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Abstract—The main drawback today for range-based indoor
localization is the requirement of a sufficient amount of fixed
reference nodes within radio range of the user. However, these
reference nodes, called anchors, are expensive and require
professional maintenance. Using ultra-wideband in an indoor
environment, the number of anchors can be reduced to one when
reflections are taken into account. With the help of a floorplan
it is possible to obtain a set of virtual anchors that can be
associated with the reflections. In this paper, a low-complex two-
step algorithm is proposed that is able to accurately estimate
the user positions using a single anchor. In a first step, the
algorithm tries to estimate a number of rigid structures using
the noisy inter-node distances and tries to fit this structure in
the room by exploiting the measured reflections. It is shown that
the presented algorithm can provide positioning accuracy similar
to multi-anchor localization algorithms, even in scenarios with
many unwanted scatterers and non-line-of-sight.

Index Terms—Indoor Localization, multipath, Cooperation,
Ultra-Wideband

I. INTRODUCTION

In recent years, position-aware computing has become an
important part of mobile systems, both in indoor and out-
door environments. For the outdoor environment, the global
positioning system (GPS) serves as the leading technology
to provide this position-awareness. However, for the indoor
environment, no single technology has proved to meet the
various requirements yet. Many indoor systems utilize the
same principle for localization as is used for GPS, where range
measurements are made between some known reference nodes
and the users. However, due to the harsh indoor environment
with many obstacles that may block or reflect the transmitted
signals, it becomes hard to reliable locate the user from the
received signals. With the advent of ultra-wideband technology
[1], with its fine delay resolution and ability to resolve multi-
path components, it has become possible to provide accurate
line-of-sight (LOS) range estimates necessary for localization.
However, due to the limited radio-range of these UWB signals
and blockage of signals by obstacles, still a large number of
reference nodes are required for accurate positioning. Placing
and maintaining these reference nodes is expensive and time-
consuming which may render the localization system cost-
inefficient. This problem has been partially solved by adopting
cooperation, in which all users collaborate in finding and re-
fining their position. In [2], [3] several cooperative algorithms
are presented where positioning is possible with a low number
of reference nodes. When there are too few users or too much
NLOS, these systems break down and some extra reference

nodes remain necessary. As a result, researchers continued to
search for solutions to keep the number of reference nodes
low.

It has been observed in [4], [5], that not only the LOS
range measurement is useful for localization but also the signal
reflections. Using ultra-wideband, it is possible to distinguish
the multipath components (MPCs). Such a MPC can be seen
as a LOS component transmitted by a virtual anchor behind
the corresponding reflecting surface. However, due to the non-
identifiability of the measured MPCs, simple multilateration
techniques are not applicable. In a probabilistic approach
where reflections have a certain probability of coming from
a certain virtual anchor, estimating the absolute position of
a user becomes possible. In [6], an experimental study using
real measurements has shown a proof-of-concept where the
user is located with a single anchor. For a single user, the
localization accuracy remains rather poor and therefore coop-
eration between users was added in [7]. While this algorithm
performs very well, it is prohibitively complex and unsuitable
for either larger networks or real-time localization.

In this paper, a low-complex algorithm for cooperative
multipath-aided indoor localization called CUPID is presented.

II. SINGLE ANCHOR LOCALIZATION

Consider a wireless network of N users and a single anchor,
situated in a room with known floor-plan. Let xi ∈ R2 be
the position of user i = 1..N and xN+1 the known position
of the anchor. Using ultra-wideband, a measurement between
two devices i and j is made by transmitting a narrow pulse
from device i. At the receiver, a number of distorted copies of
this pulse will be received, possibly including the line-of-sight
component and some multipath components caused by reflec-
tions and scattering. In a synchronized network1, the arrival
time of the components can be converted to distances. We will
assume that the receiver is able to identify the LOS component
zijrange -if present- that represents the distance between devices
i and j. In [8], [9], several methods are presented to determine
the LOS nature of a measurement. We will model the LOS
range estimates with a normal distribution with mean equal to
the true distance and standard deviation equal to σn. The whole
network is represented by an undirected graph G = (V,E)
with vertices V = {x1, ..,xN ,xN+1} representing the wire-
less devices and a set of edges E whenever a line-of-sight

1The assumption of synchronization can be omitted when a two-way
ranging protocol is considered.

