machine Learning for Adaptive Calibration
Template Detection

Simon Donné ∗, Jonas De Vylder, Bart Goossens and Wilfried Philips

iMinds - IPI, Ghent University, Ghent B-9000, Belgium; Jonas.DeVylder@telin.ugent.be;
Bart.Goossens@telin.ugent.be; philips@telin.ugent.be
* Correspondence: Simon.Donne@ugent.be; Tel.: +32-9-264-3270

Academic Editor: Fabrizio Lamberti
Received: 16 July 2016; Accepted: 2 November 2016; Published: date

Abstract: The problem of camera calibration is two-fold. On the one hand, the parameters are
estimated from known correspondences between the captured image and the real world. On the
other, these correspondences themselves—typically in the form of chessboard corners—need to be
found. Many distinct approaches for this feature template extraction are available, often of large
computational and/or implementational complexity. We exploit the generalized nature of deep
learning networks to detect checkerboard corners: our proposed method is a convolutional neural
network (CNN) trained on a large set of example chessboard images, which generalizes several
existing solutions. The network is trained explicitly against noisy inputs, as well as inputs with large
degrees of lens distortion. The trained network that we evaluate is as accurate as existing techniques
while offering improved execution time and increased adaptability to specific situations with little
effort. The proposed method is not only robust against the types of degradation present in the
training set (lens distortions, and large amounts of sensor noise), but also to perspective deformations,
e.g., resulting from multi-camera set-ups.

Keywords: computer vision, camera calibration, checkerboard detection, deep learning

1. Introduction

Perspective cameras are typically modeled as pinhole cameras with some additional lens
distortion [1]. Under this model, projection is separated in an extrinsic matrix (location and orientation
of the camera), an intrinsic matrix (focal distance, skew and optical center) and the deformation
coefficients (typically the Brown–Conrady ’plumb bob’ distortion model [2]). Camera calibration
comprises the estimation of the intrinsic matrix and the deformation coefficients, both of which are
camera-dependent but remain constant in different scenes.

To estimate the camera-specific parameters, calibration objects are used: physical objects with
a known 3D model. By observing the projection of the calibration object, the lens deformation and
intrinsic parameters can be estimated [3–7]. The calibration template used is typically a monochrome
checkerboard, of which we need to detect the corners as illustrated in Figure 1. In this paper, we
outline a checkerboard corner detection method based on a deep convolutional net. The training
aspect of the network means that it can be deployed as a generally applicable detection method, but
that it can be tailored to specific problems or scenarios as well. We test two instances of the network:
one is trained using distorted input images with nearly no noise, while the other is also trained on
noisy images. We illustrate adaptivity by training the network specifically for a special hexagonal
color-based calibration template as well.

Sensors 2016, 16, x; doi:10.3390/—— www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, x 2 of 17

(a) (b)

Figure 1. Example of the detection of a checkerboard. A radially distorted input image (a) and the
undistorted image with the detected points highlighted in red (b).

Existing Methods

Several techniques exist for the detection of checkerboard features, as well as for constructing
checkerboards from them. Initial approaches used general feature detectors such as the Harris [8],
SUSAN (Smallest Univalue Segment Assimilating Nucleus) [9,10] or Moravec [11] features. Because of
the distinct nature of the checkerboard template, it is possible to do a preliminary filtering for areas
of the image likely to contain a checkerboard [12,13]. A more complex combination of general image
features is proposed by Placht et al. with ROCHADE (Robust Checkerboard Advanced Detection) [14]:
the centerlines of a thresholded Scharr-filtering of the input image are calculated and used to compute
the saddle-points, which are the detected corners. After subpixel refinement, the checkerboards are
constructed.

In the open-source computer vision library OpenCV, the checkerboard detection method is an
algorithm by Vezhnevets [15], which operates by detecting black quadrangles in the image and
combining those into checkerboards. This approach was extended in OCamCalib [16,17] with a better
checkerboard construction algorithm and pre-processing to handle blurred or distorted images.

As observed in [18], the checkerboard can be detected on the edge image as two sets of lines
converging on two separate vanishing points. They can be detected successfully using the Hough
transform [18,19] as long as the lens distortion of the camera keeps the lines straight. For wide-angle
cameras (such as the GoPro series), this assumption does not hold and such methods are not applicable.
This would not be an issue if we could correct for the lens distortion, which requires knowledge of
the camera’s intrinsic parameters—the very reason we are trying to match the checkerboard pattern.
To escape this catch-22 situation, the template extraction algorithm should be robust against such
lens distortions.

Recently, more specific features have been proposed specifically designed for checkerboard feature
detection [10,12,20–22]. In [20–22], circular neighborhoods of the corner candidates are considered
(see also Figure 2): the intensities of the circular boundary form the corner candidate’s feature vector.
By counting and scoring the sign changes of this circular boundary, the authors of [21,22] are able to
select the corner points of the checkerboards: checkerboard corners sport four distinct intensity steps
over the feature vector, or a characteristic path. With ChESS (Chessboard Extraction by Subtraction
and Summation) [20], it is shown that while such an approach works well, it may result in many
false positives, and a more complex criterion is formulated based on the circular boundaries and the
correlations of its phase-shifted versions. Bennett et al. go on to discuss the various false positives
and extend their ChESS feature to account for these [20]. The main drawback is that the technique
has been tailored for a low degree of lens distortion: the detection assumes orthogonal angles in the
checkerboard quadrangles—a valid assumption when the checkerboard is parallel to the imaging plane,
but less practical in a multi-camera set-up. In [10,12], the local neighborhood of corner candidates is
considered, rather than only a circular boundary. Zhu et al. [10] match circular corner templates to
the local neighbourhoods, while Arca et al. [12] divide the neighborhood into nine sectors: a center



Sensors 2016, 16, x 3 of 17

and eight sectors. The statistics of those nine sectors are compared against hard-coded rules for corner
detection.

