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Abstract

A methodology is introduced to predict the performance of automatic road detec-

tion using image examples of typical road types. In contrast to previous work on

road detection, the focus is on characterizing the detection performance to achieve

reliable performance measures of the detection. It is studied how noise, like road

markings, shadows, trees and buildings, influences the detection of the road. This

noise is modeled using second-order statistics and its effects are calculated using er-

ror propagation on the detection equations. The method predicts the performance

in terms of detection rate and gives the optimal parameter set that is needed for

this detection. Experiments have been conducted on a set of images of typical roads

in very-high-resolution satellite images.
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1 Introduction

Although digital maps are available for many areas, producers of geospatial

data continuously need to keep this data accurate, up-to-date and complete.

Not only do they need to control the quality of their data, the high demands

of current applications puts pressure to deliver products of increasingly higher

spatial resolution. Upgrading the spatial accuracy of existing data however

is a labour intensive and expensive process. In this paper, we focus on the

problem of quality assessment of digital maps and more specifically digital road

maps. We investigate automatic road detection in very-high-resolution (VHR)

satellite images, which forms the basis for automated quality assessment and

quality control in road GIS databases.

The proposed system for quality assessment is based on object based spatial

registration, where detected objects in the image are registered and compared

to corresponding objects in the GIS data (cfr. [1]). The system consists out of

two stages: 1) a low-level feature detection process, which extracts roads and

junctions using an improved ridge detector, and 2) a high-level matching pro-

cess, which uses graph matching to find correspondences between the detected

image information and the road data (cfr.fig.1). The graph matching process

is driven by the spatial relations between the objects and takes into account

different errors that can occur (e.g. spatial inaccuracy, data inconsistencies

between image and GIS data). The matched objects can be used to calculate

a rubbersheeting transformation between image and GIS data that is able to

compensate the local distortions that can occur between the datasets. Addi-

tionally the object-to-object mapping is useful to define measures of change

between datasets.
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Much of the performance of the system depends on the quality of the first

stage, i.e. the extraction of road information from the images. Although much

effort has been spent on designing algorithms for road detection (e.g. [2]), this

complex problem is still not fully solved. In contrast with previous efforts,

which are aimed at improving the detection, we focus on characterizing the

performance of the detection. There are several reasons for this:

(1) The industry needs to be able to assess the benefits that can be gained

with image based road detection for its specific needs. An analysis tool

should be ready to assess the expected quality of road detection for a

given dataset to be able to decide if the use of this technology can decrease

operational costs. Often the results published in the literature are based

on a small number of images and are as such insufficient to predict the

performance on larger datasets or data of different type (e.g. a different

resolution or region). Based on example images that describe typical roads

in the region, a tool is needed that predicts the expected detection rate.

(2) An important difficulty in using a detection algorithm is that a num-

ber of parameters need to be determined by the operator. The choice of

the parameter set has a big impact on the detection performance and

is dependent on the image content. Since the operator is not necessarily

an image processing expert, a tool should be available to estimate the

”optimal” parameter set given example images.

(3) An object based quality assessment system naturally depends on the qual-

ity of the detection in the image. Decisions need to be taken based on the

information gathered by the detection, so one needs to be able to esti-

mate the reliability of the information. The high-level matching process,

which compares image information with the GIS data, needs information
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about the reliability of object detection in terms of true and false positive

detection. The reason is that the matching process needs to differentiate

between inconsistencies due to change and inconsistencies due to outliers

(i.e. false positive detection). Knowledge about the expected number of

outliers is used to make this distinction.

Although numerous papers exist on road detection, the focus is always on

improving or extending the detection operators. In this work, the emphasis is

not so much on precise localization but on robust detection. Therefore we have

studied how noise, like activity on the road, shadows, trees and buildings next

to the road, influences the detection of the road. This noise is modeled using

second-order statistics and its effects are calculated using error propagation on

the detection equations [5]. Error propagation allow us to predict the detection

performance for a road in a given image, based on simple image statistics. In

addition, the optimal parameter set can be determined that gives the best

detection, taking into account the type of road, image noise and structural

noise. Prediction of the performance can be done in an interactive manner,

where the user shows typical road examples and gets in return the estimated

performance on his dataset. On the other hand, it can be used during the

detection, where in addition to the detected road pixels information is given

on the reliability.