978-1-4673-1954-6/12/$31.00 ©2012 IEEE

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012



user1

anker

user2

anker

user3

w

vv u

Figure 1. The reflections that the users receive can be seen as LOS
components coming from the virtual anchors behind the wall. On the left
we see a single reflection, on the right a double reflection.

range-measurement zrange,ij is available between two devices
i and j.

In traditional multi-anchor localization, the remaining mul-
tipath components are usually ignored and only the range
measurements zrange are used for estimating the user positions.
It has been shown [4] however that the multipath components
obtained from a measurement with the anchor still carry useful
information when the floor-plan of the room is taken into
account. For a user i, the multipath components received from
the anchor are stored in the vector zmp,i =

{
zimp,m

}
with

m = 1..Mi and Mi the number of MPCs received by user i.
A multipath measurement zimp,m can be seen as the distance
between the user i and some virtual anchor (VA) behind the
reflecting surface. In a typical indoor setting, the walls will
cause most of the reflections and with a floor-plan available,
a finite set of virtual anchors V = {xVA,p} can be obtained
by mirroring the anchor position at each wall2.

A clear picture of this is shown in Fig. 1 for both a single
and a double reflection. Unfortunately, for a given multipath
component, the corresponding virtual anchor is not known and
because of this, simple multilateration techniques are not appli-
cable for location estimation. Therefore, a probabilistic model
where each multipath component has a certain probability of
corresponding to a VA is an appropriate alternative.

Assuming the multipath components are independent from
each other, we can write the likelihood function of the MPC
measurement zimp given the position of user i as follows:

p
(
zimp | xi

)
=

Mi∏
m=1

p
(
zimp,m | xi

)
. (1)

The likelihood function for a single multipath measurement
zimp,m can be formulated as [4]:

p
(
zimp,m | xi

)
=
PVA

Pv

NVA∑
p=1

Pv,pN (zimp,m; ‖xi − xVA,p‖, σ2
p) +

(1− PVA)

Rmax
.

(2)

We made the following assumptions: A measurement zimp,m

has probability PVA of coming from a VA and (1 − PVA)

2Note that, for the N users, the transmitter position is unknown and
therefore no set of virtual anchors can be obtained.
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Figure 2. Plot of log p
(
zimp | xi

)
where zimp contains 7 multipath

components. In this plot the different intersecting Gaussian rings from (2) are
clearly visible. Here the user (15; 4) is not located in the absolute maximum
of this function (4.78;1.54).

of not being related to any VA in our finite set. In the
latter case, zimp,m is uniformly distributed between 0 and
the maximum range Rmax.3 In the former case, we have a
weighted sum of NVA Gaussian rings centered around every
virtual anchor (with position xVA,p) with radius zimp,m and
standard deviation σp. The pth virtual anchor is visible with
probability Pv,p. To ensure proper normalization, we introduce
Pv =

∑NVA

p Pv,p.
In Fig. 2, an example of the likelihood function p

(
zimp | xi

)
is shown for 7 multipath components. Because of the non-
identifiability of the MPCs, this function has many local
maxima and the true user position may even not be closely
located near the absolute maximum of the function. Using this
likelihood function alone for estimating the user position will
result in bad performance. However, by introducing coopera-
tion between multiple users, performance can be augmented.