(a) (b)

Figure 2. Illustration of the effect of focal blur on the corners. (a) in-focus corner, with the six-radius
circular boundary highlighted on a detailed version; (b) badly out-of-focus corner with the similar
enlarged version.

There have been some forays into the field of machine learning for feature detection. Notably,
the FAST (Features from Accelerated Segment Test) [23] image corner detector is built upon machine
learning foundations, as is its successor, FAST-ER (FAST - Enhanced Repeatability) [24]. Deep learning
has proven effective in e.g., the segmentation of electron-microscopy images [25], MRI images [26]
and hyperspectral images [27]. In a broader scope, it has recently also proven effective at pixel-wise
processing: the authors of [28] train a deep convolutional net for image super-resolution, which consists
of just three layers.

It illustrates that even a few well-trained layers can be extremely effective for pixel-wise processing.
However, the main body of machine learning and deep learning literature has focused on high-level
image features, such as those required for classification of images in ImageNet [29]) or detection of
handwritten digits in the MNIST (Mixed National Institute of Standards and Technology) dataset [30].
Schmidhuber [31] has compiled an overview of deep learning techniques and their history, and we
refer interested readers to that compendium.

Early attempts explored the possibility to use neural networks for camera calibration [32–34].
Memon and Khan [32] actually circumvent camera calibration: focusing on a specific stereo set-up, they
pre-train a neural network to perform the conversion from 2D to 3D locations; the major drawback
being that this method needs to be retrained for every different stereo set-up. Jun and Kim [33]
use a similar approach not limited to a stereo scenario; they also propose two different multi-layer
perceptrons: one for the center area of the image plane, and one for the outer area that has larger radial
distortion. Ahmed et al. [34] proposed a feed-forward network to perform the inverse function: their
neural network transforms a 3D location into a 2D location in the image domain, thus modeling the
camera parameters implicitly.

2. Proposed Approach

We propose a convolutional net for the detection of the checkerboard corners. This network can
be trained against a general dataset, as well as tailored towards application-specific scenarios. The
proposed network consists of three layers: the first is intended to extract a series of features from pixel
neighborhoods, while the final two will combine these features into a meaningful chessboard corner
score. Figure 3 gives an overview of the machine we propose.

The first layer of the network consists of a relatively large kernel size convolutional filter with
many output channels. Its activation function is a ReLU (Rectified Linear Unit) [35]. This first filter is
given a large spatial radius because of the good results obtained by circular boundaries [20,21]. The
radius of the spatial filter at this stage should be large enough to overcome the effects of the image blur
on the corners, as illustrated in Figure 2. This blur is typically the result of a badly configured focal
distance at acquisition time. As most if not all existing cameras carry an built-in autofocus module,
this effect is typically small. We have chosen a radius of six pixels, which is more than sufficient



Sensors 2016, 16, x 4 of 17

for the scenarios we evaluate—it is slightly larger than the radius in [20]. Even larger spatial radii
would allow for more focal blur: in most cases, a larger radius is superfluous while slowing down
the processing; we will explore this trade-off in the results section. Finally, we assume that the input
images are gray-scale.

d x d 1 x 1

input image

3 x 3

response map16 channels 8 channels
Figure 3. Overview of the proposed machine layers. The input image is first filtered with a relatively
large kernel size (proportional to image content) into 16 feature channels. A direct filtering (no spatial
influences) into eight new channels. The last step achieves a single-channel response map. The
activation functions at each step are ReLUs (rectified linear units [36]).

We denote the input image as X. The first layer results in 16 channels L1,i(X), governed by trained
filter kernels W1,i and bias b1,i:

L1,i(X)(x, y) = max ((W1,i × X) (x, y) + b1,i, 0) . ∀i = 1 . . . 16. (1)

Earlier, the spatial support d× d of the kernels W1,i should be large enough to cover the corner
size in the images, subject to the focal blur. We have chosen 13× 13, which is shown in the results
section to be large enough.

The next layer is a local translation of the 16 feature channels into eight new features, each with
another ReLU activation function: ReLU(x) = max(x, 0). There is no spatial influence at this layer,
and it is solely meant to combine the local neighborhood characteristics into meaningful higher-level
features by exploiting the non-linearity of the activation functions. Each of the eight output channels is
a weighted sum of the 16 input channels with biases b2,j:

L2,j(X)(x, y) = max

(
16

∑
i=1

ai,j [L1,i(X)] (x, y) + b2,j, 0

)
. ∀j = 1 . . . 8. (2)

The last layer combines the eight channels resulting from the second layer into a single response
map. This layer sports a small spatial support to allow for neighborhood influences in the response
map. Similar to earlier layers, the output of this layer is given by:

L3(X)(x, y) = max

(
8

∑
j=1

(W3,j ×
[
L2,j(X)

]
)(x, y) + b3, 0

)
. (3)