2 Ridge detection

Lines in an image can be seen as narrow valleys or ridges in the intensity

surface if one views the image as a terrain model. In [3], different approaches

to line detection are reviewed. In this work, line detection is performed based
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on polynomial interpolation to determine pixels belonging to road structures

in the image, the ”facet model” [4]. This is a standard method for ridge detec-

tion. The image is regarded as a function I(i, j). Lines are detected as ridges

and ravines in this function by locally approximating the image function by

its second order Taylor polynomial. The polynomial is used to approximate

first and second order derivatives of the image function in each pixel. The

direction of the line can be determined from the Hessian matrix of the Taylor

polynomial. The gradient and curvature information in each pixel are used

to classify a pixel in a number of topological classes based on their sign or

magnitude. Line points are mainly characterized by a high second directional

derivative, i.e. a high curvature perpendicular to the line direction.

The calculation of the partial derivatives can be done in various ways. The

facet model determines a least squares fit of a polynomial F to the image data

I over a window of size N = w2 with window size w. The origin is chosen in

the central pixel of the window. The value of the polynomial F in pixel (i, j)

is given by:

F (i, j, �θ) = a1 + a2i + a3j + a4i
2 + a5ij + a6j

2

= �mT �θ

with �m =




1 i j i2 ij j2




T

�θ =




a1 · · · a6




T

(1)

The facet model searches the least-squares solution �θ, given the image data �x
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containing the intensity value I(i, j) in each pixel (i, j):

arg min
�θ

r(�θ) with r(�θ) =
∥∥∥M�θ − �x

∥∥∥2

M =




1 i1 j1 i21 i1j1 j2
1

...
...

1 iN jN i2N iNjN j2
N



∈ NN×6

�x =




I(i1, j1) ... I(iN , jN )




T

∈ NN×1

(2)

This leads to the linear system MT M�θ = MT�x with the solution �θ0 given by

�θ0 = (MT M)−1MT�x.

The matrix M is independent of the position of the window within the image,

meaning that the calculation of (MT M)−1MT needs to be performed only

once for the processing of an image with a fixed window size w. On the basis

of the parameters �θ of the interpolated surface F , the gradient and Hessian in

a certain pixel can be calculated. In our model we are only interested in the

gradient and the Hessian in the central pixel of the window (i.e. i = j = 0):

gradient(I) =

[
∂I

∂x
,
∂I

∂y

]T

=




a2 + 2a4i + a5j

a3 + a5i + 2a6j




Hessian(I) =




∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2




=




2a4 a5

a5 2a6




(3)
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3 Error Analysis

We wish to give a more quantitative analysis of the performance of ridge de-

tection. More specifically, we wish to be able to predict the performance of

the detector for a given dataset and the according parameter set that gives

optimal results. For this, we analyse the influence that perturbations on the

intensity values have on the estimation of the parameters by using error prop-

agation [5]. Additive random perturbations are assumed on the input �x and

the perturbations are described by the covariance matrix Σ�x. The propagation

of the error on the input �x to the estimated parameters �θ is given by:

�̂x = �x + ��x, �̂θ = �θ + ��θ

Σ��θ = (MT M)−1MT Σ��x M(MT M)−1

(4)

The matrix (MT M)−1MT can be worked out to a closed expression. Due to the

linear system, the error propagation of �x on �θ is only dependent on the window

size w and not on the input intensity values (and consequently independent of

the observed perturbed image structure). For uncorrelated noise with variance

σ2, Eq.(4) simplifies to Σ��θ = σ2(MT M)−1 since in this case Σ��x = σ2I.

However, in this work, the general case is followed.