The joint likelihood function of all observations
{zmp, zrange} given the user positions x1:N = {x1, ..,xN} is
given as follows:

l(zmp, zrange | x1:N )

=
N∏
i=1

p
(
zimp | xi

)︸ ︷︷ ︸
multipath

∏
j∈N (i)

p (zrange,ij | xi,xj)︸ ︷︷ ︸
ranging

. (3)

The maximum likelihood (ML) estimate for the user posi-
tions x1:N is given by:

x̂1:N = arg max
x1:N

l (zmp, zrange|x1:N ) . (4)

3The maximum range Rmax is the maximum distance between any virtual
anchor, and one of the corners of the room.
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In [7], the ML estimates are obtained by applying nonpara-
metric belief propagation to a similar posterior distribution as
(3). This iterative algorithm returns beliefs for every user that
represent an approximation for the marginal distribution of
the user position. However, these beliefs are generally very
complex and a very large number4 of particles are needed to
accurately approximate it, resulting in a very computationally
demanding algorithm.

Alternatively, point estimates for the user positions can
be found using fast, low complexity optimization techniques
by minimizing a suitable objective function related to the
posterior (3). For multi-anchor cooperative localization this has
proved to be very successful with algorithms such as weighted
least squares [10], MDS [3] or SDP [11]. For the single-
anchor problem however, the objective function is highly
non-linear and non-convex and these algorithms cannot be
directly applied. Because of this, one can only hope to find
the maximum of (3) when sufficiently accurate initial estimates
are provided.

III. CUPID ALGORITHM

A. Two step localization
In this paper, we propose a novel low-complexity, two-

step algorithm called CUPID (Cooperative UWB Positioning
Indoors) for estimating the user positions. The algorithm is
based on the observation that a related problem to (4) can
be solved efficiently, namely the problem of finding relative
coordinates by matching the range measurements zrange. By
solving this related problem a relative map is obtained, sub-
ject to three degrees of freedom5, i.e. a translation, rotation
and reflection. In traditional multi-anchor localization, these
relative coordinates can be converted to absolute coordinates
by matching the anchor positions. For this operation, at least
three anchors are necessary: one for each degree of freedom.
If only a single anchor is available however, two degrees
of freedom still remain. Now, the node in the relative map,
corresponding to the anchor, can be seen as a pivot around
which the relative map can be rotated or reflected. Estimating
the absolute coordinates can thus be done by finding the
rotation and reflection for the relative map that maximizes
the likelihood function (3). Finding this transformation to
absolute coordinates is a low-dimensional problem that can
be efficiently solved, in contrast to the original problem (4)
that requires the maximization over all possible user positions.
The CUPID algorithm consists of these two steps: one for
estimating the relative coordinates, and one for estimating the
transformation to obtain absolute coordinates.

In the first step we ignore the multipath components and
only take into account the range information zrange,ij for i, j =
1, .., N+1 corresponding to the LOS components between the
different users and/or anchor. We reformulate this problem as
a weighted least squares (WLS) problem such as in [10]. The
cost function to be minimized is given as follows:

4In [7], 15000 particles were used to represent the beliefs.
5When some range measurements are missing, the corresponding map can

have more degrees of freedom. See section III-B.

f(x1:N+1) =
N+1∑

i

N+1∑
j

wije
2
ij , (5)

with eij = (zrange,ij)
2 − (xi − xj)

T (xi − xj) the error
in squared Euclidean distances. When all pairwise distance
estimates are available and all weights are equal, this reverts
to a convex problem with a unique solution. When some
distance estimates are missing, which will be the case for
NLOS measurements, this is no longer true. For now we
will assume all range-measurements are available. How to
deal with NLOS measurements will be discussed in the next
section.

Minimization of (5) can be efficiently done using the
iterative Newton’s method. Each iteration k, the minimum is
updated according to: x

(k+1)
1:N+1 = x

(k)
1:N+1 + ∆x

(k)
1:N+1. Here

the superscript indicates the iteration index and ∆x
(k)
1:N+1 =

−
[
∇2f(x

(k)
1:N+1)

]−1
∇f(x

(k)
1:N+1) is called the Newton step.