The number of parameters in a layer is given by Cout(Cin × d2
layer + 1), where Cin and Cout denote,

respectively, the number of input and output channels, and the spatial support of the kernel is given by
dlayer. In our proposed approach, this equates to 16(Cd2 + 1) + 8(16 + 1) + (8× 32 + 1). For gray-scale
inputs and a spatial support of 13× 13 for the first layer mentioned earlier, there are 2929 parameters to
train. On the other hand, the cardinality of the training input is large enough to bypass this. Consider
that a 640× 480 gray-scale image contains effectively 291, 716 input samples (discounting the border
pixels), each of which has a linked ground-truth response value. Although these input samples
overlap to a large degree, this overlap is required: while the locations of the checkerboard corners
should receive a large response, their close neighborhood should fetch much lower responses (i.e., the



Sensors 2016, 16, x 5 of 17

black–white edges). Of those input samples, only 48 are true positives (at least in our training set, this
depends on the dimensions of the calibration template)—we explain how to handle this discrepancy
in Section 3.1.

The first layer’s Equation (1) has assumed that the input image contains only a single channel:
this is enough for the detection of the characteristic monochrome checkerboard. If specific applications
call for C input channels Xc (C > 1), the first layer formulation can be rewritten to be similar to the
third layer:

L′1,i(X)(x, y) = max

(
C

∑
c=1

(W1,c,i × Xc)(x, y) + b1,i, 0

)
. (4)

2.1. Computational Complexity

The complexity of the proposed approach is only dependent on the size of the spatial support in
the first layer. In total, there are 16 of these d× d convolutions, 128 direct translations (convolutions
without any spatial support) and eight 3× 3 convolutions. Finally, the non-local-maximum suppression
and thresholding require only a small number of additional calculations. Keeping in mind that there
are also the ReLU activation functions, one additional comparison per pixel per channel is introduced.
This makes for a total of (16d2 + 191)N additions and multiplications (where N is the number of pixels
in the image), and 25N binary comparisons.

2.2. Mapping Existing Approaches on the Proposed Network

The neural net can be interpreted as a generalized formulation of existing solutions. Following
the same skeleton, but fleshing it out in an optimal way: through training, we estimate the optimal
decision rules, as far as the training set is concerned. Assuming that the training set is representative
for the actual input images, the trained neural net is applicable to unseen inputs: we make sure that
the training set contains plenty of examples of, e.g., noisy and distorted inputs, to make the resulting
network robust to these degradations.

For example, the approach from [20] can be directly mapped onto the proposed network. Let the
first layer implement the various terms in the so-called sum- and difference-responses from that work,
as well as the neighbor and local mean. The second layer then combines these characteristics into the
sum-, difference- and mean-responses defined in [20]. Because of the absolute values involved, we
need twice the intermediate channels to let the ReLU create the absolute value. The final layer combines
the various responses into a single response map for decision making. With similar reasonings, the
methods of [10,12,21,22] can be approximated by the proposed network.

3. Experiments and Results

We first discuss the training of the network, after which we evaluate the trained network on
datasets from literature. The proposed neural net is used to detect corner candidates, which can be
refined using sub-pixel precision approaches such as those from [14,37]. Therefore, the evaluation
consists of counting the number of type I and type II errors (false positives and false negatives):
a detection is assumed to be correct if it lies close to a ground-truth location.

3.1. Training the Network

The network is trained by the use of stochastic gradient descent [38] (SGD). To speed up the
iterations, and hence convergence, SGD uses a subset of the entire training set at each update step.
A common practice is to simultaneously back-propagate as many samples as possible, restricted by
memory and computational constraints. In addition, a momentum term is used to mitigate the effect
of local optima in the parameter space [39,40]. The dataset for training consists of two parts: images
as captured by us directly (using a Logitech C930e Pro, at full HD resolution) and digitally altered
versions of these captured images.



Sensors 2016, 16, x 6 of 17

The captured image set Pcaptured (a total of 85 input images) cover a wide range of board
orientations as illustrated in Figure 4, resized to half their original resolution (960 × 540). The
background of the captures was intentionally kept cluttered, as might be the case in actual calibration
captures. The camera used in these captures has little lens distortion and capture conditions were good,
generally speaking. The first set of digitally altered versions, Protated, consists of (90,180,270)-degree
rotations of these input images, half of which have their intensities inverted (so that white becomes
black and vice versa). This already increases the training set fourfold, as well as forcing the detector to
become rotation and (somewhat) intensity invariant in as far as the original dataset did not embody
this constraint yet. We call the clean training set Pclean = Pcaptured ∪ Protated.

(a) (b)

Figure 4. Two examples from the captured training data set, ranging from clean front-view images (a)
to oblique vantage points (b).

Because the distortions and noise in Pclean are relatively low, we artificially add both. We add both
radial and tangential distortion [41,42] as well as Gaussian noise to the clean training set to simulate
poor image quality. The five radial and tangential distortion parameters are uniformly distributed
between 0 and 0.1, while the added Gaussian noise had a standard deviation of 0.1. The resulting noisy
and distorted training set Pfull is illustrated in Figure 5. These values of distortion range from virtually
no distortion to unlikely amounts of distortion as in the left part of Figure 5.

(a) (b)

Figure 5. Two examples from the full training data set. These are the corresponding images from
Figure 4 with added distortion and noise as discussed in Section 3.1.