The parameter covariance matrix Σ��θ allows to estimate the variance on the

detected gradient and curvature of the ridge detector. The gradient magnitude

and eigenvalues of the Hessian are given by

G ≡ ‖�g‖ =
√

a2
2 + a2

3

λ1,2 = a4 + a6 ±
√

a2
4 + a2

5 + a2
6 − 2a4a6

(5)
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The variance on these measurements up to first order is given by

σ2
G =

(
∂G

∂�θ

)T

Σ�θ

(
∂G

∂�θ

)

σ2
λ1

=

(
∂λ1

∂�θ

)T

Σ�θ

(
∂λ1

∂�θ

) (6)

In combination with Eq.(4), this gives the relation between the perturbations

on the image data and the perturbations on the detection measurements G

and λ1. This relation allows to estimate the expected performance of the de-

tector for a given parameter set. The basic ridge detector operates by setting

a threshold t1 on the first eigenvalue λ1 of the Hessian. Pixels that exceed

this threshold are selected as ridge pixels. To predict the performance of the

detector, the eigenvalue λ1 is regarded as a stochastic variable using a Gaus-

sian distribution with variance σλ1 . The probability p(λ1 > t1) expresses when

the curvature λ1 of a pixel exceeds t1. This distribution is given by the sur-

vival function (i.e. the complement of the cumulative density function) of the

Gaussian:

p (λ1 > t1) =
1

σλ1

√
2π

∞∫
t1

e
− (λ1−λ1)2

2σ2
λ1 dλ1

= 1
2

[
1 − erf

(
λ1 − λ1

σλ1

√
2

)] (7)

Given the survival function, calculated with the appropiate statistics for the

road, a prediction of the detection performance can be made in terms of true

positive and false negative detection. In addition, if statistics for the noise

structures in the surroundings of a road (e.g. buildings, trees) are measured,

a prediction of the false positive and true negative detection can be made.
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4 Experimental results

In this section, the derived expressions are applied to predict the performance

of the detection. For these experiments, an IKONOS panchromatic satellite

image has been used, acquired over the city of Ghent, Belgium. The image is a

standard GEO product with a one-meter pixel resolution. A number of small

image subsets have been selected containing straight examples of typical roads.

These subsets have been manually rotated until each road is positioned parallel

to the vertical axis. Figure 2 shows the selected image subsets referenced R1

to R5.

4.1 Verification of the derived expressions

The position xroad of the central axis of the road is used to measure the

covariance matrix Σ�x and the mean curvature λ1, by sampling �x and λ1 for a

given window size w along the axis. This position xroad is determined manually

by examining the mean curvature profile of the image subset. Based on the

measurements, Σ�θ and σ2
λ1

are calculated using Eq.(4) and Eq.(6). This allows

us to predict the survival function p(λ1 > t1) for a given threshold t1 on the

curvature λ1.

Fig. 3 shows an example plot of the survival function for image subset R5 using

a window size w = 11. The solid curve shows the empirical distribution mea-

sured over the central axis of the road. The dashed curve shows the predicted

distribution using the measured Σ�x and λ1. In this example, the two distribu-

tions show a good resemblance. To quantify the goodness-of-fit we measured

the discrepancy between the distributions for each threshold sample point.
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Fig. 4 summarizes this discrepancy for the five image subsets for different

window sizes w. The bars in this plot show the mean discrepancy between the

empirical and estimated distribution, averaged out over a threshold interval

[0, tf ]. The upper bound tf of this interval is defined by p(λ1 > tf) = 0.01. The

error bars on the plot in Fig. 4 show the minimum and maximum discrepancy

for each sample. Fig. 3 shows the location of the maximum discrepancy for

road type R5 with window w = 11.

Fig. 4 shows a mean discrepancy of less than 5% for the higher window sizes

(w > 11). The larger mean discrepancy for small windows occur when the

gaussian model is less adequate to describe the statistics of the road. Small

local artifacts on the road (shadow, road markings, cars), which are smoothed

out with larger windows, could in this case be better modeled using a mixture

of normal distrbutions.

4.2 Optimal performance

The distribution that is measured in Fig. 3 only gives information about the

useful signal, i.e. the road that needs to be detected. This gives an upper

bound to the threshold t1. A lower bound is defined by the properties of the

noise, i.e. undesired structures in the image which are falsely detected. If the

threshold is chosen too low, the detection of these false negatives will increase.