For the calculation of the Newton step a closed form ex-
pression for the gradient and Hessian of the cost function is
required. The gradient of f(x1:N+1) is a 2× (N + 1) matrix
with components:

∇f(x1:N+1) =
[

∂f(x1:N+1)
∂x1

∂f(x1:N+1)
∂x2

. . . ∂f(x1:N+1)
∂xN+1

]
,

(6)
where the partial derivatives are given by:

∂f(x1:N+1)

∂xi
= −8

N+1∑
j

wijeij(xi − xj). (7)

The 2(N + 1)× 2(N + 1) Hessian matrix is constructed by
2× 2 blocks:

[
∇2f(x1:N+1)

]
ij

=

[
∂2f(x1:N+1)

∂xi∂xj

]
, (8)

where ∂2f(x1:N+1)
∂xi∂xj

are 2× 2 matrices defined as:

∂2f(x1:N+1)

∂xi∂xj

=

{
−8
∑N+1

l wil

(
eilI− 2(xi − xl)(xi − xl)

T
)

i = j

−8wij

(
−eijI + 2(xi − xj)(xi − xj)

T
)

i 6= j

With the WLS algorithm, relative coordinates are obtained,
which corresponds to three degrees of freedom. The relative
coordinates can be transformed to absolute coordinates by the
following rigid (distance respecting) transformation:

xi = Txrel
i + t. (9)

Here T is a 2× 2 orthogonal matrix and t ∈ R2 represents
a translation. If three or more anchors are available, the trans-
formation parameters T and t can be estimated by mapping
the relative coordinates of the anchors to the known absolute
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Figure 3. Graph G is not uniquely realizable (it is both not 3-edge-
connected and not redundantly rigid) but can be decomposed into three
uniquely realizable subgraphs Sj .

coordinates of the anchors. This operation can be achieved by
Procrustes analysis [12]. If only a single anchor is available,
two degrees of freedom still remain which corresponds to
the unknown orthogonal projection T. Using the multipath
components it is possible to estimate the orthogonal projection
T with a ML estimator. The second step in the algorithm
consists of estimating the transformation parameters and can
be done as follows:

t̂ = xa − xrel
N+1 (10)

T̂ = argmax
T

l
(
zmp, zrange|Txrel

1:N + t̂
)

(11)

Maximization of the function l
(
Txrel

1:N + t̂|zmp, zcoop
)

parametrized over T is best performed by a grid search,
because it has multiple local maxima similar to (2). The
complexity of this grid search remains low due to the small
parameter space of T. This can be explained as follows: we
can write the matrix T in terms of the angle of rotation
θ ∈ [0, 2π) and a parameter α = [1,−1] that indicates if a
reflection is present.

T =

[
cosθ −αsinθ
sinθ αcosθ

]
. (12)

Hence, for each of the two values for α, i.e. ±1, a one-
dimensional search over θ must be performed.

B. NLOS and rigid graphs

The success of the aforementioned algorithm relies on the
fact that the relative map, estimated from the first step, is an
accurate representation of the true relative coordinates because
this map is used for estimating the transformation to absolute
coordinates. Using a bad estimate for the relative coordinates
is likely to have a detrimental effect on the estimation of the
projection parameters of the second step. Due to the high

Algorithm 1 General CUPID algorithm
1. Find all rigid subgraphs Si of G
2. for ∀Si that include the anchor:
2a Perform WLS to estimate relative coordinates
2b Find orthogonal transformation to obtain absolute

coordinates using (10-11)
3. end for
4. For nodes without estimate, perform ML

accuracy of UWB range measurements, it is possible to obtain
a very accurate relative map with the important exception of
non-line-of-sight (NLOS) measurements. In case of NLOS, the
range measurement can have a large unknown positive bias
that will deform the relative map when used for estimation.
A possible solution to deal with NLOS measurements is to
discard them, i.e. by setting the corresponding weights wij

equal to zero. However, due to the missing links, the relative
map may have more than three degrees of freedom. In such
a case it becomes impossible to uniquely estimate the relative
coordinates of the users and we say that the graph G in not
uniquely realizable. An example of this is given in Fig. 3 where
the graph G is not uniquely realizable. For this graph, an
infinite amount of possible realizations exist. For example:
node 7 can freely be rotated around the anchor node, nodes 5
and 6 can be flipped around the line through the anchor and
node 4, etc...