We collect all the parameters of the neural net into a single vector ~p and call the binary
ground-truth image of corner locations G(x, y). Ground-truth corner locations are obtained through
manual annotations: the four outer corners of the checkerboard are indicated manually, and then the
interior corners are interpolated. Finally, all of these points converge locally to the saddle points, after



Sensors 2016, 16, x 7 of 17

which they are checked manually to correct wrong corners. As the penalization function Φ (~p) for the
optimization problem, we use the one-sided quadratic difference:

Φ (~p) = ∑
(x,y)∈Ω

{
max(1− L3(X)(x, y), 0)2, where G(x, y) = 1,
max(L3(X)(x, y), 0)2, where G(x, y) = 0.

(5)

This cost function penalizes responses of corner locations that are lower than 1, and responses
of non-corner locations which are higher than 0—this is similar to the maximal margin from support
vector machines. By enforcing a non-zero margin, the binary classification needs to be more
discriminative. At testing time, we chose the classification threshold to be 0.5, but this could be
adjusted in either direction for more precision (higher values) or more recall (lower values).

Additionally, we include weights for all of the responses. Because of the disparity between
the number of ground-truth positives and negatives, we weight the cost in each location by the
occurrence of that ground-truth state. Calling the number of positive ground-truths NP and negative
ground-truths NN , the final cost function becomes

Φ (~p) = ∑
(x,y)∈Ω

{
1

NP
max(1− L3(X)(x, y), 0)2, where G(x, y) = 1,

1
NN

max(L3(X)(x, y), 0)2, where G(x, y) = 0.
(6)

We ignore any locations near the borders of the image as well as close to the ground-truth locations:
we will select corner candidates by non-maximum suppression on the response map. This means that
we can allow points in the immediate neighborhood of corners to have a high response as well: those
locations are therefore don’t care. This makes the training phase robust against small ground-truth
inaccuracies.

As a side note, the implementation of the neural net and the training were done in Quasar,
a programming language which allows for straightforward GPU (Graphics Processing Unit)
implementations [43]. This is a large advantage for the processing of images, as the high degree
of parallelism and spatial locality of the pixel data can be easily exploited.

3.2. Datasets

For the evaluation, we use both the training datasets and two datasets from [14]. Obviously,
MATE (Machine learning for Adaptive Template Extraction) trained using Pfull) and MATE∗ (trained
using Pclean) are assumed to perform well on the training sets, as they were optimized over those
explicitly. For a more representative comparison, we also include the performance on two datasets
introduced by Placht et al. [14]: uEye and GoPro.

The two training sets, Pclean and Pfull, were discussed earlier and are illustrated in Figures 4 and 5.
The uEye dataset is captured by two IDS UI-1241LE cameras (Imaging Development Systems,

Obersulm, Germany), in a wide-baseline set-up. The lens distortion is insignificant, and the image
resolution is 1280 by 1024: these images are used as-is, as illustrated in Figure 6. This dataset will
serve to evaluate the robustness against perspective transforms: the chessboards in the uEye dataset
are typically at an angle to the imaging plane because of the wide-baseline set-up. Both MATE∗ and
MATE are assumed to perform well on this dataset, as both are trained against perspective transforms.



Sensors 2016, 16, x 8 of 17

(a) (b)

Figure 6. An example from the uEye stereoscopic dataset [14]: the left (a) and right (b) views.

The GoPro dataset, on the other hand, has a very large resolution (4000 by 3000) and a generally
good quality. However, the wide-angle lens of the GoPro introduces significant lens distortion, and
therefore this dataset illustrates the robustness against lens distortions. The images are used at
half-resolution: as illustrated in Figure 2, the spatial support required would grow too large for an
efficient execution. The goal is to detect the corners; (sub)pixel refinement occurs afterwards at a local
level—much less affected by the image resolution. Other methods receive these same down-sampled
images displayed in Figure 7 as input.

(a) (b)

Figure 7. Two examples from the GoPro dataset [14]: the same scene from two vantage points (a) and
(b). Even for the head-on view (a), significant warping is present in the image.

3.3. Evaluation

We perform several comparisons with the state-of-the-art methods ChESS [20], ROCHADE [14]
and OCamCalib [17]. We evaluate the methods both on the training datasets we used as well as the
uEye and GoPro dataset from [14]. Additionally, we evaluate the methods on an ’angle’ dataset, which
is used to illustrate the robustness of the methods to checkerboard skew.

Results for the training datasets are given in Tables 1 and 2. The uEye and GoPro dataset results
are available in Tables 3 and 4, and the results from the ’angle’ dataset are shown in Figure 8.The two
networks trained on, respectively, the clean and full datasets are denoted with MATE∗ and MATE.
In practice, we use MATE: as shown below, this method sacrifices some precision in favor of recall;
the subsequent checkerboard construction algorithms we use have no issue coping with this relatively
small increase of false positives.

We evaluated the raw detections, without any sub-pixel refinement steps. Groundtruth
was annotated manually and subsequently subject to local convergence to the corner location.



Sensors 2016, 16, x 9 of 17

Next, detected corner candidates are linked to the closest ground truth corner. If the distance is
less than five pixels, this is counted as a true positive. The accuracy gives the average distance between
true positives and their ground truths. The missed corner rate and double detection rate denote how
many ground truths have either zero or several detections. For the MATE detectors, we perform
non-maximum suppression on the neural network output and then apply a threshold of 0.5. The
ROCHADE method’s public implementation was used; the ChESS detector was re-implemented in
the Quasar language. OCamCalib’s publicly available source code was used in its evaluation. The
number of detected checkerboards for this method is self-reported: this means that it may detect all
checkerboards even when when some points are missing. Given the nature of the OCamCalib method,
it is not meaningful to decouple point detection and checkerboard construction.