The performance of the detection for each threshold can be summarized in a

Receiver Operating Characteristic (ROC) curve. Sensitivity and specificity are
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defined as follows:

sensitivity =
TP

TP + FN
=

detected road pixels

road length

specificity =
TN

TN + FP
= 1 − detected noise pixels

noise length

(8)

where {TP, TN, FN, FP} stands for true positive etc. True positives and false

negatives are measured on the road axis x = xroad and are normalized using the

total road length in the image. True negatives and false positives are measured

along a vertical axis x = xnoise representative for the noisy structures in the

vicinity of the road. The position of this axis is determined automatically by

taking the position of the second largest peak in the mean curvature profile

of the road and its vicinity. Normalisation is performed using the total length

of the axis, which in this case equals the total road length. Fig. 8a illustrates

the position x = xroad and x = xnoise for road type R1.

The reason for this approach is that it can be meaningful to characterize false

detections in the direct surroundings of a road. Since for some applications a

rough registration between image and GIS data is known, regions-of-interest

can be defined where roads are expected in the image. Road detection in this

case should then be aimed at distinguishing the useful signal from noise in the

immediate surroundings. In our example we measure the noise statistics of the

structures beside the road and use this to model the expected falsely detected

noise pixels using Eq.(7). In this case Σ�x and λ1 are measured for x = xnoise

for the same window size w as the signal.

Using the ROC curve, the optimal performance for this curve is defined as the

point on the curve closest to the upper right corner (1, 1). The upper right

corner is equivalent to a road which is completely detected with no detection

of noisy structures (i.e. perfect detection). The point on the curve closest to
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perfect detection defines the optimal threshold t1 for the given window size. In

Fig. 5, the empirical and predicted ROC curves for road type R1 are plotted

for window size w = 11 and w = 13. The full curve shows the empirical

plot, where detected and falsely detected road pixels have been measured on

the road axis and the position xnoise. The dashed curve shows the predicted

plot using the covariance matrices measured in these positions. The sample

point closest to the upper right corner defines the optimal threshold for each

window size. The difference between the empirical and predicted ROC curve

for a given window size is mainly due to a less accurate estimation of the

true noise survival function. Fig. 7 shows both survival functions for road

type R1 for w = 11. The figure shows a good correspondence between the

empirical and predicted survival for x = xroad and a less accurate estimation

for x = xnoise. This is because the noise introduced by the building structures

are less well captured in a single gaussian distribution and should be described

by a mixture model. On the road itself, where the noise structures are small

compared to the window size, the estimation is more accurate.

To determine the optimal window size and associated threshold (wopt, topt) for

a certain road type, the ROC curves for different window sizes are calculated.

The curve which passes closest to the upper right corner defines the parameter

set (wopt, topt). We have performed this procedure for road type R1 for window

sizes w ∈ [7, 19] and t1 ∈ [0, 4]. In Fig. 6, the distance of each sample point

on the ROC curves to the upper right corner is plotted in a contour plot for

both empirical and estimated data. The structure of both contour plots is

comparable with the location of optimal performance being situated in the

same area in parameter space. The exact minimum is different for empirical

and predicted data, being resp. {wopt = 13, topt = 0.75} and {wopt = 11, topt =
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0.8} (cfr.Table 1). However, looking at the actual ROC curves in Fig. 5, we

see that for the predicted curves the difference between w = 11 and w = 13 is

very small.

More important than the exact location of the optimum however is the rel-

evance of the predicted performance. Table 1 summarizes the predicted and

empirical true positive and false negative detection for given parameter sets,

as well as the Euclidean distance to the point of perfect detection. We see

that for the optimal estimated parameter set (11, 0.8), there is a good corre-

spondence for the true positive detection and a slight underestimation for the

false negative detection. Also compared to the optimal empirical parameter

set (13, 0.75), the difference is small. Fig. 8 shows both the optimal predicted

and optimal empirical detection result in overlay on the image.