In [13], two conditions are given such that a graph G has a
unique realization in two dimensions6:
• G is 3-vertex-connected
• G is redundantly rigid (and thus also rigid)

The first condition makes sure there are no flip ambiguities.
The second condition means that whenever an edge in the
graph is removed, the graph remains rigid, which means it
cannot undergo any flexible variation. This last condition also
implies rigidity of the graph.

It is clear that we need a way to deal with relative maps that
are not uniquely realizable, because they give bad results for
the CUPID algorithm. If there are more degrees of freedom,
we could use more complex transformations than (9) that
take into account these extra degrees of freedoms. However,
this would increase complexity of the algorithm dramatically
which was the main goal of the algorithm in the first place.
We will therefore use another approach. In Fig. 3, we can
see that the original graph contains some parts that are well
constrained. By searching the graph G such as is explained
in [13] we can extract a set of uniquely localizable subgraphs
{Si}, as is shown in Fig. 3. Because each subgraph is uniquely
realizable, the relative coordinates of the corresponding nodes
can be accurately estimated7. For each such subgraph that

6Under the assumption that no three nodes are collinear.
7Note that finding the unique realization of the map is possible, but remains

a very hard task [14]. In order to obtain better estimates for the relative map
we use the non-cooperate ML estimate of the user position by solving (4)
with the neighborhood of every node i restricted to the anchor, i.e., by setting
Ni = {N + 1} for ∀i.
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Table I
COMPARISON IN TIME COMPLEXITY(IN SECONDS) BETWEEN THE CUPID

ALGORITHM AND BP.

N = 2 N = 3 N = 4 N = 5 N = 10
CUPID 0.1 0.2 0.3 0.4 0.9

BP, R1 = 5000 2.7 31 68 135 809
BP, R1 = 15000 22 200 382 572 2405

contains the anchor node, we can apply the two-step algorithm
from the previous section to obtain its absolute coordinates.
After all subgraphs are processed, some nodes will have
multiple positions estimates and some will have none. For
simplicity we take the mean whenever multiple estimates are
available and for nodes without a position estimate we use the
non-cooperative ML estimate.

An overview of the CUPID algorithm adapted to NLOS
measurements is given in Alg. 1.

IV. RESULTS

A. Complexity analysis

The main goal of this paper is to present a low-complex
algorithm to solve the cooperative, multipath-aided localiza-
tion problem. In [7], an algorithm was presented based on
belief propagation (BP). The complexity of the algorithm
follows from the computation of the messages between every
neighboring user. In [7], each messages is represented with
R1 = 15000 particles and the computational complexity of a
single message is O(R2

1). The total complexity for a network
with N users is thus of the order O

(
MR2

1

)
where M = CN

2

is the binomial coefficient representing the maximum number
of links between the cooperating users.

In the CUPID algorithm, one Newton minimization and
two one-dimensional searches are performed which require
very low computational power. The main complexity here is
determined by the calculation of the initial non-cooperative
ML estimates which is done using a grid search using R2

points. For N users, the complexity is of the order O(NR2)
with R2 = 10000. In table I the computation time on an
Intel i7 mobile processor in seconds is presented for both
algorithms. It is clear that for any number N of cooperative
users the CUPID algorithm is much faster than the algorithm
using belief propagation.

B. Accuracy

We now present some numerical results for the CUPID
algorithm. Results were obtained by means of Monte Carlo
simulation using the parameters from table II.