Table 1. Results on the training set Pclean.

Method
Accuracy

(px)
Complete

Checkerboards
Missed

Corners (%)
Double

Detections (%)
False

Positives
Time
(ms)

MATE∗ 1.009 104/104 0.000 0.000 0 246
MATE 1.160 103/104 0.020 2.444 40 264
ChESS 1.094 104/104 0.000 0.280 10 212

ROCHADE 1.130 104/104 0.000 0.000 0 6458
OCamCalib 0.758 52/52 1.202 0.000 0 160

Table 2. Results on the training set Pfull.

Method
Accuracy

(px)
Complete

Checkerboards
Missed

Corners (%)
Double

Detections (%)
False

Positives
Time
(ms)

MATE∗ 0.810 66/104 1.162 0.020 0 242
MATE 0.999 81/104 0.62 4.147 40 246
ChESS 1.042 73/104 0.842 0.902 15 209

ROCHADE 0.423 38/104 54.899 0.000 0 6642
OCamCalib 1.084 52/52 30.967 0.000 1 243

Table 3. Results on the uEye dataset from [14].

Method
Accuracy

(px)
Complete

Checkerboards
Missed

Corners (%)
Double

Detections (%)
False

Positives
Time
(ms)

MATE∗ 0.886 181/206 3.497 0.009 12 531
MATE 1.009 186/206 3.065 0.809 492 529
ChESS 0.946 175/206 3.398 0.000 11 473

ROCHADE 1.510 186/206 2.895 0.000 1 6753
OCamCalib 0.319 206/206 0.000 0.000 0 261



Sensors 2016, 16, x 10 of 17

Table 4. Results on the GoPro dataset from [14].

Method
Accuracy

(px)
Complete

Checkerboards
Missed

Corners (%)
Double

Detections (%)
False

Positives
Time
(ms)

MATE∗ 1.323 81/100 10.556 0.000 12 1209
MATE 0.835 86/100 4.556 4.556 389 1205
ChESS 1.389 80/100 5.481 0.222 56 1080

ROCHADE 1.807 80/100 5.593 0.000 3 6688
OCamCalib 0.458 100/100 0.537 0.000 0 533

M
is

se
d

po
in

ts
(o

ut
of

48
)

Checkerboard angle

MATE∗
MATE
ChESS

ROCHADE

0 10 20 30 40 50 60 70 80

(a) (b)

Figure 8. The results from the ’angle’ dataset. (a) the checkerboard angle against the number of missed
points; (b) example images (20 and 60 degrees, respectively).

We can see from Tables 1–4 that the trained neural nets do not lose performance over
state-of-the-art techniques. While, as expected, they trump on the training datasets, they do not
lose performance on an external dataset (Table 3). We notice that the neural net trained on the full
training set allows more false positives in return for less false negatives, a result of being trained on
noisy and distorted samples. The execution time for ROCHADE remains constant because it rescales
large images, while the execution time of OCamCalib varies depending on the difficulty of detecting
the checkerboard.

Notably, MATE∗ does not lose much accuracy over MATE on the GoPro dataset, even though
this dataset contains high degrees of lens distortion—a scenario MATE∗ was not explicitly trained
for. We conclude that the various types of perspective transforms in MATE∗’s training set conferred
enough robustness to handle these distortions. The large difference in accuracy between MATE and
MATE∗ on the full training set is assumed to be the result of the noise, a factor for which MATE∗ was
woefully unprepared.

In the noise-free datasets, OCamCalib performs the best out of the tested methods, including the
proposed method. It detects all of the chessboards. However, it counts a checkerboard as detected
even when some points are still missing. There are two main drawbacks to OCamCalib: it requires
the dimension of the checkerboard to be known in advance, and it requires the chessboards to have a
white border. This is an issue on the training sets, in which half the checkerboard have a black border
because of the intensity reversal. For this reason, this method was only run on the non-inverted half of
those datasets.



Sensors 2016, 16, x 11 of 17

We conclude that the trained neural network is able to match or outperform other, hand-designed,
corner-point detectors in all tested scenarios. In noise-free settings, it is hard to beat the performance
of OCamCalib, which uses higher-level info (the checkerboard size and inter-point relations) to detect
and build the checkerboard. However, in the noisy dataset included here, OCamCalib misses the
detection of a large number of points, which the proposed method as well as ChESS [20] do detect.

Figure 8 shows how the various methods cope with the detection of a chessboard under various
angles. The neural net trained on the full training set is able to detect the full chessboard under a
70-degree angle, while the other methods lose the detection of the full chessboard earlier. While the
training set does not explicitly include images of chessboards under such extreme angles (otherwise, the
network trained on the clean set would also have a similar performance), the lens distortions simulated
in the full training set mean that MATE is able to better cope with large distortions, apparently
perspective ones as much as lens distortions. This feature is of particular importance in multi-camera
set-ups: it is far less likely that all of the imaging planes will be parallel, and hence the chessboard will
be on non-zero angles to the various imaging planes.

3.4. Impact of the Training Set Size

In order to test the impact of the training set size, we retrain the network using only a fraction
of Pclean, for a fixed number of backpropagations. For each evaluated training set size, ten random
subsets of Pclean were evaluated; the averaged results are shown in Figure 9.