In a last test, the results obtained for road type R1 are compared with the de-

tection over a larger region containing similar roads (cfr. Fig. 9). The method-

ology to determine the detection rate is slightly different because it was more

difficult to locate the precise road axes. Instead two regions have been defined

in the image: one region containing the roads and one region containing the

road surroundings up to 20 meter at the left and right of a road. These regions

are used to distinguish between the useful signal and the noise. To normal-

ize the true and false positive detection rate, the area of each region is used

instead of road and noise length in Eq.(8). The detection performance in the

full image using the optimal predicted parameter set is given in Table 1. We

see that the predicted performance overestimates the detection rate over the

full image. In the case of the false negatives this is expected, since by taking

only the statistics over xnoise, i.e. the location of the most detected pixels be-

side the road, this amounts to a worst-case estimation. In the case of the true
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positives, the overestimation is mainly due to the fact that the image subset

R1 is actually a well behaved example of the road (note that the empirical TP

rate is also 90% compared to 76% for the full image). The full image contains

at the bottom a number of roads with trees, which leads to a bad detection in

this part. Additionally, junctions are not detected by the ridge detector since

the line model does not hold anymore in these cases. Junctions are not covered

in our model. When we neglect the roads containing trees in the image, the

TP rate increases to 82%, which is closer to the predicted 89%.

5 Conclusion

In this paper, an analysis of the performance of road detection is introduced.

A methodology has been established where, based on the image statistics of

a road and its immediate surroundings, the performance of the detection can

be predicted as well as the optimal parameter set which is needed for the

detection of this type of road. The performance is characterized in function

of the detection rate. Experiments have been conducted on a set of images of

typical roads in an IKONOS satellite image. Results show a mean discrepancy

between the predicted and empirical survival function of less than 5% for larger

window sizes, measured on the central axis of the road. By using the image

statistics of the road axis and the road vicinity, ROC curves can be calculated

to determine the optimal parameter set. The optimization function, which

is used to determine the parameters, uses the euclidean distance to perfect

detection. The function shows a similar shape for the predicted and empirical

ROC curves. Differences are mainly due to the modeling of the noise structures

like buildings, which in some cases is less accurate. The normal distribution,
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which is used in this paper, could be extended to a mixture modeling to

capture the image content more accurately.
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(w, t1) TP FN

distance to

perfect de-

tection

predicted (optimal) (11, 0.8) 89% 33% 0.35

empirical (11, 0.8) 90% 40% 0.41

empirical (optimal) (13, 0.75) 85% 36% 0.39

full image (11, 0.8) 76% 19%

full image no trees (11, 0.8) 82% 19%

Table 1

Comparison of empirical and predicted performance

detectiondetection

ofof

image objectsimage objects

spatial registrationspatial registration

andand

change detectionchange detection OK
NOT

report containingreport containing

measures of changemeasures of change

GIS vector dataGIS vector data

ImageImage JunctionsJunctions

Fig. 1. Overview of the system for automated quality assessment of GIS data using

VHR images
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(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Fig. 2. IKONOS image subsets showing typical roads in the region of Ghent, Bel-

gium. (a)-(e) Road type R1-R5. For road type R2, R3 and R5 the right lane is

selected for the analysis.
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Fig. 3. Plot of the survival in function of the threshold t1 on the curvature λ1, for

road type R5 with w = 11.
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Fig. 4. Overview of the mean and maximum discrepancy between the empirical and

predicted survival for different window sizes w and road types
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Fig. 5. Empirical and predicted ROC curves for road type R1 for window size w = 11

and w = 13. The empirical and predicted point of optimal performance are marked

by the arrows.
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Fig. 6. Contour plot of road type R1 showing the distance in the ROC curve of

every sample point to perfect detection.
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Fig. 7. Empirical and predicted survival function for road type R1 for x = xroad and

x = xnoise.

(a) (b) (c)

Fig. 8. Detected result on road type R1 using optimal parameter settings. The

original image shows the position x = xroad and x = xnoise. The associated detection

rate is summarized in Table 1. (a) original (b) predicted (c) empirical
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(a) ground truth defining the road region

(roads containing trees are marked with a

dotted line)

(b) detection result (white: true positives,

light gray: false positives

Fig. 9. Overall detection result using predicted optimal parameter settings.
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