In Fig 4, the cumulative distribution function is presented
for the LOS scenario. It can be seen that both accuracy
and robustness increase when the number of cooperative
users increases. Here, we say that a localization algorithm
is robust whenever there are only a few estimates having a
very large error (for indoor localization we can say that an
error exceeding 1m is large). Without cooperation, we see that
only 64% of all estimates have a localization error smaller
than 30cm as compared to the cooperative case with 10 users

Table II
SIMULATION PARAMETERS

Parameter Note Value
σp, σn Ranging std. deviation 0.1m for ∀ p
Pv,p Visibility for VAs:

single reflections 0.5 for 1 ≤ p ≤ 4
double reflections 0.3 for 5 ≤ p ≤ 8

PVA Prob. that a zimp,m is from a VA 0.4
w × h room dimensions 10 m × 25 m
(xa, ya) anchor location (5m, 7m)
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Figure 4. Cumulative distribution function for the estimation error obtained
by the CUPID algorithm under LOS conditions for a different number of
cooperating users.

where 99% of all estimates have a localization error smaller
than 30cm. Furthermore, it is observed that, starting from 3-4
cooperating users, the algorithm becomes very robust, i.e., less
than 4% of the estimates have a large error.

In Fig. 5 we show the effect of NLOS by setting the
probability of LOS at 80%. If we directly apply the CUPID
algorithm in such a scenario, performance becomes very bad.
This can be seen for N = 3 and N = 5 (dashed line). If we
use the theory from section III-B and apply the CUPID on
the different uniquely localizable subgraphs and use the non-
cooperative ML estimates as initial estimates, we obtain much
better performance (solid line).

In order to appraise the resulting performance of the
CUPID algorithm, a comparison is made with the existing
algorithm from [7] that uses belief propagation to solve the
same multipath problem. Furthermore, both these algorithms
are compared against a traditional multianchor localization
algorithm that uses three anchors and only range information.
For the multianchor estimation we use the WLS algorithm
from step 1 and perform procrustes analysis afterward to
obtain absolute coordinates. For all algorithms there is again
only 80% LOS. In Fig. 6 the probability of a localization error
larger than 1m is shown for a varying number of cooperative
users. It is observed that if the number of cooperative users is
low, robust localization is not possible: between 10 to 30% of

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

localization error [m]

C
D

F

 

 

3 users
5 users
3 users − altered
5 users − altered

Figure 5. Cumulative density function under NLOS conditions for the
estimation error obtained by the CUPID algorithm used on the whole graph G
(dashed line, resulting in bad performance) or the different subgraphs (solid
line).

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of users

ou
ta

ge
 p

ro
ba

bi
lit

y

 

 
CUPID
BP
multianchor

Figure 6. Plot of the outage probablity P (error > 1m).

all users are miss-located. It is seen that for a low number of
cooperating users, the CUPID algorithm generally requires one
more user than BP to obtain a similar outage probability. This
is more or less in line with the anticipation because the BP
algorithm does a joint maximization at the expense of higher
complexity. However, when the number of users increases,
the difference in performance for both algorithms becomes
negligible.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of single-anchor cooperative
localization is considered. This problem generally leads to
very computationally complex algorithms if solved jointly.
In this paper a low-complex algorithm called CUPID is

presented for cooperatively estimating the user positions using
a single anchor. In a first step the relative coordinates of
the cooperating users are estimated using inter-node range
measurements. These relative coordinates are then transformed
to absolute coordinates by also taking multipath components
into account. In case of LOS this algorithm performs very
well. When NLOS links are present however, the relative map
representing the cooperating users may be no longer uniquely
realizable and performance loss is expected. A solution is to
apply the CUPID algorithm on different uniquely realizable
subgraphs in order to maintain a good position estimate. Future
work includes adding tracking and testing the algorithm on
real-life data.
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