Se
ns

it
iv

it
y

/
re

ca
ll

(%
)

Number of optimization iterations (batch size 500 000)

1 images
2 images
5 images

10 images
20 images
50 images

100 images
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 1000

(a)

N
um

be
r

of
fa

ls
e

po
si

ti
ve

s

Number of optimization iterations (batch size 500 000)

1

10

100

1000

10000

100000

100 1000

(b)

Se
ns

it
iv

it
y

/
re

ca
ll

(%
)

Number of optimization iterations (batch size 500 000)

1 images
2 images
5 images

10 images
20 images
50 images

100 images
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 1000

(c)

N
um

be
r

of
fa

ls
e

po
si

ti
ve

s

Number of optimization iterations (batch size 500 000)

10

100

1000

10000

100000

100 1000

(d)

Figure 9. Recall of the checkerboard corners (the fraction of corners detected as such) and the number
of false positives in the uEye and GoPro datasets for networks trained on fractions of the training set,
as a function of the training iterations. Training was done in batches of 500 000 backpropagations, i.e.,
an entire image at once. (a) and (b): recall and false positives for the uEye dataset, (c) and (d): recall
and false positives for the GoPro dataset.



Sensors 2016, 16, x 12 of 17

The general trend is that the networks trained on more input images allow for more false positives
in order to boost recall of the checkerboard corners: for a low number of images, the networks tend to
over-fit, resulting in less false positives and lower recall. The largest number of false positives for the
most-trained networks in this experiment is reached by the network trained on the entire Pclean, for
the GoPro dataset: however, the 141 false positives only amount to roughly a single false positive per
input image.

The overshoot visible in the recall curves illustrates the typical behavior of the optimization:
initially, none of the checkerboard corners are detected. Only after the number of detections and false
positives is in balance does the training phase start to weed out false positives.

3.5. Impact of the Spatial Support of the First Layer

In this subsection, we explore the parameter space for the radius of the first convolutional
layer. We train the network, with a varying spatial support, on Pfull for 10, 000 iterations of 500, 000
backpropagations. The performance of the various networks, in terms of their recall and number of
false positives, is shown in Figure 10. The required execution time for the various spatial support radii
is shown in Figure 11.

Se
ns

it
iv

it
y

/
re

ca
ll

(%
)

Number of optimization iterations (batch size 500 000)

2
3
4
5
6
7
8
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000

(a)

N
um

be
r

of
fa

ls
e

po
si

ti
ve

s

Number of optimization iterations (batch size 500 000)

1

10

100

1000

10000

100000

100 1000 10000

(b)

Se
ns

it
iv

it
y

/
re

ca
ll

(%
)

Number of optimization iterations (batch size 500 000)

2
3
4
5
6
7
8
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000

(c)

N
um

be
r

of
fa

ls
e

po
si

ti
ve

s

Number of optimization iterations (batch size 500 000)

1

10

100

1000

10000

100000

100 1000 10000

(d)

Figure 10. Recall of the checkerboard corners (the fraction of corners detected as such) and the number
of false positives in the uEye and GoPro datasets for networks with varying spatial support radii, as a
function of the training iterations. (a) and (b): recall and false positives for the uEye dataset, (c) and (d):
recall and false positives for the GoPro dataset.



Sensors 2016, 16, x 13 of 17

Pr
oc

es
si

ng
ti

m
e

(m
s)

Spatial support radius of the first layer

100

200

300

400

500

600

700

800

900

1000

1100

2 3 4 5 6 7 8 9

Figure 11. Average processing time required for the various spatial supports in the first layer, for an
image in the uEye dataset. This time includes the application of the threshold, the non-maximum
suppression and the creation of the list with detected pixel locations.

Se
ns

it
iv

it
y

/
re

ca
ll

(%
)

Number of false positives

radius 2
radius 6
radius 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 100 10000 1e6

Figure 12. The curves for recall and number of false positives in the function of the threshold used for
the response maps of the proposed neural network, with the point for a threshold of 0.5 highlighted.
Higher-lying curves are better.

Note that the training phase optimizes the number of relative mistakes—the percentage
of missed checkerboard corners versus the percentage of background pixels falsely detected as
checkerboard corners.

This balancing between recall and precision explains the trend in Figure 10: networks with a large
spatial radius are better able to suppress false positives than networks with smaller supports, although
they lose some recall of the checkerboard corners. Networks with small spatial supports (two and
three pixels, mainly) result in an exorbitant number of false positives: up to several hundred false
positives per frame for a spatial support of two pixels on the GoPro dataset.

We have chosen for a network with a spatial support radius of six pixels for the earlier comparisons,
which allows us to compare more meaningfully with CheSS [20], which has the same spatial radius.
The choice of spatial support will hence vary between applications, depending on the processing
time·available.

However, we remind the reader that the proposed neural network approach already has a method
for trading between recall and false positives: the threshold applied to the response maps output by
the network. Figure 12 shows the recall-false positives curves for networks with radii 2, 6 and 9, in the



Sensors 2016, 16, x 14 of 17

function of the applied threshold. From this plot, we conclude that, while the choice of threshold can
be used to trade between recall and precision, (well-trained) networks with larger spatial supports will
offer better performance: a higher precision-recall curve.

3.6. Application to a CMYK Hexboard

Due to the straightforwardness of training a neural network, attuning it to specific scenarios is
much less labor intensive than designing hand-tailored features for each application. In this section,
we briefly illustrate this property for our proposed detector.

To stamp down on false positives and use all information available from a consumer color camera,
we have designed a CMYK (cyan, magenta, yellow and black) calibration plane. The CMYK colorspace
was chosen because it is straightforward to print with consumer printers that print subtractively using
CMYK ink or dust. Using a hex tiling, the corners are equivalent up to a 120 degree rotation and/or a
reflection. As mentioned in Section 2, this multi-channel input is taken into account by adopting the
formulation from Equation (4) as the first layer. The rest of the network remains the same.

We will not get into a discussion on the merits or disadvantages of a non-square calibration object
in this paper; it serves as an illustration of the broadness of the proposed neural network architecture.
After a training phase similar to the one outlined in Section 3.1, the network is able to detect the corners
of the hexboard well, as illustrated in Figure 13.

(a) (b) (c)

Figure 13. Result for the neural net trained on a CMYK hexboard input. The input image (a), the
response map (b), and the detected calibration template corners (c).

4. Discussion and Conclusions

In this paper, we have presented a novel method to detect checkerboard corners. Motivated by the
success of circular boundary methods, we propose a neural network that is a generalization of circular
boundary methods on which several existing methods can be directly mapped. After a training phase,
it is shown that the proposed technique performs at least as well as the state-of-the-art methods.

A robustly trained variant is able to detect checkerboard corners reliably in severely distorted
scenarios. Notably, MATE is able to retain its performance even under scenarios with a large amount
of noise. The generality of the neural network formulation is illustrated by training the network
on an alternate calibration object, exploiting the color information present in nearly all consumer
cameras. The neural network can be trained easily for new scenarios and applications, re-using the
same network architecture.

Acknowledgments: The research in this work was mostly performed under a PhD grant from Ghent University:
Belgisch Onderzoeksfonds (BOF) grant number 01D21213.Part of the research was performed in the scope of the
iMinds BAHAMAS research project.

Author Contributions: Simon Donné conceived, designed and performed the experiments; Bart Goossens
and Jonas De Vylder contributed the analysis tools in the form of the Quasar language. Jonas De Vylder and
Wilfried Philips have given input as to the training of the network and the involved optimization techniques.
Simon Donné wrote the paper, with extensive editing by Bart Goossens and Wilfried Philips.



Sensors 2016, 16, x 15 of 17

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, nor in the
decision to publish the results.

References

1. Sturm, P.; Ramalingam, S.; Tardif, J.P.; Gasparini, S.; Barreto, J. Camera models and fundamental concepts
used in geometric computer vision. Found. Trends Comput. Graph. Vis. 2011, 6, 1–183.

2. Brown, D.C. Decentering distortion of lenses. Photom. Eng. 1966, 32, 444–462.
3. Bouguet, J.Y. Camera Calibration Toolbox for Matlab. Available online: http://www.vision.caltech.edu/

bouguetj/calib_doc/ (Accessed on January 22nd, 2016).
4. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000,

22, 1330–1334.
5. Zhang, Z. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of

the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999;
pp. 666–673.

6. Sturm, P.F.; Maybank, S.J. On plane-based camera calibration: A general algorithm, singularities, applications.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Fort Collins, CO, USA, 23–25 June 1999.

7. Tsai, R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using
off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 1987, 3, 323–344.

8. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference,
Manchester, UK, 31 August–2 September 1988; p. 50.

9. Smith, S.M.; Brady, J.M. SUSAN—A new approach to low level image processing. Int. J. Comput. Vis. 1997,
23, 45–78.

10. Zhu, W.; Ma, C.; Xia, L.; Li, X. A fast and accurate algorithm for chessboard corner detection. In Proceedings
of the IEEE 2nd International Congress on Image and Signal Processing, 2009 (CISP’09), Tianjin, China,
17–19 October 2009; pp. 1–5.

11. Moravec, H.P. Towards Automatic Visual Obstacle Avoidance. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence, Cambridge, MA, USA, 22–25 August 1977.

12. Arca, S.; Casiraghi, E.; Lombardi, G. Corner localization in chessboards for camera calibration. In Proceedings
of the International Conference on Multimedia, Image Processing and Computer Vision (IADAT-MICV2005),
Madrid, Spain, 30 March–1 April 2005.

13. Su, J.; Duan, X.; Xiao, J. Fast detection method of checkerboard corners based on the combination of template
matching and Harris Operator. In Proceedings of the IEEE 2013 International Conference on Information
Science and Technology (ICIST), Yangzhou, China, 27–28 March 2013; pp. 858–861.

14. Placht, S.; Fürsattel, P.; Mengue, E.A.; Hofmann, H.; Schaller, C.; Balda, M.; Angelopoulou, E. Rochade:
Robust checkerboard advanced detection for camera calibration. In Proceedings of the 2014 European
Conference on Computer Vision (ECCV),Zurich, Switzerland September 6-12 2014; pp. 766–779.

15. Vezhnevets, V. OpenCV Calibration Object Detection, part of the free open-source OpenCV image processing
library. Available online: http://opencv.org/ (Accessed on September 2nd, 2016).

16. Scaramuzza, D. OCamCalib: Omnidirectional Camera Calibration Toolbox for Matlab. Free open-source
toolbox, version 3.0 (November 16, 2013). Available online: https://sites.google.com/site/scarabotix/
ocamcalib-toolbox (Accessed on July 6th, 2016).

17. Rufli, M.; Scaramuzza, D.; Siegwart, R. Automatic detection of checkerboards on blurred and distorted
images. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice,
France, 22–26 September 2008; pp. 3121–3126.

18. Wang, Z.; Wu, W.; Xu, X.; Xue, D. Recognition and location of the internal corners of planar checkerboard
calibration pattern image. Appl. Math. Comput. 2007, 185, 894–906.

19. De la Escalera, A.; Armingol, J.M. Automatic chessboard detection for intrinsic and extrinsic camera
parameter calibration. Sensors 2010, 10, 2027–2044.

20. Bennett, S.; Lasenby, J. ChESS—Quick and robust detection of chess-board features. Comput. Vis.
Image Underst. 2014, 118, 197–210.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://opencv.org/
https://sites.google.com/site/scarabotix/ocamcalib-toolbox
https://sites.google.com/site/scarabotix/ocamcalib-toolbox


Sensors 2016, 16, x 16 of 17

21. Bok, Y.; Ha, H.; Kweon, I.S. Automated Checkerboard Detection and Indexing using Circular Boundaries.
Pattern Recognit. Lett. 2016, 71, 66–72.

22. Ha, J.E. Automatic detection of chessboard and its applications. Opt. Eng. 2009, 48, 067205–067205.
23. Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the European

Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 430–443.
24. Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection.

IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 105–119.
25. Roels, J.; Vylder, J.D.; Aelterman, J.; Saeys, Y.; Philips, W. Automated membrane detection in electron

microscopy using convolutional neural networks. In Proceedings of the 25th Belgian-Dutch Conference on
Machine Learning, Kortrijk, Belgium, 12–13 September 2016.

26. Powell, S.; Magnotta, V.A.; Johnson, H.; Jammalamadaka, V.K.; Pierson, R.; Andreasen, N.C. Registration and
machine learning-based automated segmentation of subcortical and cerebellar brain structures. Neuroimage
2008, 39, 238–247.

27. Donné, S.; Luong, H.; Goossens, B.; Dhondt, S.; Wuyts, N.; Inzé, D.; Philips, W. Machine learning for maize
plant segmentation. In Proceedings of the 25th Belgian-Dutch Conference on Machine Learning, Kortrijk,
Belgium, 12–13 September 2016.

28. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution.
In Proceedings of the 2014 European Conference on Computer VISION (ECCV2014), Zurich, Switzerland,
12–13 September 2016; pp. 184–199.

29. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference onComputer Vision and Pattern Recognition, 2009 (CVPR 2009),
Miami Beach, FL, USA, 20–25 June 2009; pp. 248–255.

30. LeCun, Y.; Cortes, C.; Burges, C.J. The MNIST Database of Handwritten Digits. 1998. Available online:
http://yann.lecun.com/exdb/mnist (accessed on February 10th 2016).

31. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117.
32. Memon, Q.; Khan, S. Camera calibration and three-dimensional world reconstruction of stereo-vision using

neural networks. Int. J.Syst. Sci. 2001, 32, 1155–1159.
33. Jun, J.; Kim, C. Robust camera calibration using neural network. In Proceedings of the IEEE Region 10

Conference (TENCON 99), Cheju Island, Korea, 15–17 September 1999; pp. 694–697.
34. Ahmed, M.T.; Hemayed, E.E.; Farag, A.A. Neurocalibration: a neural network that can tell camera calibration

parameters. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra,
Greece, 20–27 September 1999; pp. 463–468.

35. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.

36. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

37. Lucchese, L.; Mitra, S.K. Using saddle points for subpixel feature detection in camera calibration targets.
In Proceedings of the IEEE 2002 Asia-Pacific Conference on Circuits and Systems, 2002 (APCCAS’02), Bali,
Indonesia, 28–31 October 2002; pp. 191–195.

38. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of 19th International
Conference on Computational Statistics (COMPSTAT’2010), Paris, France, 22-27 August 2010; pp. 177–186.

39. Ngiam, J.; Coates, A.; Lahiri, A.; Prochnow, B.; Le, Q.V.; Ng, A.Y. On optimization methods for deep learning.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA,
28 June–2 July 2011; pp. 265–272.

40. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep
learning. In Proceedings of the 30th international conference on machine learning (ICML-13), Atlanta, GA,
USA, 16–21 June 2013; pp. 1139–1147.

41. Heikkila, J.; Silvén, O. A four-step camera calibration procedure with implicit image correction.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Juan, Puerto Rico, 17–19 June 1997; pp. 1106–1112.

42. Kannala, J.; Brandt, S.S. A generic camera model and calibration method for conventional, wide-angle, and
fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1335–1340.

http://yann.lecun.com/exdb/mnist


Sensors 2016, 16, x 17 of 17

43. Goossens, B.; Vylder, J.D.; Philips, W. Quasar: A new heterogeneous programming framework for image and
video processing algorithms on CPU and GPU. In Proceedings of the 2014 IEEE International Conference on
Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2183–2185.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Proposed Approach
	Computational Complexity
	Mapping Existing Approaches on the Proposed Network

	Experiments and Results
	Training the Network
	Datasets
	Evaluation
	Impact of the Training Set Size
	Impact of the Spatial Support of the First Layer
	Application to a CMYK Hexboard

	Discussion and Conclusions

